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Abstract  In this paper, autoregressive fractionally integrated moving average (ARFIMA) model was proposed and was 

used for modeling and forecasting of liquidity ratio of commercial banks in Nigeria. Augmented Dickey Fuller (ADF) test 

was used for testing stationarity of the series. The long lasting autocorrelation function of the data showed the presence of 

long memory structure, and the Hurst exponent test was used to test for presence of long memory structure. The Geweke and 

Porter-Hudak (GPH) method of estimation was used to obtain the long memory parameter d of the ARFIMA model. 

Alternatively, a suitable ARIMA model was fitted for the liquidity ratio data. On the basis of minimum AIC values, the best 

model was identified for each of ARFIMA and ARIMA models respectively. The models were specified as 

ARFIMA(5,0.12,3) and ARIMA(1,1,1). To this end, forecast evaluation for the two models were carried out using root mean 

square error (RMSE). Having compared the forecasting result of the two models, we concluded that the ARFIMA model was 

a much better model in this regard. 
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1. Introduction 

The financial stability of a bank can be tested in many 

ways. One of the quickest ways to see how well a bank is 

performing is to use liquidity ratios. A bank is considered to 

be liquid when it has sufficient cash and other liquid assets 

together with the ability to raise funds quickly from other 

sources, to enable it to meet its payment obligations and 

financial commitments in a timely manner. Liquidity ratios 

are the ratios that measure the ability of a bank to meet its 

short term debt obligations. These ratios measure the ability 

of a bank to pay off its short term liabilities when they fall 

due. Liquidity ratios basically allow banks a way to gauge 

their paying capacity on a short-term basis. 

For modeling time series in the presence of long memory, 

the Autoregressive fractionally integrated moving average 

(ARFIMA) model is used. ARFIMA models are time series 

models that generalize ARIMA models by allowing 

non-integer values of the differencing parameter. The 

ARFIMA(p,d,q) model is a class of long memory models [1]; 

and [2]. The main objective of the model is to explicitly 

account for persistence to incorporate the long term 

correlations in the data. These models are useful in modeling 

time series with long memory that is, in which deviations 

from the long-run mean  decay  more  slowly  than  an  
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exponential decay. 

Alternatively, Autoregressive integrated moving average 

(ARIMA) model which is a generalization of an 

autoregressive moving average (ARMA) model would be 

employed in this study. They are applied in some cases 

where data show evidence of nonstationarity, where an 

initial differencing step can be applied to remove the 

nonstationarity. The model is generally referred to as an 

ARIMA (p,d,q) model where p, d and q are non-negative 

integers that refer to the order of the autoregressive, 

integrated and moving average parts of the model 

respectively. 

In this study, we shall identify the order of ARIMA and 

ARFIMA models respectively, estimate the parameters of 

the two models, make relevant forecast based on the models, 

and compare the forecasting performance of the two models 

so as to know the better model in this regard. 

The rest of the paper is organized as follows. In section 2, 

we briefly present some theoretical framework on ARFIMA 

models. Materials and methods are discussed in section 3. In 

section 4, we analyze the underlying data and establish 

ARFIMA and ARIMA models on it. Finally the conclusions 

are presented in section 5. 

To our knowledge, ARFIMA models have not been used 

substantially to model liquidity ratios. This is therefore one 

of the contributions of this research. 

2. Theoretical Framework 

Financial data exhibit characteristics that are more 



 Microeconomics and Macroeconomics 2016, 4(1): 28-36 29 

 

 

consistent with long memory [4]. Long memory in time 

series are described as autocorrelation at long lags [3]. The 

ARFIMA model searches for a non-integer parameter, d, to 

differentiate the data to capture long memory. Regarding 

long memory, the useful entry points to the literature are the 

surveys by [3] and [4], who have described the development 

in the modeling of long memory on financial data, and of [5] 

who has reviewed long memory modeling in other areas. The 

existence of non-zero d is an indication of long memory and 

its departure from zero measures the strength of the long 

memory. 

