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Abstract  In beta-rhombohedral boron, the promising high-temperature semiconductor especially useful as an effective 
thermoelectric material, it is possible to realize a non-standard mechanism of doping by introducing metal atoms at high 
concentrations in crystallographic voids sufficiently large to accommodate dopants with almost no lattice distortions. Doping 
aimed at modifying electro-physical parameters at the same time affects other properties of the material: in 
beta-rhombohedral boron metal dopants also serve as effective scattering centers for heat-carrying phonons. I this paper, the 
frequencies of atomic vibrations associated with various metal impurities accommodated in crystallographic voids 
characteristic for beta-rhombohedral boron lattice are calculated using an approach based on the quasi-classical 
approximation. These vibrational modes are found to be expected in spectral region from 1080 up to 4380 cm−1. All of them 
lie above the intrinsic phonon bands of beta-rhombohedral boron and, consequently, they can be attributed to localized 
vibrational modes. At high levels of doping, such localized vibrations can be presumed to reduce the thermal conductivity 
significantly improving in this way the thermoelectric figure-of-merit of beta-rhombohedral boron based materials. 
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1. Introduction 
Doped beta-rhombohedral boron (β-B) is a promising 

high-temperature semiconducting material useful for various 
technical applications, especially as an effective 
thermoelectric [1]. Unlike the conventional crystalline 
semiconductors Ge, Si, GaAs, etc., in which the constituting 
atoms placed in lattice regular sites are substituted with 
dopant atoms, in β-B any attempt to make substitutional 
doping with some non-metallic elements faces several 
obstacles. The reason is that real β-B crystals contain very 
high concentrations of intrinsic structural defects dominating 
in the formation of the electronic properties of undoped 
material. Consequently, β-B is characterized by a low 
sensitivity to doping: to achieve a desired effect it is 
necessary to introduce impurities with concentrations 
comparable with that of native defects. However, replacing 
such a high number of boron atoms in regular sites by foreign 
atoms leads to lattice destruction and / or formation of phase 
inclusions. Fortunately, in β-B it is possible to realize a 
fundamentally different mechanism of doping. The fact is 
that the complex crystalline structure of β-B with 105 regular 
atomic sites in the unit cell constructed from the icosahedral  
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aggregates is characterized by a variety of different 
crystallographic voids sufficiently large to accommodate 
metal atoms with very slight structural distortions. We 
should emphasize that here we are not discussing pores, i.e., 
bulk structural defects, but we mean large intersites existing 
in a perfect crystal. 

Such a mechanism of doping has several advantages 
compared with the conventional substitutional doping: 
• A number of metallic impurities in β-B boron 

crystallographic voids can be introduced to the 
concentrations of several atomic percents; 
• Because of a diversity of void types, which can 

accommodate atoms of the same chemical element, doping 
can simultaneously affect different physical properties of 
material; 
• Since atoms of various chemical elements can be 

distributed in different ways between voids of different types, 
the same effect can be achieved by double, triple, etc. doping 
of boron by combining two or more elements. 

Nowadays the influence of many metallic elements – Li, 
Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Hf, Ta, 
and Re – introduced in different crystallographic voids on 
some structural and ground-state, as well as electronic 
properties of β-B are studied experimentally. From these 
studies, one can make a general conclusion that metal M 
atoms in the β-B crystalline lattice usually fill voids of types 
A (mainly A(1)- and rarely A(2)- or A(3)-subtypes), D and E 
(their crystallographic description see in [2]). However, the 
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lack of theoretical studies both on the interstitial doping 
mechanism and on the influence of interstitial doping on the 
β-B electron energy spectrum largely impedes the purposeful 
design of semiconductor materials based on solid solutions 
of metals in β-B. The investigation focused on calculation of 
the binding energy of metallic impurities localized in the 
crystallographic voids of the β-B lattice and their electron 
energy levels together with an analysis of the corresponding 
experimental data is presented elsewhere [3]. 

However, doping aimed at modifying electro-physical 
parameters at the same time affects other properties of the 
material. In particular, metal impurities being introduced at a 
high concentration in β-B crystal also serve as effective 
scattering centers for heat-carrying phonons reducing 
significantly thermal conductivity of the material and 
improving in this way its thermoelectric figure-of-merit. 
This paper is an attempt to determine vibrational modes 
localized on metal impurity atoms, accommodated in large 
crystallographic voids of the β-B lattice. 

2. Theory 
The values of the vibration frequencies of various 

interstitial metallic impurities in the β-B crystal lattice have 
been calculated by a quasi-classical-type method, which was 
developed earlier by us [4]. Then, quasi-classical interatomic 
potentials have been successfully used for calculating the 
ground-state parameters, including vibrational energies, of 
highly important boron-containing materials such as boron 
nitride BN molecular, crystalline and nanostructural 
modifications [5-14], and bare boron nanotubes [15, 16], as 
well as for examining some boron isotopic effects in solids 
[17-20]. 

