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Abstract  The removal of Methyl Orange (MO) from its solution in water by Hydrochloric acid (HCl) activated Makoro 

clay was investigated by studying the kinetics and thermodynamics of the MO adsorption onto the clay. The kinetics was 

found to follow pseudo second order mechanism indicating either a highly unlikely third order reaction, or two simultaneous 

second order processes, thought to be adsorption onto the external and internal surfaces of the clay associated to the two 

observed equilibria. The thermodynamic data fitted Freundlich model best indicating surface heterogeneity. The low change 

in heats and entropy of adsorption indicate physisorption. The acid activated clay was found to be an initially fast and 

efficient remover of methyl orange from water, which later slowing down during the second equilibrium. 

Keywords  Adsorption from Solution, Water Purification, Acid Activated Clay 

 

1. Introduction 

The increase in demand of better, fresher and healthier 

water in our community today, has led to a quest of finding 

more ways to purify water. Investigations to find natural and 

more user friendly methods are in progress. Dyes especially 

azo dyes are amongst the most common contaminants in 

water and are toxic to the environment and human lives [1]. 

Azo dyes do not degrade easily due to their complex 

structures which consist of one or more benzene rings. 

Therefore, removal of dyes is an important aspect of 

wastewater treatment before discharge into the environment 

[2]. 

Many separation techniques such as adsorption [3], 

photocatalysis [4], oxidation [5], and nanofiltration [6] have 

been applied in removal of dyes from solutions. Adsorption 

is considered as a major industrial separation technique for 

the purification of effluent media due to its low cost, high 

efficiency and easy operation [7]. Activated carbon and clay 

are among many different adsorbents used in the adsorption 

technique [8]. Activated carbon has been successfully used 

in removing coloured organic species and is the most widely 

used adsorbent due to its high capacity of adsorption of 

organic materials [8, 9] and its effectiveness and versatility 

[10, 11]. However, it is limited as it has slow adsorption 

kinetics  and low adsorption capacity  of bulky adsorbate  
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because of its microporous nature, disposal problems and 

also the high cost and difficulty of regeneration as such, a 

search for a more effective adsorbents such as clay 

derivatives has becomes important [12-14]. Clays have high 

specific surface area due to presence of nanopores hence 

they fall under the category of the most effective adsorbents 

[15]. In the past natural clays have always been used to 

purify water to certain degrees of purity, but to explore this 

technique further clays have been activated to increase 

porosity and hence increase surface area of activity in order 

to enhance their adsorption ability. The two most commonly 

used methods of activating clays are the physical and 

chemical methods. Physical methods include use of steam 

[16] whilst the chemical methods include acid and alkaline 

activation [17]. Acid activated clay result in improved 

efficiency (120%) compared with alkali activated clay. The 

acids most widely used for acid activation include 

hydrochloric (HCl) and sulfuric (H2SO4) acids because they 

increase specific surface area, due to increased porosity 

which results in increased adsorption capacity of the 

activated clay [17]. 

In this study methyl orange was used as water polluting 

dye and HCl activated Makoro clay was used as the 

adsorbent. According to a study by Ekosse [18] Makoro clay 

exist in different colours, light gray to reddish brown, 

yellowish brown to dark brown colour and light gray, its 

particle size ranges between 2 and 10 µm and has a higher 

surface area. The clay also has well developed kaolinite 

crystals and relative porous aggregates. 

Methyl orange is a carcinogenic synthetic azo dye which 

is widely used in textile industries, in paper printing, and in 

research laboratories [19, 20]. It causes allergies, and hyper 

sensitivity when consumed and on long term skin contact. It 
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is also metabolized to aromatic amines by intestinal 

microorganisms. Because it contains nitrogen atoms in its 

structure, the reductive amides in the liver also catalyze the 

reductive cleavage of azo linkages to produce aromatic 

amines which can lead to cancer [21]. The chemical structure 

of this dye is given in figure 1. Methyl orange is stable, 

shows low biodegradability and is soluble in water hence it is 

difficult to remove from aqueous solutions by common water 

purification/treatment methods. 
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Figure 1.  Chemical structure of methyl orange (Sodium 