One of the key points explained by [6] is the fact that most 

financial markets have a very long memory property. In 

other words, what happens today affects the future forever. 

This indicates that current data correlated with all past data to 

varying degrees. This long memory component of the market 

cannot be adequately explained by systems that work with 

short memory parameters. The general expression for 

ARFIMA processes  ty  maybe defined by the equation:  

∅ 𝐵 𝑦𝑡 =  𝜃 𝐵 (1 − 𝐵)−𝑑𝜀𝑡          (1.1) 

where 

 ∅ 𝐵 = 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝         (1.2) 

and 

𝜃 𝐵 = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵
𝑞        (1.3) 

are the autoregressive and moving average operators 

respectively; 

B is the backward shift operator and (1 − 𝐵)−𝑑  𝑖𝑠 the 

fractional differencing operator given by the binomial 

expression 

(1 − 𝐵)−𝑑 =  
𝛤(𝑗+𝑑)

𝛤 𝑗+1  𝛤(𝑑)

∞
𝑗=0 𝐵𝑗  = 𝑛𝑗

∞
𝑗=0 𝐵𝑗    (1.4) 

Short memory systems are characterized by using the last i 

values for making the forecast in univariate analysis. For 

example most statistical methods last i observation is given 

in order to predict the actual values at time i+1. Traditional 

models describing short-term memory, such as AR (p), MA 

(q), ARMA (p,q), and ARIMA (p,d,q), cannot precisely 

describe long-term memory. The general expression for 

ARIMA process {yt} is defined by the equation. 

(1 - ∅𝑝𝐵) ∇𝑑𝑦𝑡 =  1 − 𝜃𝑞𝐵 𝜀𝑡          (1.5) 

Where:  

(1 - ∅𝑝𝐵) ∇𝑑𝑦𝑡  = 𝜀𝑡  is the Autoregressive component 

𝑦𝑡   = 1 − 𝜃𝑞𝐵 ∇𝑑𝜀𝑡  is the Moving Average component.   

3. Materials and Methods 

In this part of the study, the procedures for building 

ARFIMA(p,d,q) model and ARIMA model are discussed. 

Monthly data between January 2004 to December 2015 of 

the liquidity ratio data are used in the study. The presence of 

long memory process is tested on the data using the Hurst 

exponent since ARFIMA models are useful in modeling time 

series with long memory. When the integration parameter d 

in an ARIMA process is fractional and greater than zero, the 

process exhibits long memory [1]. Also in a class of 

stationary processes where the autocorrelations decay much 

more slowly over time than in the case of the ARMA 

processes or in the integrated processes long memory 

processes is also suspected. 

Conversely, ARIMA model which is a short term memory 

model will be used to model the liquidity ratio data and the 

forecasting performance of both ARFIMA and ARIMA shall 

be compared. To apply the ARFIMA and ARIMA models, 

the variables are first examined for stationarity. The 

Augmented Dickey Fuller (ADF) test is used for this purpose. 

This preliminary test is necessary in order to determine the 

order of non-stationarity of the data. 

The following methods will be used for the analysis 

Augmented Dickey Fuller (ADF) test: 

The ADF regression equation due to [7] and [8] 

is given by : 

∆𝑦𝑡 = 𝜇0 + 𝜇1𝑡 +  ∅𝑦𝑡−1 +  𝛼𝑗∆𝑦𝑡−𝑗 + 𝜀𝑡  𝑡
𝑗=1 (3.1) 

t  =  p+1, p+2,…T. 

where 𝜇0 is the intercept, 𝜇1𝑡 represents the trend incase it 

is present, ∅  is the coefficient of the lagged dependent 

variable, 𝑦𝑡−1 and p lags of ∆𝑦𝑡−𝑗  with coefficients  𝑎𝑗  are 

added to account for serial correlation in the residuals. The 

null hypothesis H0: ∅ = 0 is that the series has unit root 

while the alternative hypothesis H1: ∅ ≠ 0 is that the series 

is stationary. The ADF test statistic is given by 

ADF= 
Ǿ

𝑆𝐸 (Ǿ)
 where 𝑆𝐸 (Ǿ ) is the standard error for Ǿ , 

and  ̑ denotes estimate. The null hypothesis of unit root is 

accepted if the test statistic is greater than the critical values. 