2.1. Quasi-Classical Parameterization of Electron 
Charge Density and Electrical Field Potential 
Distributions in Boron and Dopant Metal Atoms 

Since the advent of the Bohr model for a hydrogen atom, 
semi-classical models of light atoms have been constructed 
to advantage. The effectiveness of this approach in 
describing the periodic motion of electrons in small-sized 
molecules has been demonstrated as well. For many-electron 
systems, a reasonable accuracy can be achieved in terms of 
the self-consistent-field (SCF) approximation by finding 
extrema of the total energy functional in the class of 
quasi-classical wave functions. As for the heavy atoms, they 
can be calculated in the framework of the density functional 
theory (DFT) using a quasi-classical expansion of the energy 
functional with the local density approximation (LDA) as its 
initial approximation. A similar method appears to be 
appropriate for atomic clusters and condensed phases too. 

However, atomic, molecular, and crystal potentials do not 
satisfy the standard Wentzel–Kramers–Brillouin (WKB) 
quasi-classical condition due to singularities at nuclear sites 
and electron-shell effects. The success of the above 
approaches can be explained on the basis of the 

quasi-classical expressions obtained by Maslov for the 
energies of bound electron states. It follows from these 
expressions that the exact and WKB spectra are close to each 
other irrespective of the potential smoothness when 

12 2
00 >>Φ R , where 0Φ  and 0R  are the characteristic 

values of the potential and its effective range, respectively 
(hereafter expressions and quantities will be given in atomic 
units (a.u.)). 

Since the atomic orbitals at long distances are 
characterized by an exponential decay, the use of the 
modified Thomas–Fermi quasi-classical models makes it 
possible to parameterize the electron density distribution in 
an atom by introducing a finite atomic radius, ∞<R , which 
is however considerably larger than the Bohr radius, 1>>R , 
such that, at larger distances, the electron density is assumed 
to be zero. This is equivalent to the initial approximation in 
quasi-classical atomic models where the partial electron 
densities are ignored in classically forbidden regions. The 
radial potential )(riΦ  of the effective field acting on the i  
th electron, Zi ,...,3,2,1= , in the atom with the number 

1≥Z  can be represented by the Coulomb-like potential 
)//()/()( RrRZr ii =Φ , where Rr ≤≤0  and 

ZEnZ iii ≤−=≤ 21  is the effective charge dependent on 
the principal quantum number ,...3,2,1=in  and eigenvalue 

0<iE  of the energy of the state. Consequently, we have 
RZr i /~)(0Φ  and RR ~0 , and the condition of 

quasi-classicality for the electron energy spectrum of an 
atom takes the form 12 >>RZi . Therefore, atoms and the 
molecules and crystals formed by atoms are actually 
quasi-classical electronic systems in accordance with the 
Maslov criterion. 

The potential energy of the i th electron with orbital 
quantum number 1,...,2,1,0 −= ii nl  is equal to )(riΦ− . 
Therefore, the radii of the classical turning points ( ii rr ′′<′ ), 
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Let )(~ riΦ  be the potential of the field induced by the i th 
electron. Then, the potential of the field induced by the 
electron cloud of the atom can be written as the sum of these 
potentials: 
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The potential of the effective field acting on an arbitrary  
i th electron of the atom is equal to the sum of the potentials 
of the Coulomb field of the nucleus and the field induced by 
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all the electrons of the atom, except for the potential of the 
field of the electron under consideration: 

)(~)(~ rr
r
Z
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Now we sum up these potentials over the electrons. As a 
result, the terms independent of the number of electrons on 
the right-hand sides are multiplied by the total number of 
electrons in the atom, Z , and the sum of the potentials 

)(~ riΦ  gives )(~ rΦ . The solution of the obtained equation 
has the form 
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This relationship makes it possible to determine the 
potential energy )(~ rZΦ  of the interaction between the 
nucleus of the atom and the electron cloud. Since in the 
ground state their relative motion corresponds to a zero 
orbital quantum number, the radius of one classical turning 
point for this system is equal to zero and the radius r~  of the 
other classical turning point is the root of the equation 