4-{(4-dimethylamino) phenyldiazenyl}benzenesulfonate) 

2. Experimental 

2.1. Materials and Methods 

2.1.1. Makoro Clay 

Samples of clay were collected from various parts of the 

deposit at Makoro clay mine in Makoro village near Palapye 

in Botswana. The clay was mixed with excess deionized 

water (5L/kG) and stirred for 48 hours at 200rpm. It was then 

allowed to settle for 24 hours. The top water suspension 

which is composed of fine clay particles was decanted and 

filtered under vacuum. The clay was ground with mortar and 

pestle and was heated (calcined) for 3hours at 413.15K. 

The clay (50gm) was activated by leaching with 200mL of 

4M HCl acid for 2 hours in a sonicator at 363K. Leaching 

also removed iron ions (Fe+2, Fe+3) from the clay, as their 

salts absorbed at a similar wavelength as the dye used for the 

study (MO). The acid was filtered off, neutralized with 

sodium hydroxide (NaOH) to minimize acid pollution. 

Titration of a sample of the initial acid filtrate showed that 

the acid concentration was lower than the initial solution 

indicating a reaction with the clay occurred. The clay was 

washed with excess deionized water (2L/100g) to remove 

iron salts and excess acid until there was no precipitation of 

iron hydroxide on addition of sodium hydroxide. The clay 

was dried in an oven at 383.15K reground and then sieved 

using a 500 µm sieve.  

2.1.2. Methyl Orange 

A predetermined optimum concentration of 0.001M of 

MO stock solution, to give manageable kinetics study, was 

prepared by dissolving 0.082g of the dye in deionized water. 

The solution was transferred into a 250ml volumetric flask 

and was filled to the mark using deionized water. The stock 

solution was used to make six standards of molar 

concentrations of 2x10-5, 4x10-5, 6x10-5, 8x10-5, 10x10-5 and 

12x10-5 M by serial dilution. 

2.2. Experimental Procedures 

2.2.1. Kinetic Studies 

In each experiment, an accurately weighed 4g of acid 

activated clay was placed in a 250 ml reaction bottle 

containing 200 ml of methyl orange. The mixture was 

agitated in a shaking water-bath for a given period of time at 

a speed of 120 rpm at constant temperature (298 K). Five 5 

ml of the mixture were collected at various predetermined 

time intervals for a period of 3 hours or longer, was 

centrifuged and filtered using Whatman filter papers. The 

absorbance of the residual methyl orange was obtained using 

a UV/VIS spectrophotometer at a wavelength of 465 nm. 

These were then used to obtain the concentration from a 

calibration curve. The amount of the dye adsorbed by the 

clay was obtained from these concentrations using the 

following equation; 

𝑄𝑡 =
(c0−ct )V

m
                (1) 

Where qt is the amount of dye adsorbed at time t (mol g-1), 

C0 is the initial dye concentration (mol/L), Ct is the dye 

concentration at time t (mol L-1), M is the mass of the 

adsorbent (g) and V is the volume of solution used (L). Each 

experiment was repeated at least three times to ensure 

reproducibility. 

2.2.2. Thermodynamic a Studies 

A batch method was used for obtaining adsorption 

isotherms, 1 g of acid activated clay was added to each of six 

100 ml reaction bottles containing 50 ml of different initial 

concentrations of methyl orange (2 x 10-5 M, 4 x 10-5 M, 6 x 

10-5 M, 8 X 10-5 M and 10 x 10-5 and 12x10-5). The mixtures 

were agitated in water bath shaking at a speed of 120 rpm   

for at least 3 hours at a constant temperature of 298 K.    

the equilibrium concentrations of the dye were analyzed 

using a uv/vis spectrophotometer as described in kinetics 

experiments. These experiments were repeated three times or 

more to ensure reproducibility. The amount of dye adsorbed 

at equilibrium was calculated using the equation below; 

qe =
(C0−Ce  )∗V

m
                  (2) 

Where C0 (mol L-1) is the initial concentration of the dye 

and Ce (mol L-1), is the concentration of the solution at 

equilibrium, V is the volume of methyl orange solution in L 

and m is the mass of the adsorbent used in grams. 