Testing for Long Memory 

There are various methods such as rescaled range analysis 

(R/S), modified rescaled range analysis (MRS), and 

De-trended fluctuation analysis (DFA), that are popularly 

employed for the recognition of a long memory. The Hurst 

exponent produced by rescaled range analysis is used in this 

study for testing long memory. The Hurst exponent was 

produced by a British hydrologist Harold Hurst in 1951 to 

test presence of long memory. The main idea behind the R/S 

analysis is that one looks at the scaling behavior of the 

rescaled cumulative deviations from the mean. The R/S 

analysis first estimates the range R for a given n: 

𝑅(𝑛) = max  (𝑌𝑗 − 𝑌 )  −   𝑚𝑖𝑛𝑛
𝑗=1  (𝑌𝑗 − 𝑌 )𝑛

𝑗=1    (3.2) 

where, 𝑅(𝑛) is the range of accumulated deviation of Y(t) 

over the period of n and 𝑌  is the overall mean of the time 

series. Let S(n) be the standard deviation of Y(t) over the 

period of n.  

This implies that; 

 R/S = 𝑅(𝑛)/ S(n)             (3.3) 

As n increases, the following holds: 

Log [𝑅(𝑛)/ S(n)] = log 𝛼 + H log n      (3.4) 
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This implies that the estimate of the Hurst exponent H is 

the slope. Thus, H is a parameter that relates mean R/S 

values for subsamples of equal length of the series to the 

number of observations within each equal length subsample. 

H is always greater than 0. When 0<H<1, the long memory 

structure exists. If H ≥ 1, the process has infinite variance 

and is non-stationary. If 0 < H < 0.5, anti-persistence 

structure exists. If H = 0.5, the process is white noise. 

Estimation of long memory parameter  

For estimating the long memory parameter, GPH 

estimator proposed by Geweke and Porter-Hudak (1983) will 

be used in the present investigation. A brief description of 

the method is given below:  

This method is based on an approximated regression 

equation obtained from the logarithm of the spectral density 

function. The GPH estimation procedure is a two step 

procedure, which begins with the estimation of d. This 

method is based on Least square regression in the spectral 

domain, exploits the sample form of the pole of the spectral 

density at the origin: fy (λ)  ̴ λ -2d, λ → 0. To illustrate this 

method, we can write the spectral density function of a 

stationary model yt
 , t = 1 , … T as 

fy(λ) = 4𝑠𝑖𝑛2  
𝜆

2
  -d   𝑓𝜀(λ)           (3.5) 

Where 𝑓𝜀(λ) is the spectral density of εt, assumed to be a 

finite and continuous function on the interval [-π, π]. Taking 

the logarithm of the spectral density function Fy (λ) the log 

spectral density can be expressed as  

Log (fy (λ)) = log (𝑓𝜀  (0)) –d log  4𝑠𝑖𝑛2  
λ

2
  + log 

fε (λ)

𝑓𝜀(0)
 (3.6) 

Let Iy (λj) be the periodogram evaluated at the Fourier 

frequencies λ𝑗 =
2𝜋𝑗

𝑇
; 𝑗 = 1,2, … , 𝑚; , T is the number of 

observations and m is the number of considered Fourier 

frequencies, that is the number of periodogram ordinates 

which will be used in the regression  

Log [Iy (λj)] = log  𝑓𝜀(0) − 𝑑   log 4𝑠𝑖𝑛2  
λ

2
   

+ log
𝑓𝜀(λ)

𝑓𝜀(())
 + log 

𝐼𝑦(λj)

fy(λj)
           (3.7) 

Where, log [f𝜀(0)] is a constant,  

Log [4sin2 {λ/2}] is the exogenous variable and Log [Iy 

(λj)]/ fy (λj) is a disturbance error.  