)(~~ rZE Φ= , where E~  is the eigenvalue of the energy 
associated with the relative motion of the electron cloud and 
the nucleus. If the effective fields acting on electrons are 
represented by Coulomb-like potentials, the effective field of 
the interaction between the nucleus and the electron cloud 
also turns out to be a Coulomb-like field. Further, under the 
assumption that the nucleus has an infinite mass and, hence, 
is stationary (i.e., the reduced mass of the nucleus–electron 
cloud system is equal to the total mass of electrons in the 
atom, Z ), the radius of the turning point for the motion of 
the electron cloud with respect to the nucleus is given by the 
formula 
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The initial quasi-classical approximation implies that 
exponentially decaying partial electron densities are 
neglected in the classically forbidden regions, irr ′≤  and 

irr ′′≥ , and that oscillations of these densities are ignored in 
classically allowed regions, ii rrr ′′≤≤′ . As a result the radial 
dependence of the direction-averaged partial charge density 
of the i th electron state in the atom is represented by a 
piecewise constant function, which is equal to zero in the 
classically forbidden regions. A similar averaging for the 
motion of the electron cloud as a whole with respect to the 
nucleus is equivalent to averaging the nuclear charge over a 
sphere of radius r~ . Summation of all the similar 
contributions gives the distribution of the total density of the 
electric charge in the atom in the form of a step radial 
function, 

kr ρρ =)(    kk rrr ≤≤−1    qk ,...,3,2,1= , 

where kρ  are constants determined from the radii of the 
classical turning points and kr  coincide with these radii. 

Here, ∞<<<<<≡ qrrrr 2100  and q  is the number of 
layers with uniform charge densities. The parameter qr  
plays the role of the quasi-classical atomic radius: the charge 
density is equal to zero at qrr > . This representation is 
equivalent to volume averaging of the charge density in 
radial layers kk rrr ≤≤−1 . 

Next, we calculate the fields induced by the charged layers 
with densities kρ  making use of Gauss’s theorem and sum 
these fields. Then the atomic potential can be written in the 
form of a continuously differentiable piecewise analytical 
function. However, since the energy of the electronic system 
is a single-valued functional of the electron density, it is 
reasonable to approximate the obtained potential by a step 
function too. This can be adequately performed again by 
averaging over the volume: 

kr ϕϕ =)(  kk rrr ≤≤−1   qk ,...,3,2,1= . 

2.2. Quasi-Classical Calculation of Frequencies of 
Atomic Vibrations 

The binding energy )(dE Binding  between an impurity 
metal (M) atom and N  surrounding boron (B) atoms placed 
at average distance d  can be written as 

))()(()( dEdEdE lVibrationaStaticBinding +−= , where )(dEStatic  
and )(dE lVibrationa  are the static energy of interaction of the 
cluster (except for the non-physical self-energy contribution) 
and the energy of the impurity atom vibrations relative to the 
surrounding boron atoms, respectively. In the initial 
quasi-classical approximation, these quantities are calculated 
from the following relations:  
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Here ( iΒρ , iΒϕ ) and ( jΜρ , jΜϕ ) are the volume averages of 
the electric charge density and the electric field potential in 
the i th and j th radial layers of B and M atoms, respectively, 

Βq  and Μq  are the numbers of layers of the quasi-classical 
averaging in these atoms, and ΜM  is the mass of the 
impurity atom. 

)(dVij  denotes the volume of the intersection of i th layer 
of the boron atom with the j th layer of the metal atom . It is 
calculated as a linear combination of intersection volumes of 
four pairs of spheres: 

−+= −Μ−ΒΜΒ ),,(),,()( 11 drrVdrrVdV jijiij  

),,(),,( 11 drrVdrrV jiji Μ−Β−ΜΒ −− . 
As for the function ),,( 21 drrV , it has a geometric 

meaning as the volume of an intersection of two spheres with 
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radii 1r  and 2r  whose centers are at the distance d  from 
each other. This is an analytic (algebraic) piecewise 
continuous function: 
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Its partial derivative ddrrV ∂∂ /),,( 21  is also continuous, 
but not continuously differentiable function: 
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The parameters irΒ  and jrΜ  are the external radii of the 

i th and j th layers of boron and metal atoms, respectively 
(the inner radii are 1−Β ir  and 1−Μ jr , assuming 000 ≡= ΜΒ rr ). 
The parameters ( Βq , irΒ , iΒρ , iΒϕ ) and ( Μq , jrΜ , jΜρ , 

jΜϕ ) are assumed to be known. 
Under the equilibrium conditions, the resultant force 

acting on an impurity atom from surrounding boron atoms 
has to be zero. This implies that in order to find the value of 
the binding energy of an impurity atom in different voids of 
the β-B crystal one should find extrema of the function 

)(dEBinding . Note that one should consider both kinds of 
extrema, not only the binding energy maxima, which 
correspond to a stable equilibrium of the impurity metal 
atom surrounded by a group of boron atoms, but also the 
minima, that define the interatomic distances in unstable 
equilibrium. Since this cluster is not a closed physical system, 
but actually is embedded into the β-B crystalline lattice, the 
impurity atom localized at such an unstable equilibrium 
position cannot be kinetically capable to reach a stable 
equilibrium position. Obviously, one should take into 
account only the extrema, in which the binding energy is 
positive. Furthermore, one should confine oneself to the 
extrema for which the deviations of the average distances 
between the voids’ geometric centers (where the nuclei of 
the impurity atoms’ are supposed to be located) and the 
surrounding boron atoms are not too large compared with the 
predicted equilibrium lengths of M − B bonds.  

