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Abstract  In this present work, we report a simple hydrothermal synthesis of B and N co-doped reduced graphene oxide 

through trisdimethylaminoborane complex. Maximum B and N atoms with an atomic percentage of 2.30 and 4.12 at.% 

respectively, were achieved onto the GO framework at the reaction temperature of 250C. Introduction of B and N into the 

GO matrix was confirmed by X-ray photoelectron spectroscopy. FT-IR measurement was conducted in order confirm the 

presence of different functional groups as well as the formation of different bonds such as B–C, C–N, B–O–B etc. XRD and 

Raman spectroscopy were employed to confirm the defects structures arisen from penetration of boron and nitrogen atoms to 

the GO lattice.  
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1. Introduction 

Graphene oxide (GO) is a mono-layered material, having 

some sp2-hybridized carbon together with some sp3-domain, 

showed unique mechanical, electrical and opto-electronical 

properties wing to different oxygen functionalities such    

as hydroxyl, carboxyl, and carbonyl carbons [1–3]. The 

exclusive property makes GO as a smart material for the 

invention of variety of nanocomposite materials for the 

application of high performance microelectronic devices, 

energy storage materials, and in the biomedical applicable 

materials [4-6]. The applicability depends on the oxygen 

functionalities present in GO and might be declined in 

electrical properties, thermo mechanical stability and carrier 

mobility of the carbon-based materials [7]. Non-metallic 

elements such as boron, nitrogen, sulfur, fluorine, 

phosphorous etc. have been incorporated onto the GO layer 

to improve the electrochemical properties [8, 9]. Different 

methods such as chemical vapor deposition, thermal 

annealing, plasma irradiation etc. have been employed for 

synthesizing N-doped GO for application of electrical, 

enhancement of surface and polarization energy [10-14]. B  
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and N co-doped GO for the application of supercapacitor, 

high performance anode material for Li ion battery and  

other electromagnetic radiation have been reported [15, 16]. 

However, drawbacks like incomplete purification and 

excessive amount of by products were remaining in the 

resulting GO materials that may cause structural degradation 

and morphological defects [17]. 

In our previous study, B-doped GO has been reported   

for the glucose biosensing application [18]. In this   

research, we have synthesized B, N co-doped GO (BN-r-GO) 

treating with a mixture of graphene oxide and 

tris-dimethylaminoborane (TDMAB) complex by simple 

hydrothermal reaction condition. The BN-r-GO samples 

were characterized by using different spectrophotometric 

techniques. The results could be used as a reference for 

further advanced research.  

2. Experimental Methods and Materials 

2.1. Chemicals 

The required materials such as sulfuric acid (H2SO4), 

hydrochloric acid (HCl), sodium nitrate (NaNO3), 

potassium permanganate (KMnO4), hydrogen peroxide 

(H2O2), boric acid (H3BO3), glucose, 3,5-dintrosalicylic 

acid (DNS), sodium potassium tartrate, sodium hydroxide 

(NaOH), TDMAB etc. all were purchased from Wako Pure 

Chemical Industries, Ltd., Japan.  
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2.2. Synthesis of GO  

Graphene oxide (GO) was synthesized by modified 

Hummer’s method using graphite flake as starting material 

[19]. In a 1L beaker, 4.0 g of NaNO3 weigh out and 

concentrated H2SO4 (148 mL) were added and stirred for 30 

minutes in an ice bath. Thereafter, KMnO4 (20.0 g) was 

added slowly to the solution and stirred for 40 minutes at 

35C then, followed by distilled water (184 mL) while 

mixing for 15 minutes at 95C, all are done in an oil bath. 

Further, 400 mL of H2O and about 25 mL of hydrogen 

peroxide (H2O2) were added and stirred at 4000 rpm for 10 

minutes. Then the mixture was washed with 5% HCl and 

stirred at 4000 rpm for 30 minutes. This action was 

repeatedly done for three/four times. The next step was 

exfoliation by sonication for 46 hrs. Then the centrifuged 

at 10,000 rpm for 30 minutes resulting to the supernatant 

GO. Finally, it was dried for 3 to 4 days in an oven at 60C. 

2.3. B, N-doping 

The as-obtained GO was used for further doping with B 

and N by simple hydrothermal reaction in which the reactor 

was equipped with an 8.8 mL inconel batch reactor. A 

schematic of the synthesis process is shown in figure 1. 

Typical 0.25 g of GO together with different concentration 

(1.0 M, and 2.0 M) of the tris-dimethylaminoborane 

(TDMAB) complex were loaded into the reactor. Thereafter, 

desired reaction conditions such as temperature, pressure and 

time were set. The reaction scenarios are shown in table 1. 

The resulting samples were referred to B, N co-doped 

reduced graphene oxide (BN-r-GO) and were collected, 

washed, filtered and dried overnight in an oven at 60C. 

Finally, the samples were characterized by using different 

instrumental techniques such as FT-IR, XRD, Raman, XPS 

etc. 