GPH estimate requires two major assumptions related to 

asymptotic behavior of the equation  

H1: for low frequencies, we suppose that log           

 𝑓𝜀(λ)/fε(0)  is negligible 

H2: the random variables log [Iy (λj)]/ fy (λj)];  

J = 1,2,…, m are asymptotically iid. 

Under the hypothesis H1 and H2 we can write the linear 

regression as  

Log [Iy (λj)] = α – d Log [4sin2 {λj/2}] + ej 

Where ej  ⌐ iid (-c,π2 /6)  

Let yj = - log [4sin2 {λj/2}] the GPH estimator is the OLS 

estimate of the regression log Ix (λj ) on the constant α and yj. 

The estimate of d is given by the equation below: 

𝑑𝐺𝑃𝐻=
 (𝑦𝑗−𝑦 )log [𝐼𝑦 𝜆𝑗  ]𝑚

𝑗=1

 (𝑦𝑗−𝑦 )2𝑚
𝑗=1

           (3.8) 

Where, 𝑦 = yj/m𝑚
𝑗=1 . 

[3], [9] and [10] have analyzed the GPH estimate in detail. 

Under the assumption of normality for yt, it has been proved 

that the estimate is consistent and asymptotically normal. 

Information Criterion 

The Akaike information criterion (AIC) is a measure of 

the relative goodness of fit of a statistical model. [11] 

suggests measuring the goodness of fit for some particular 

model by balancing the error of the fit against the number of 

parameters in the model. It provides the measure of 

information lost when a given model is used to describe 

reality. AIC values provide a means for model selection and 

cannot say anything about how well a model fits the data in 

an absolute sense. If the entire candidate models fit poorly, 

AIC will not give any warning of that. 

The AIC is defined as  

AIC2k2ln(L)                  (3.9) 

where k is the number of parameters in the statistical model, 

and L is the maximized value of the likelihood function for 

the estimated model. The AIC is applied in model selection 

in which the model with the least AIC is selected as the best 

candidate model. 

Root Mean Square Errors (RMSE): 

To construct the RMSE, we first need to determine the 

residuals. Residuals are the difference between the actual 

values and the predicted values, denoted by ŷ𝑖 − 𝑦𝑖 , where 

𝑦𝑖  is the observed value for the ith observation and ŷ𝑖  is the 

predicted value. They can be positive or negative, depending 

on whether the predicted value under or over estimates the 

actual value. Squaring the residuals, averaging the squares, 

and taking the square root gives us the Root Mean Square 

Errors (RMSE). The RMSE will then be used as a measure to 

check the forecast accuracy of ARFIMA and ARIMA 

models respectively after which a more parsimonious model 

would be chosen. The Root Mean Square Error is given by: 

  RMSE =  
 (ŷ𝑖− 𝑦𝑖)2𝑛

𝑖=1

𝑛
                (3.10) 

4. Results and Discussions 

In this section, the monthly liquidity ratio series for the 

period January 2004 to December 2015 are analyzed using 

the ARIMA and ARFIMA models. The data are collected 

from Central Bank of Nigeria (CBN) statistical bulletin.  

Initial analysis of data: A time plot of the original series 

is shown in Fig 1. A visual inspection of the plot shows that 

the series is not stationary. In order to test for stationarity, 

Augmented Dickey Fuller unit root test [8] is conducted, and 

the result of ADF test is given in Table 1. 
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Structure of autocorrelations 

For a linear time series model, typically an autoregressive 

integrated moving average [ARIMA(p,d,q)] process, the 

patterns of autocorrelation and partial autocorrelation could 

indicate the plausible structure of the model. At the same 

time, this kind of information is also important for modeling 

non-linear dynamics. The long lasting autocorrelations of the 

data suggests that the processes are non-linear with 

time-varying variances. The basic property of a long 

memory process is that the dependence between the two 

distant observations is still visible. For the series on liquidity 

ratios of commercial banks in Nigeria, autocorrelations are 

estimated up to 100 lags, i.e j=1,…,100. The autocorrelation 

function of this series is plotted in figure 2. 