One should not expect that the calculated M − B mean 
bonds length corresponding to an extremum must exactly 
coincide with the value actually realized in the crystal. It is 
likely to be an equilibrium bond length to which the 
subsystem tends. In the crystal, there is a specific M − B 
mean bond length for which the loss (gain) in the binding 

energy of an impurity with the lattice associated with the 
deviation of the cluster containing an impurity from its stable 
(unstable) equilibrium is compensated by the gain (loss) in 
the deformation energy of the rest of the crystal due to 
doping. Therefore, the binding energy values at its extrema 
may be well used to estimate the binding energy of an 
impurity atom with the crystal as a whole because, by 
definition of the latter, it is the difference between the total 
energies of a doped, and thus locally deformed crystal, and a 
pure ideal crystal. As )(dEStatic  is a main term in 

)(dE Binding  the same is true for )(dEStatic . Then the 
vibrational energy correction )(dE lVibrationa  at a binding 
energy extremum may be also well used to estimate the 
frequency of the impurity atom vibrations relative to 
surrounding boron atoms. 

As it has been mentioned, on the one hand, binding energy 
is mainly determined by the static energy which is 
proportional to the linear combination of ),,( 21 drrV -type 
functions and, on the second hand, at the extrema of the 
function )(dEBinding  its derivative should be equal zero, 

0/)( =∂∂ ddEBinding . Consequently, expression under the 
square root in vibration energy formula containing linear 
combination of 121221 /),,( ddrrV ∂∂ -type functions usually 
changes its sign in the close vicinity of a binding energy 
extremum. But, the expression under the square root in the 
vibrational energy term is square of the required frequency 
of the mode localized at the impurity atom and when its 
value becomes negative it should be replaced by zero. This 
means that the numerical calculations will reveal a difference 
between left and right limits of the vibration frequency at the 
point of extremum: one of them will be positive, while the 
other will be zero. Therefore, it will be natural to estimate the 
frequency value at the extremum as the average of the left 
and right limits, i.e. half of the positive limiting value. 

3. Results 

The vibration frequency was calculated for the 17 dopant 
metals listed in Introduction, which were found in A-, D- and 
E-type voids in β-B crystals. The used numerical values of 
quasi-classical parameters of boron and dopant metal atoms 
– Βq , irΒ , iΒρ , iΒϕ  and Μq , jrΜ , 

jΜρ , jΜϕ  – have 
been pre-calculated and tabulated in [21]. The mean values 
of coordination numbers, N , and the bond lengths (voids 
radii), d , of atoms located in voids of type A, D and E of the 
β-B crystalline lattice are collected in Table 1. These 
numbers of neighbors are defined by the Lundström criterion 
[22], according to which atoms in this lattice are considered 
as nearest neighbors if the corresponding bond length does 
not exceed 2.80 Å. Taking into account that different 
impurity atoms placed in voids of different types deform the 
boron lattice structure, the values specified for the mean 
bond lengths should be treated just as indicative values. 

The maximal bond length 2.80 Å introduced according to 
the Lundström criterion is by 0.42 Å larger than the mean 
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radius of the largest (E-type) voids, 2.38 Å. We have used 
1.65 Å as a possible lower limit of the M − B bond length, 
which is smaller approximately by the same magnitude than 
the mean radius, 2.10 Å, of the smallest (A(2)-type) voids, 
which can accommodate metal impurities. 

The obtained vibrational frequencies are collected in 
Table 2. One can see that they are placed within the range 
from 1080 up to 4380 cm−1. 

Table 1.  Parameters of Crystallographic Voids in β-Rhombohedral Boron 

Voids N d, Å 

A(1) 
A 12 

2.17 
2.14 A(2) 2.10 

A(3) 2.15 

D 14 2.36 

E 15 2.38 

Table 2.  Vibrational Frequencies of Metal Atoms Localized in 
Crystallographic Voids of β-Rhombohedral Boron 

M 
ω, cm−1 

A D E 
Li 

Mg 
Al 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zr 
Nb 
Hf 
Ta 
Re 

1150 
3080 
3150 
2260 
3450 
3440 
3500 
3490 
3540 
3540 
3610 
3920 
3930 
3960 
4020 
4030 
3620 

1240 
3330 
3400 
3760 
3730 
3710 
3780 
3770 
3820 
3820 
3900 
4230 
2310 
3030 
1920 
2260 
1360 

1290 
3450 
3520 
3890 
3860 
3840 
3910 
3900 
3960 
3950 
4040 
4380 
1080 
1640 
1820 
2450 
1670 