2.4. Characterization  

FTIR spectroscopy (FTIR-4100, JASCO) was used to 

determine different functional groups that were accumulated 

in GO and BN-r-GO samples. The measurements were 

carried out in the wavelength range of 4000 to 400 cm–1. 

X-ray photoelectron spectroscopy (Perkin Elmer Phi 1600 

ESCA) was used to determine the elemental compositions. 

The XPS was performed at Kumamoto University 

Instrumental Centre, Japan in which the AlKα was used as 

the X-ray source for irradiation of the sample surface. 

Crystallographic structure was determined by X-ray 

diffractometer (Rigaku, MiniFlex600) using CuKα radiation 

source. Diffraction data were taken at 2= 5 to 90 with step 

energy 0.02 eV. Raman spectroscopy was used to evaluate 

the microstructure of the synthesized GO samples using 

JASCO NRS-3100 Laser Raman spectrophotometer. The 

Raman shift was recorded at 500–4000 cm–1 wavelength 

region. 

 

 

 

Figure 1.  Schematic of the synthesis process of graphene oxide, doping of boron and nitrogen by hydrothermal reaction using TDMAB as the precursor 
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3. Results and Discussion 

3.1. FT-IR Analyses 

The functional groups created in the as-synthesized GO 

and BN-r-GO were assessed by FT-IR spectroscopic 

measurement and the spectra are shown in figure 2. Five 

peaks are seen in the spectrum which are the characteristics 

of GO. The peaks at 3300 cm–1, 1736, 1620, 1232, and 1060 

cm–1, are assigned for GO by the stretching vibration of 

hydroxyl (–OH), carbonyl (C–O), aromatic (C=C), epoxy 

(C–O–C) and alkoxy (C–O) bonds, respectively, [20, 21]. In 

the spectra of BN-r-GO, the hydroxyl peak became sharp 

and observed at around 3440 cm–1 due to the reduction of GO. 

There are six additional new peaks observed at 3740 cm–1, 

1643, 1543, 1200, 800 and 659 cm–1, respectively. These 

new peaks in the spectra of BN-r-GO could be assigned for 

the stretching vibration of N–H, C=C, C–N, B–C, -C–O–C-, 

O–B–O bonds, respectively [22-25]. From the spectral 

analyses, therefore, we could suggest that the –N–H, C–N, 

O–B–O and B–C bonds have been created in the GO network 

after boron and nitrogen doping. 

3.2. XRD Analyses 

Crystalline structures of GO and BN-r-GO were 

investigated by XRD analyses and the patterns are shown in 

figure 3. A strong and intense peak at around 2=10 

(d=0.44 nm) has been observed which is assigned for     

the non-functionalized crystalline GO [26, 27]. This 

characteristics peaks of GO in the XRD pattern is completely 

disappeared in those of the BN-r-GO. This indicated that the 

oxygen containing groups of GO were efficiently removed at 

certain percentage. Meanwhile, a broad peak at around 

2=25 (d=0.170.18 nm) is seen after hydrothermal 

reaction with TDMAB. This new peak (2=25) suggests 

simultaneous exfoliation and reduction of the GO with boron 

and nitrogen atoms [28]. A significant decrease in the 

interlayer spacing distance from d=0.44 to d=0.170.19 nm 

also support incorporation of B and N atoms into the GO 

layer. The absence of the peaks associated with oxygen 

functionalities in the FT-IR spectra agrees well with the 

XRD results. This findings has also been coincided with the 

XPS analyses, since, the atomic concentration of B and N 

were found to be 2.300.59 and 3.174.12 at.%, respectively 

(table 1) expressed in the following section. 

 

 

 

Figure 2.  FT-IR spectra of as-synthesized GO and BN-r-GO samples 
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Figure 3.  XRD patterns of the as-synthesized GO and BN-r-GO samples 

3.3. XPS Analyses 

X-ray photoelectron spectroscopy (XPS) measurements 

have been carried out in order to further confirmation of 

element composition and chemical environment in the region 

of boron, carbon, nitrogen and oxygen atoms in BN-r-GO 

samples. The XPS survey scan spectra showed the evidence 

of B, C, N and O elements and are shown in figure 4. The 

elemental compositions (at. %) were calculated from the 

XPS peak intensities and are tabulated in table 1. It is seen 

that B and N incorporation is increased up to 2.30 and 4.12 

at.%, respectively with the increase of the concentration of 

TDMAB complex. High resolution core shell XPS spectra of 

B1s, C1s, N1s and O1s are carried out in order to explain the 

chemical environment around the B, C, N and O atoms of the 

BN-r-GO. The core shell spectra and the deconvoluted peaks 

of B1s, C1s, N1s and O1s for the typical sample BN-r-GO 

are shown in figure 5. 