A perusal of Figure 2 indicates that autocorrelation 

function do not decay exponentially over time span, rather 

there is a very slow decay much slow than an exponential 

decay and it shows no clear periodic patterns. There is no 

evidence that the magnitude of autocorrelations became 

small as the time lag, j, became larger. No seasonal and other 

periodic cycles were observed.  

Testing for stationarity 

To check stationarity in the series, the Augmented Dickey 

Fuller (ADF) test is mostly used as described in [7]. The first 

stage in model estimation is to test for the stationarity 

property of the data. The ADF test examines the null 

hypothesis that a time series Yt is stationary against the 

alternative that it is non-stationary. 

Table 1.  Result of the ADF test for stationarity 

Actual number of lags            5%                Test statistic 

5                              0.1473               -1.3359 

Table 1 contains the summary of results of Augmented 

Dickey Fuller test, Since the value of the computed ADF test 

statistic is smaller than the p-value at 5% level of 

significance, we conclude that the series is stationary at first 

difference. 

Testing for long memory 

The presence of long memory were tested using Hurst 

exponent (H) produced by the Rescaled range analysis. All 

steps of the calculation of H was done using programming 

techniques in R. The value of H was obtained to be 0.803984 

indicating that the liquidity ratio data has long memory 

structure since 0.5<H<1. 

 

 

Figure 2.  Autocorrelation function of liquidity ratio of commercial banks in Nigeria  
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Estimation of the long memory parameter 

The long memory parameter d is estimated using the [12] 

method. The estimated value of the parameter, its asymptotic 

deviation value and regression standard deviation values are 

reported in table 2 below 

Table 2.  Result of Estimating the d parameter 

Coefficient    Estimate   Asymptotic std. deviation   std. error deviation 

d       0.1160494          0.2733756              0.2614093 

 

After estimating the long memory parameter d, the degree 

of autocorrelation in the fractionally differenced liquidity 

ratio series is examined using the autocorrelation and partial 

autocorrelation function as shown in figure 3. 

 

Figure 3.  ACF and PACF of fractionally differenced series 

We move ahead to model the series as an ARFIMA 

process. First we start by identifying the ARFIMA model 

that best fits the series. 

Table 3.  Result of AIC and log likelihood tests 

   Model                  AIC value           log likelihood 

ARFIMA(1, 0.12, 0)          126.8374                   -59.42 

ARFIMA(2, 0.12, 1)          101.2736                   -45.64 

ARFIMA(3, 0.12, 0)          63.73293                  -25.87 

ARFIMA(4, 0.12, 1)         65.37246                  -25.69 

ARFIMA(5, 0.12, 1)          53.24466                  -14.34 

ARFIMA(5, 0.12, 3)         53.24466                  -16.62 

 

ARFIMA model identification 

The optimal lag lengths for both the AR and MA are 

selected using the Akaike information criteria (AIC) and the 

log likelihood. Six candidate models are obtained. Out of 

these models a parsimonious model is obtained which has 

the lowest AIC and log likelihood function. The particular 

optimization routine of the log likelihood function shows 

that among the ARFIMA models that were tested, the 

optimal model for the fractionally difference series is 

ARFIMA(5, 0.12, 3) since this model exhibits the smallest 

values of AIC and log likelihood as reported in table 3 below. 

The result in table 3 shows that ARFIMA(5,0.12,3) model 

is the best candidate model with the least value of AIC and 

the log likelihood. After model identification, next is to 

estimate the parameters of the model. 