The approximations of the structural model used in 
calculations involve the determination of both the number of 
the nearest neighboring boron atoms and the bonding lengths 
of the impurity atom with its neighbors: 
• Even in a perfect crystal, different boron atoms 

surrounding a void are located in crystallographically 
non-equivalent positions and at different distances from the 
geometric center of the void; 
• Since β-B real crystals are characterized by a high 

concentration of intrinsic point defects in the form of 
vacancies, some atomic sites, where neighboring boron 
atoms are supposed to be found, actually may be unoccupied; 
• The nearest neighbors of the impurity atom are counted 

according to the above mentioned Lundström criterion and, 
therefore, their number is arbitrary to some extent. 

The relative error of the quasi-classical method itself when 
determining values of energy does not exceed a few percent. 
However, the model describing a cluster of a metal atom 

impurity and surrounding boron atoms is based on the above 
listed simplifications, which are necessary because of the 
complexity of the β-B lattice. Obviously they act as 
additional sources of calculation inaccuracies. 

4. Discussion 
Direct experimental verification of the theoretical findings 

of the present paper would be their comparison with the β-B 
optical characteristics measured within the IR-region of 
spectrum. From the optical data (see, e.g., [23]), there are 
two bands in the β-B phonon spectrum placed at ~ 150 – 650 
and 650 – 1050 cm−1 which correspond to inter- and 
intra-icosahedral vibrations of boron atoms and their 
aggregates, and also the peak at ~ 1250 cm−1 indicating 
stretching vibrations of the central atom in the unit cell. All 
of the vibration frequencies of impurity atoms calculated by 
us lie above these two bands and, therefore, they should be 
attributed to localized vibrational modes. 

Unfortunately, there are almost no experimental data on 
localized modes which can be definitely identified as the 
vibrations of impurity atoms accommodated in 
crystallographic voids of β-B crystal. To our knowledge the 
only exception is the paper [24], where an absorption band 
detected near 2200 cm−1 is reported. The intensity of this 
absorption band correlates with the tantalum (Ta) content in 
tested samples. Note that the placement of this band is 
well-consistent with the frequency of 2260 cm−1 obtained by 
us for vibrations of Ta atoms localized in crystallographic 
voids of D-type. On the other hand, Ta atoms introduced in 
the β-B lattice are known to occupy predominantly just the 
D-type voids [1]. This coincidence speaks in favor of the 
plausibility of our results. 

A more detailed, but indirect comparison between theory 
and experiment can be realized based on the thermal 
conductivity measurements performed in β-B samples doped 
with certain metals. As it has been noted in the Introduction, 
the analysis of the decrease in thermal conductivity, when 
β-B is doped with electrically active impurities, is an 
important task itself from the perspective of development of 
high-performance boron-based thermoelectric materials. 

Let the atomic concentration of metallic impurities in 
voids of certain type equals to ΜA , and Μω  is the frequency 
of the localized vibrations. We can introduce another 
parameter with the frequency dimension, 0ω , which 
characterizes the decay process of atoms displacements from 
their equilibrium positions in the structure. For the 
physically meaningful case, 1/0 <<Μωω , i.e., when the 
radius of the damping region of atomic displacements many 
times exceeds the wavelength corresponding to the atomic 
vibrations, the momentum relaxation time of heat-carrying 
phonons, Μτ , when they are scattered by localized 
vibrations with frequency of Μω , is determined [25] in the 
following form: 
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Here ω  denotes the frequency of a scattered phonon, 
while T  is the sample’s temperature. 

We can significantly simplify this relation taking into 
account that: 
• In general, according to the above mentioned condition, 

the effective scattering of heat-carrying phonons by the 
localized vibrations occurs at 1/0 <<Μωω ; 
• Locations of β-B intrinsic phonon bands and vibration 

modes of impurities localized in lattice voids are such that 
the inequality 1/ <<Μωω  holds for the characteristic 
phonon frequency ω . 
• And finally, at room temperature, T ≈ 300 K, the 

vibrational energy quantum of impurity atoms in β-B 
significantly exceeds the thermal energy of the lattice 
vibrations, 1/ >>Μ kTω . 

Thus, for the dependence of the heat carriers’ momentum 
relaxation time Μτ  on the parameters ΜA  and Μω  
characterizing scattering centers we will have: 







 Μ

Μ
Μ

Μ
kTA
ω

ω
τ exp1~ . 