3. Results and Discussion 

3.1. Kinetics Study 
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3.1.1. Effects of Contact Time and Concentration on Kinetics 

 

Figure 2.  Effects of time and varying initial concentration on the 

adsorption of methyl orange onto acid activated clay at 298 K 

Figure 2 clearly shows that the amount of methyl orange 

adsorbed increases with increasing initial concentration of 

the dye. It is also observed that the process is spontaneous at 

all concentrations. In less than 20 minutes the process has 

reached the first equilibrium. These higher adsorption rates 

observed at the start may be due to the availability of greatly 

increased number of easily accessible adsorption sites [22] 

resulting from activation and modification of the clay. This 

greatly increases external surface area. 

3.1.2. Effects of pH  

 

Figure 3.  pH Effects on adsorption of methyl orange onto acid activated 

clay particles at 298 K 

Figure 3 shows the effects of pH on adsorption of methyl 

orange onto acid activated clay. The figure shows that the 

process is initially very fast and that higher amount of the 

dye is adsorbed in acidic medium as compared to basic 

medium at the first equilibrium. The rate increases gradually 

towards the second equilibrium in basic medium. It is known 

that at low pH, H3O
+ ions are abundant hence there is an 

attractive interaction with MO whereas at higher pH, there is 

a higher surface concentration of OH- ions hence adsorption 

of anionic methyl orange dye decreases due to increase in 

electrostatic repulsion between anions (OH- and the MO 

anions). Consequently, the higher adsorption observed at 

lower pH is a result of the availability of positively charged 

sites on the adsorbent which attracts negatively charged 

methyl orange, similar observations were reported elsewhere 

[23]. 

3.1.3. Effect of Temperature 

 

Figure 4.  Effects of temperature on the adsorption of Methyl orange onto 

acid activated clay particles 

Figure 4 shows the effects of temperature on the 

adsorption of methyl orange. In this case the uptake of MO 

increased with decrease in temperature indicating that 

adsorption of methyl orange onto the clay is favoured by 

lower temperatures and also that the adsorption process was 

exothermic [24]. This is indicative of a physisorption 

process in operation. The figure also clearly shows the 

existence of two equilibria, a very quick one established in 

twenty five minutes and a very slow one which takes hours to 

be established. 

3.1.4. Analysis of Adsorption Kinetics Results 

 

Figure 5.  Lagergren pseudo second order model plot for methyl orange 

adsorption onto acid activated clay at 298 K 

The data obtained from kinetic studies did not fit the 

Lagergren pseudo first order model, implying that the 

process is not a simple second order reaction. They however 

fitted onto the pseudo second order model (equation 3, figure 

5). This would on first sight indicate a third order process. It 

is, however, very well-known that third order processes are 

very rare because of the very low probability of a three body 

collision. It is also known that two, simultaneous two body 

collision processes under differing conditions fit the pseudo 
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second order model (equation 3). These two processes are 

clearly portrayed by the two equilibria observed in figure 2 

and figure 4 above. It is believed that just like in the case of 

coal [25], the two processes are thought to be adsorption on 

the external and on the internal surface areas. However, in 

the case of the clay, the second equilibrium approaches much 

slower than the first one. 

Lagergren pseudo second order equation is given by: 

t

qt
=

1

k2  qe
2 +

1

qe
t   (3) 

k2 is the pseudo second order rate constant in mol (g 

min)-1, qe  is the amount adsorbed at equilibrium, qt  is the

amount adsorbed at time t. 