The result of the estimated parameters of 

ARFIMA(5,0.12,3) model are shown in table 4. 

Table 4.  Result of the estimated ARFIMA(5,0.12,3) parameters 

Estimates Coefficients 

AR 1 0.7213895 

AR 2 -0.0964722 

AR 3 -0.5335719 

AR 4 0.5472099 

AR 5 0.2120495 

MA 1 0.2940989 

MA 2 -0.3081013 

MA 3 -0.6976052 

 

This calls for fitting of the model. 

The estimated parameters are fitted thus: 

𝑦𝑡= 𝜀𝑡  - 𝜃1𝜀𝑡−1 - 𝜃2𝜀𝑡−2 -  𝜃3 𝜀𝑡−3 + ∅1 𝑦𝑡−1 +  ∅2𝑦𝑡−2 

+  ∅3𝑦𝑡−3 + ∅4𝑦𝑡−4 + ∅5𝑦𝑡−5          (4.1) 

𝑦𝑡= 𝜀𝑡  – 0.2940989𝜀𝑡−1 + 0.3081013𝜀𝑡−2 + 

0.6976052𝜀𝑡−3 + 0.7213895𝑌𝑡−1 -  0.0964722𝑌𝑡−2 -  

0.5335719𝑌𝑡−3 + 05472099𝑌𝑡−4 + 0.2120495𝑌𝑡−5 (4.2) 

Having fitted a model to the fractionally differenced 

liquidity ratio time series, we check the model for adequacy. 

Diagnostic checking of ARFIMA model 

The model verification is concerned with checking the 

residuals of the model to see if they contained any systematic 

pattern which still could be removed to improve the chosen 

ARFIMA. This has been done through examining the 

autocorrelation and partial autocorrelation of the residuals. 

The residual ACF and PACF of the fitted ARFIMA(5,0.12,3) 

model of the fractionally differenced liquidity ratio time 

series are given in Fig.4 below. 

The plots shows that there are no serial correlation 

observed in the residuals of the series, therefore the model is 

adequate and good. 

MODEL IDENTIFICATION USING ARIMA(p d q) 

An alternative way of modeling the liquidity ratio data is 

by fitting an ARIMA model.  

A visual inspection of the plot of the original series as 

conducted in figure 1 does not show any evidence of 

stationarity. Having discovered non-stationarity in the series, 

differencing at order 1 yielded a stationary series as shown in 

Fig 5 below. 

Since the series is stationary at order 1as shown in Figure 
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5, the optimal lag lengths for both the AR and MA are 

selected using the Akaike Information Criteria(AIC). Two 

candidate models are obtained using p=1,2; q=1. Out of these 

models a parsimonious model is obtained which has the 

lowest AIC and log-likelihood function. The value of the log 

likelihood and the AIC for two candidates ARIMA models 

are computed and reported in table 5. 

From the results obtained, the optimal model for the first 

order differenced series is ARIMA(1,1,1) since this model 

exhibits the smallest values of AIC and log-likelihood. 

Table 5.  Results of ARIMA model identification for liquidity ratio time 
series  

Model               log likelihood       AIC 

ARIMA(1,1,1)          -59.16             124.33 

ARIMA(2,1,1)           -47.13             124.33 

ARIMA model estimation 

After the best model has been chosen, the parameters of 

the model are next estimated. The result of the parameter 

estimates of the optimal model are shown in Table 6. 

 

 

Figure 4.  Residuals ACF and PACF of ARFIMA(5,0.12,3) model 
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Figure 5.  Plot of first-order differenced series 

Table 6.  Result of ARIMA model estimation for liquidity ratio time series 

Estimates             coefficients        standard error 

AR 1                   0.0502              0.1907 

MA 1                 -0.4603               0.1646 

ARIMA(1,1,1) is fitted thus   

𝑦𝑡 =  𝜀𝑡   −   𝜃1𝜀𝑡−1  +    ∅1𝑦𝑡−1       (4.3) 

𝑦𝑡  = 𝜀𝑡+0.4603𝜀𝑡−1+0.0502𝑦𝑡−1       (4.4) 

After fitting the model, we check for model adequacy. 