Let us denote the maximum value of the thermal 
conductivity of undoped β-B samples at a certain 
temperature by 0κ . It is a value determined by the 
cumulative effect of all mechanisms of scattering of 
heat-carriers except for the scattering by localized vibrations 
associated with dopant atoms. If the coefficient of thermal 
conductivity Μκ , which takes into account the scattering by 
these localized vibrations as well, is calculated according to 
the Matthiessen’s approximate rule, i.e., by summing the 
reciprocals of thermal conductivities defined by various 
scattering mechanisms, we can write down 







 −
−+≈ ΜΜΜ

Μ kTkT
A εωω
κκκ

 exp11
00

. 

In this formula, it has been introduced a parameter ε  
with dimension of energy, which is dependent on the 
temperature T , but not on ΜA  and Μω . Solving this 
relation with respect to ε , we obtain 









−+≈

ΜΜΜ
Μ 11ln 0

κ
κ

ω
ωε





kT
A

kT . 

The available experimental data concerning the β-B 
heat-conductivity are as follows. At room temperature, the 

maximum thermal conductivity of undoped β-B is 0κ ≈ 
0.276 W/K⋅cm. An introduction of a few percent of 
non-metallic impurities, such as 3.0 mol. % BaO, 2.9 at. % C 
and 4.8 at. % Si, leads to a reduction of this value to 0.200, 
0.072 and 0.045 W/K⋅cm, respectively. A commensurable 
effect gives the doping of β-B with metal impurities again to 
the level of few atomic percent. These data are summarized 
in Table 3. For references to original works see the review 
[1]. 

Using these data as well as Μω  frequencies calculated in 
this paper, we have estimated the parameter ε  for different 
metal atoms and different crystallographic voids of their 
placement. These results also are presented in the Table 3. It 
should be noted that, on the one hand, the atomic fraction of 
dopant metals as well as the room temperature thermal 
conductivity of doped β-B samples were known very 
roughly. Suffice it to say that in some cases, we evaluated 

ΜA  from the weight composition of charges, from which the 
studied samples were melted, while most of Μκ  values we 
had to find manually – from the thermal conductivity 
temperature-curves. On the other hand, the dependence of 
the term corresponding to the scattering by localized 
vibrations on the estimated parameter ε  is quite strong 
(exponential) and, consequently, Μκ  must be sensitive to 
small changes in ε . For these reasons, it makes little sense 
to calculate ε  with high accuracy. Table 3 shows the values 
of this parameter with preservation of only a single 
significant digit. Despite the approximations made in these 
calculations, their results may suggest some interesting 
hypotheses.  

Table 3.  Parameter of Scattering of Heat-Carriers by Localized Vibrations 
of Impurity Atoms and Room Temperature Thermal Conductivity in 
β-Rhombohedral Boron  

M AM κM, 
W/cm⋅K 

ε, eV 
A D E 

V 
Fe 
Fe 
Co 
Co 
Ni 
Ni 
Ni 
Cu 
Zr 
Zr 
Zr 
Zr 
Zr 
Hf 
Hf 
Hf 
Hf 

0.011 
0.010 
0.020 
0.010 
0.010 
0.006 
0.010 
0.010 
0.010 
0.005 
0.010 
0.010 
0.010 
0.020 
0.005 
0.010 
0.020 
0.020 

0.058 
0.125 
0.092 
0.040 
0.020 
0.160 
0.110 
0.063 
0.038 
0.069 
0.060 
0.055 
0.050 
0.035 
0.091 
0.062 
0.025 
0.025 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 

0.5 
0.5 
0.5 
0.6 
0.6 
0.5 
0.5 
0.6 
0.6 
0.4 
0.4 
0.4 
0.4 
0.4 
0.3 
0.3 
0.3 
0.3 

0.5 
0.5 
0.5 
0.6 
0.6 
0.5 
0.6 
0.6 
0.6 
0.3 
0.2 
0.2 
0.2 
0.2 
0.3 
0.3 
0.3 
0.3 

This conclusion is backed by the fact that in most cases ε  
has almost identical values, ε  ≈ 0.5 – 0.6 eV, which can be 
interpreted in such a way that all of the impurities, occupying 
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voids of appropriate types, perform localized vibrations that 
effectively scatter heat-carrying phonons. 

In addition, if the doping effects of a given chemical 
element for voids of any type can be described by almost the 
same parameter ε , we can assume that those atoms in all 
possible positions act as almost identical scattering centers. 
The last is true for relatively light elements – V, Fe, Co, Ni 
and Cu – and it is due to the proximity of frequencies of 
vibrations of atoms localized within the voids of various 
types (see the Table 2). In such cases Μκ  will be almost 
independent of the distribution of impurity atoms among 
crystallographic voids of various types. 

However, for relatively heavy elements, particularly, Zr 
and Hf accommodated in D- and E-type voids, we obtain 
lower values of the parameter ε  with its wider spread, 0.2 – 
0.4 eV. In such cases, the characteristics of distribution of 
impurity atoms between different voids will significantly 
affect Μκ . It should be associated with noticeable 
differences in frequencies of localized vibrations of heavy 
atoms when they are located in the voids of various types. 
One can see from Table 2 that these frequencies for Zr and 
Hf in A-, D- and E-type voids are 3930, 2310, 1080 and 4020, 
1920, 1820 cm−1, respectively. 