Table 1.  Pseudo second order parameters at different concentrations 

Concn X 10-5 R2 K/min Qe mol g-1 

4 0.9953 333333 1x10-6 

6 0.9876 65746 1.3x10-6 

10 0.9958 130208 1.6x10-6 

12 0.9993 250000 2x10-6 

3.2. Thermodynamics Study 

3.2.1. Langmuir Adsorption Isotherm 

It is not surprising that the data did not fit Langmuir 

isotherm. It is very unlikely that acid activated clay would 

have uniform adsorption sites even in the nano state. The 

pores resulting from activation will provide a variety of 

adsorption environments thus resulting in heterogeneity. 

3.2.2. Freundlich Adsorption Isotherm 

The linearized form of the Freundlich isotherm is given 

below; 

ln qe = ln KF + 
1

𝑛
ln Ce   (4) 

Figure 6.  Freundlich isotherm for adsorption of methyl orange onto acid 

activated clay at 298 K 

A plot of ln Ce against ln qe is linear (fig 6). Here qe is the 

amount adsorbed at equilibrium (mol g-1), Ce is the

equilibrium concentration of the adsorbate, KF and n are 

Freundlich constants n gives an indication of how favourable 

the adsorption process is and KF (mol g-1 (L mol-1)1/n) is the

adsorption capacity of the adsorbent.  

Table 2.  Freundlich Isotherm parameters for MO adsorption on acid 
activated clay 

temp (K) n KF (mol ({g L-1}1/n)-1 ) R2

293 0.976 0.028 0.987 

303 1.016 0.017 0.9618 

313 0.639 3.452 0.8996 

323 1.090 0.013 0.8575 

333 0.472 639.509 0.935 

The data obtained in the thermodynamics studies fitted 

the Freundlich isotherm well (fig 6). This implies that the 

adsorbent surface is heterogeneous and the values obtained 

indicate the physical nature of the adsorption of methyl 

orange on to activated Makoro clay [26]. 

3.2.3. Thermodynamic Parameters 

Gibb’s free energy change (∆G), enthalpy change (∆H), 

and entropy change (∆S), were obtained so as to confirm the 

characteristics of the adsorption process. The parameters 

were obtained using the following equations [27]; 

Kd =  
qe

Ce
(5) 

However, from chemical thermodynamics, Kd is related 

to Gibbs free energy by 

∆𝐺 = −𝑅𝑇 ln(𝐾𝑑) (6) 

Hence 

ln Kd =  
∆S0

R
− 

∆H0

RT
(7) 

Where T is temperature in Kelvin, Kd is the distribution 

coefficient (L mol-1) and R (8.314 KJ mol-1 K-1) is the gas 

constant. The enthalpy change and entropy change were 

obtained from the slope and intercept of Vant’s Hoff plot (ln 

Kd versus 1/T). The negative value of ∆H (-25.37 kJ mol-1)

indicates that the adsorption process is exothermic [28], the 

value is also less than 40 kj mol-1 implying that physical 

adsorption is in operation [27]. 

4. Conclusions

Acid activated Makoro clay samples were successfully 

prepared by acid leaching, grinding and sonication. Kinetics 

data showed that adsorption follows the Pseudo second 

order better than the pseudo first
 

order mechanism. This 

would indicate a third order reaction. However, such a 

mechanism is very rare hence it is suggested that adsorption 

takes place on two different environments just as was found 

with coal in earlier work [25] that is the clay particle 

external surface and the internal surface in the pores created 

by acid activation. Consequently two simultaneous second 

order processes, known to display pseudo second order 

kinetics as well, are in operation in this case. Adsorption 

capacity of the activated clay increases from 1x10-6 moles/g 

at an initial concentration of 4x10-5M to 2x10-6 moles/g at 

12x10-5M. The adsorption enthalpy and entropy change 
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were found to be -27.37kJmol-1 -0.106 kJ/K indicating 

physical adsorption. The thermodynamics data fitted 

Freundlich isotherm best indicating heterogeneity. 

Thermodynamics studies at various temperatures showed 

the fitting to improve with decreasing temperatures as 

shown by the regression analysis (table 2). This confirms 

that physisorption is in operation.  
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