Diagnostic check of ARIMA(p,d,q) model 

The model is next tested for adequacy using two 

diagnostic tests namely; Ljung-Box test and Jarque-Bera test. 

The result of these test are given in Table 7. 

Table 7.  Summary of diagnostic tests of ARIMA(1,1,1) model 

Test                                  P-value(𝔁2) 

Ljung-Box                          0.3780 

Jarque-Bera                          0.4182 

The result of the test above, shows that the model is 

adequate at 5% as all the p-values are greater than 0.05. Also 

the residual ACF and PACF of the fitted ARIMA (1,1,1) 

model are given in figure 6 below. 

The plots shows that there are no serial correlation 

observed in the residuals of the series. Therefore 

ARIMA(1,1,1) is adequate. 

FORECAST EVALUATION 

After checking the adequacy of ARIMA(1,1,1) and 

ARFIMA(5,0.12,3) respectively, we finally study their 

forecast values. 

A forecast result of ARIMA and ARFIMA models for the 

next 12 months were obtained. The result are shown in table 

8. 

Table 8.  Forecasting performance of ARFIMA and ARIMA models 

    ARIMA     ARFIMA   OBSERVED 

 [1,] 2.498373    2.512682     3.27 

 [2,] 2.496087    2.601580     3.26 

 [3,] 2.495922    2.688473     3.38 

 [4,] 2.495910    2.692985     3.42 

 [5,] 2.495909    2.624834     3.41 

 [6,] 2.495909    2.569816     3.42 

 [7,] 2.495909    2.598623     3.41 

 [8,] 2.495909    2.680615     3.24 

 [9,] 2.495909    2.729275     3.43 

[10,] 2.495909   2.696017     3.43 

[11,] 2.495909   2.627111     3.43 

[12,] 2.495909   2.605059     3.46 

From the result above, the predicted values of 

ARFIMA(5,0.12,3) are closer to the observed values than the 

predicted values of ARIMA(1,1,1).  

In order to identify a more parsimonious model between 

the two types of models, we finally compare the forecast 

values of ARFIMA (5,0.12,3) and ARIMA (1,1,1) with the 

observed values. To evaluate their performance, Root mean 

squared error (RMSE) is used for this purpose. 

Table 9.  Results of the benchmark evaluation for the two types of models 

Model forecast                        RMSE 

ARFIMA (5, 0.12, 3)                 0.75 

ARIMA  (1, 1, 1)                    0.89 
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From the results above the RMSE value of ARFIMA 

(5,0.12,3) is smaller than the RMSE value of ARIMA (1,1,1), 

we therefore conclude that ARFIMA model is a much better 

model than the ARIMA model. 

 

 

Figure 6.  Residual ACF and PACF of ARIMA(1,1,1) 
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5. Conclusions 

In this paper, we conducted a forecast of the liquidity ratio 

of commercial banks in Nigeria. The autocorrelation 

function of the liquidity ratio data showed persistence 

characteristic which is one of the features of a long memory 

process. This led to fitting a suitable ARFIMA(5, 0.12, 3) 

model. 

Similarly, the widely used ARIMA model was also 

employed in this study. A suitable ARIMA(1, 1, 1) model 

was identified and fitted. Even though both models fits the 

data well, forecasts obtained using the ARFIMA(5, 0.12, 3) 

model are closer to the actual values than forecasts obtained 

using ARIMA(1, 1, 1) model. It is also noteworthy that 

forecast evaluation using RMSE showed that the ARFIMA 

model is much better than the ARIMA model. We therefore 

conclude that liquidity ratio data is better modeled by 

ARFIMA model than ARIMA model.  
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