Note that the measured values of thermal conductivity can 
be explained by the same ε  as in the case of relatively light 
elements or Zr and Hf atoms in voids of type A, i.e. by 0.5 – 
0.6 eV, if we assume that the concentration of these atoms in 
the voids of type D and E are significantly lower than the 
average concentration over the β-B crystal, i.e., if we assume 
that Zr and Hf impurities are predominantly concentrated in 
the voids of type A. 

The available data on the distribution of metals among the 
β-B crystallographic voids are not entirely clear. However, it 
is interesting to note that structural studies of the measured 
samples doped with Zr and Hf indicate the high, low and 
middle occupancies of voids of type A, D and E, respectively, 
that is consistent with our interpretation. As for the relatively 
light elements, particularly Fe and Cu, for them the detected 
occupancies are quite different: low – high − very low and 
low − high − high, respectively. But in such cases, as it has 
been mentioned above, the distribution of impurities 
between voids should not have a significant effect on the 
thermal conductivity of the material. 

The reason for the low occupancy of voids of type D and E 
by heavy elements are associated, on the one hand, with the 
instability of the equilibrium of these atoms in D voids, and, 
on the other hand, with large volume of E voids that are 
manifested in the binding energy of impurity atoms with β-B 
lattice being lower than the that of same atoms in A voids. 
These issues are addressed elsewhere [3]. 

5. Conclusions 
In this paper we have theoretically determined vibration 

frequencies of 17 metal atoms – Li, Mg, Al, Sc, Ti, V, Cr, 
Mn, Fe, Co, Ni, Cu, Zr, Nb, Hf, Ta and Re – introduced in 
large crystallographic voids of type A, D and E existing in 

β-rhombohedral boron crystals. 
It was found that these frequencies are expected in the 

range from 1080 to 4380 cm−1, i.e., above bands of the 
intrinsic phonon spectrum. Consequently, the metals-doping 
of β-B should form the localized vibrational modes. In 
particular, the vibration frequency of 2260 cm−1, calculated 
for Ta atom placed in a void of D-type, is in good agreement 
with the experimentally detected peak at 2200 cm−1 in the 
optical absorption spectrum of β-B samples doped with 
tantalum, which in β-B lattice predominantly occupies just 
D-type voids. 

A more detailed comparison with experiment has been 
implemented for thermal conductivity of β-B doped with 
metals such as V, Fe, Co, Ni, Cu, Zr and Hf. It has been 
demonstrated that the decrease in thermal conductivity in 
these samples can be consistently explained by the scattering 
of heat-carrying phonons by localized vibrations of impurity 
atoms. Thus, it was shown that doping of β-B can improve its 
thermoelectric figure-of-merit, not only due to the increase 
in its conductivity and, maybe in the Seebeck coefficient, but 
also by reducing its thermal conductivity. 

 

REFERENCES 
[1] D. L. Gabunia, O. A. Tsagareishvili, L. S. Chkhartishvili and 

G. F. Tavadze, “β-Rhombohedral boron as thermoelectric 
material (An overview),” in Nanostructural Functional 
Coatings – Perspective Materials and Nanomaterials, I. M. 
Neklyudov and V. M. Shulayev, Eds. Kharkov: NSC KhPTI – 
PPC Contrast, 2007, 211–272. 

[2] G. V. Tsagareishvili, M. E. Antadze and F. N. Tavadze, 
Producing and Structure of Boron. Tbilisi: Metsniereba, 
1991. 

[3] L. Chkhartishvili, I. Murusidze, M. Darchiashvili, O. 
Tsagareishvili and D. Gabunia, “Metal impurities in 
crystallographic voids of beta-rhombohedral boron lattice: 
Binding energies and electron levels,” Solid State Sci., 2012, 
14 (11–12), 1673–1682. 

[4] L. Chkhartishvili, Quasi-Classical Theory of Substance 
Ground-State. Tbilisi: Tech. Univ. Press, 2004. 

[5] L. Chkhartishvili, D. Lezhava and O. Tsagareishvili, 
“Quasi-classical determination of electronic energies and 
vibration frequencies in boron compounds,” J. Solid State 
Chem., 2000, 154 (1), 148–152. 

[6] L. Chkhartishvili, “Ground state parameters of wurtzite boron 
nitride: Quasi-classical estimations,” in Proceedings of the 1st 
International Boron Symposium, K. Erarslan, Ed. Kütahya: 
Dumlupinar Univ. Press, 2002, 139–143. 