 

Figure 4.  Survey scan XPS spectra of BN-r-GO samples 

The B1s spectra could be fitted at 191.1 eV, 191.7, 192.3 

and 193.8 eV, respectively. The peak at 191.1 eV could be 

due to -BC3 chemical environment, the peak at 191.7 eV is 

assigned for the B–N, the peak at 192.3 eV is reported to be 

for -BC2O species. The peak at 193.8 eV is responsible for 

the B–O chemical species in the graphene matrix which is 

seemingly confirmed from the reported results [29-32].  

The core level C1s spectra could be deconvoluted into 

three peaks located at 284.4 eV, 285.2 and 286.0 eV, 

corresponding to the sp2-C=C chemical environment, C–O, 

and the carbonyl –C=O species, respectively. The intense 

peak of the C1s spectra indicates that the carbon atoms in  

the GO matrix are mainly in form of -sp2 hybrid structure  

[33, 34].  

The core level N1s spectra could be fitted into four peaks 

located at 398.2 eV, 399.8, 400.5 and 401.3 eV which are 

assigned for the chemical environments of pyridinic C–N, 

pyrrolic C–N and oxidized O–N species, respectively 

[35-37]. From the results, it is seen that the nitrogen atoms 

are existed mainly in the form of pyrrolic-N and pyridinic-N 

in the GO network.  

The core level spectra of O1s could be fitted into four 

chemical species at 530.7 eV, 532.0, 533.2 and 535.2 eV and 

are assigned to the carbonyl –C=O, carboxylic –COO–1, 

B2O3 and hydroxyl –C–OH chemical environments.   

These results are in good agreement with the FT-IR analyses 

(figure 2). The –C–B, C–N and –O–B–O– chemical 

environments could also be suggested from the 

corresponding B1s, C1s and N1s XPS spectra [38]. 

Table 1.  Reaction condition of hydrothermal doping of boron and nitrogen into GO lattice and their corresponding elemental composition 

Sample 

Reaction 

Temp. 

(C) 

Reaction 

period 

(h) 

Conc. of 

TDMAB 

(M) 

Elemental composition (at.%) 

B C N O H 

GO - - - - 55.470.015 - 42.700.11 1.830.05 

BN-r-GO-1 200 2 1.0 0.660.01 89.200.015 3.500.010 6.500.11 0.140.05 

BN-r-GO-2 250 3 2.0 2.300.01 80.500.015 4.120.010 11.800.11 1.280.05 

BN-r-GO-3 450 4 2.0 0.590.01 90.910.015 3.170.010 5.330.11 0.100.05 

d=0.18 nm
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Figure 5.  Deconvoluted high resolution core shell B1s, C1s, N1s and O1s XPS spectra for a typical BN-r-GO sample. The spectra were taken at the step 

energy of 0.02 eV 

3.4. Raman Analyses 

Raman spectroscopy was used for indentifying the 

crystalline structure and quality of the as-received GO as 

well as the BN-r-GO. The measurements have been done in 

the spectral region of 1000–2000 cm–1 using same laser 

power (632 nm laser excitation) for all the samples. The 

Raman spectra of the typical samples are shown in figure 6. 

It is seen that the D band intensity is increased while the G 

band intensity is decreased for the as-synthesized GO and the 

BN-r-GO in comparison to that of the pristine graphite flake. 

The increment of intensity and broadening of both the D and 

G band confirmed the assimilation of oxygen containing 

functional groups in the GO framework. The noteworthy 

increment of D and decrease of G band in BN-r-GO also 

confirmed the assimilation of B and N elements in the GO 

matrix. This functionality is caused by the loss of crystalline 

structure of the GO as well as the BN-r-GO. Forward 

shifting of the G band position from 1592 to 1598 cm–1 of 

BN-r-GO suggested inclusion of B and N atoms in the GO 

lattice leading to increase in disordered structure [39]. The 

relative intensity ratio ID/IG is clearly greater than unity 

which is demonstrated the increase in the defect upon doping 

the hetero-atoms such as B and N that might leads to the 

considerable changes in the structural properties, electrical 

and other physicochemical properties [40]. 

4. Conclusions 

Boron and nitrogen were successfully co-doped into 

graphene matrix by simple hydrothermal reaction using 

tris-dimethylaminoborane complex as boron and nitrogen 

source. This method gives upto 2.3 at.% of boron and 4.12  

at.% of nitrogen doping onto the GO lattice which were 

confirmed by XPS analyses. The FT-IR analyses confirmed 

the presence of different functional groups and the B–C, 

C–N as well as B–O–B bonds in the BN-r-GO matrix. The 

defects crystalline structural arisen from the B and N 

introduction into the GO lattice and that was confirmed by 

XRD and Raman spectroscopic analyses. The as-received 

BN-r-GO could be recommended as different electro 

analytical applications such as biosensor, capacitor, 

electrochemical catalyst and in fuel cells etc.  
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Figure 6.  Raman spectra of pristine graphite (top spectrum), as-received 

GO, and BN-r-GO samples 
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