[7] L. Chkhartishvili, “Quasi-classical analysis of boron-nitride 
binding,” in Proceedings of the 2nd International Boron 
Symposium, H. Özdağ, H. Akdaş, V. Bozkurt and M. İphar, 
Eds. Eskişehir: Osmangazi Univ. Press, 2004, 165–171. 

[8] L. S. Chkhartishvili, “Quasi-classical estimates of the lattice 
constant and band gap of a crystal: Two-dimensional boron 
nitride,” Phys. Solid State, 2004, 46 (11), 2126–2133. 



110 Levan Chkhartishvili et al.:  Frequencies of Vibrations Localized on Interstitial   
Metal Impurities in Beta-Rhombohedral Boron Based Materials 

 

[9] L. S. Chkhartishvili, “Analytical optimization of the lattice 
parameter using the binding energy calculated in the 
quasi-classical approximation,” Phys. Solid State, 2006, 48 
(5), 846–853. 

[10] L. Chkhartishvili, “Zero-point vibration energy within 
quasi-classical approximation: Boron nitrides,” GESJ: Phys., 
2006, 40, 130–138. 

[11] L. S. Chkhartishvili, “Equilibrium geometry of boron nitride 
ultra-small-radius nanotubes,” Mater. Sci. Nanostr., 2009, 1, 
33–44. 

[12] L. Chkhartishvili and I. Murusidze, “Molar binding energy of 
zigzag and armchair single-walled boron nitride nanotubes,” 
Mater. Sci. & Appl., 2010, 1 (4), 223–246. 

[13] L. Chkhartishvili, T. Berberashvili and I. Murusidze, “On 
stability of small boron nitride nanotubes,” in Physics, 
Chemistry and Application of Nanostructures, V. E. 
Borisenko, S. V. Gaponenko and V. S. Gurin, Eds. Singapore: 
World Scientific, 2011, 126–129. 

[14] L. Chkhartishvili and I. Murusidze, “Relative stability of BN 
nanotubes,” Solid State Sci., 2012, 14 (11–12), 1664–1668. 

[15] L. Chkhartishvili, “On quasi-classical estimations of boron 
nanotubes ground-state parameters,” J. Phys.: Conf. Ser., 
2009, 176, 012013, 1–9. 

[16] L. Chkhartishvili, “Molar binding energy of the boron 
nanosystems,” in Proceedings of the 4th International Boron 
Symposium, A. Konuk, H. Kurama, H. Ak and M. İphar, Eds. 
Eskişehir: Osmangazi Univ. Press, 2009, 153–160. 

[17] L. S. Chkhartishvili, D. L. Gabunia and O. A. Tsagareishvili, 
“Estimation of the isotopic effect on the melting parameters 
of boron,” Inorg. Mater., 2007, 43 (6), 594–596. 

[18] L. S. Chkhartishvili, D. L. Gabunia and O. A. Tsagareishvili, 
“Effect of the isotopic composition on the lattice parameter of 
boron,” Powd. Metall. & Met. Ceram., 2008, 47 (9–10), 
616–621. 

[19] D. Gabunia, O. Tsagareishvili, L. Chkhartishvili and L. 
Gabunia, “Isotopic composition dependences of lattice 
constant and thermal expansion of β-rhombohedral boron,” J. 
Phys.: Conf. Ser., 2009, 176, 012022, 1–10. 

[20] L. Chkhartishvili, “Isotopic effects of boron (Review),” 
Trends Inorg. Chem., 2009, 11, 105–167. 

[21] L. Chkhartishvili and T. Berberashvili, “Intra-atomic electric 
field radial potentials in step-like presentation,” J. 
Electromagn. Anal. & Appl., 2010, 2 (4), 205–243. 

[22] T. Lundström, “The structure and bonding of solid solutions 
of transition and p-elements in β-rhombohedral boron,” AIP 
Conf. Proc., 1986, 140, 19–30. 

[23] U. Kohlmann, H. Werheit, T. Dose and T. Lundström, “IR 
optical properties of Fe-doped β-rhombohedral boron,” in 
Proceedings of the 9th International Symposium on Boron, 
Borides and Related Compounds, H. Werheit, Ed. Duisburg: 
Universität Duisburg Gesamthochschule, 1987, 340–343. 

[24] O. A. Golikova, G. V. Tsagareishvili, M. M. Usmanova, T. 
Khomidov, D. L. Gabunia, A. S. Umarov and Z. Mirzazhonov, 
“Impurities’ effect on optical properties of β-boron,” Bull. 
Acad. Sci. Uzb. SSR (Ser. Phys. & Math.), 1981, 5 (1), 
88–89. 

[25] B. M. Mogilevskij and A. F. Chudnovskij, Thermal 
Conductivity of Semiconductors. Moscow: Nauka, 1972. 

 


