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Abstract  Reducing error in wireless, satellite, and space communication systems is critical. In the wireless 
communication system, various coding methods are employed on the data transferred to induce high bit error rates. High 
speed wireless networks, in order to address the large latency and degraded network throughput due to the retransmission 
triggered by frame loss, the purpose of this paper is to study and investigate the performance of fountain codes that is used to 
encode and decode the data stream in digital communication. This is an intelligent solution that encodes a number of 
redundant frames from the original frames upon link loss rate so that a receiver can effectively recover lost original frames 
without significant retransmissions. Since then, many digital Fountain coding methods have been invented such as Tornado 
codes, Luby transforms (LT) codes and Raptor codes. 
Keywords  Wireless communication systems, Fountain codes, Tornado codes, Luby transforms and Raptor codes 

 

1. Introduction 
In civil and military applications, wireless networking 

technologies have been widely deployed such as 3G/4G and 
IEEE 802.11 WLAN networks. However, wireless 
communication suffers from frame losses due to shadowing, 
mobility, channel fading, and interferences. Frame loss 
significantly undermines wireless network performance in 
that latency is enlarged and throughput is degraded. The 
large latency is induced by the retransmission of lost frames 
in the MAC layer [6]. 

On the Internet, data is transmitted in the form of packets. 
Each packet is armed with a header that describes the source 
and the destination of the packet, and often also a sequence 
number describing the absolute or relative position of the 
packet in a given stream. These packets are routed in the 
network from the source to the destination [16]. Due to 
various reasons, for example, buffer overflows at the 
intermediate routers; some packets may get lost and never 
reach their destination, other packets may be announced as 
lost if the internal check of the packet does not match. 
Therefore, the Internet is a very good real-world pattern of 
the BEC. 

Reliable transmission of data over the Internet has been 
the subject of much research. Reliability is ensured by the 
use of suitable protocols. For example, the present TCP/IP  
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ensures reliability by essentially retransmitting packets 
within a transmission window whose reception has not been 
acknowledged by the receiver. It is known that such 
protocols exhibit poor behavior in many cases, such as the 
transmission of data over heavily disabled channels or 
transmission of data from one server to multiple receivers or, 
such as poor wireless or satellite links. Moreover, ack-based 
protocols such as TCP perform poorly when the distance 
between the sender and the receiver is long, since large 
distances lead to idle times during which the sender waits for 
an acknowledgment and cannot send data. For these reasons, 
other transmission solutions have been proposed. One class 
of such solutions is based on coding. The original data is 
encoded using some linear erasure correcting code. If during 
the transmission some part of the data is lost, then it is 
possible to recover the lost data using erasure correcting 
algorithms. For applications it is critical that the codes used 
are able to correct as many erasures as possible, and it is also 
critical that the encoding and decoding algorithms for these 
codes are very fast. Reed–Solomon codes can be used to 
partially recover for the inefficiency of random codes. 
Reed–Solomon codes can be decoded from a block with the 
maximum possible number of erasures in time quadratic in 
the dimension. There are faster algorithms based on fast 
polynomial arithmetic, but these algorithms are often too 
complicated in practice. However, quadratic running times 
are still too large for many applications. 

Other codes are constructed with linear time encoding and 
decoding algorithms that can come arbitrarily close to the 
capacity of the BEC [16, 18]. These codes, called Tornado 
codes, are very similar to Gallager’s low-density 
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parity-check (LDPC) codes [19], but they use a highly 
unequal weight distribution for the implied graphs. 

In computer networks, fountain codes are ideally suited 
for transmitting information. A server sending data to many 
recipients can perform Fountain code for a given piece of 
data to generate an infinite stream of packets. As soon as a 
receiver requests data, the packets are copied and forwarded 
to the receiver. In a broadcast transmission model, there is no 
need for copying the data since any outgoing packet is 
received by all the receivers. In other types of networks, the 
copying can be done actively by the sender, or it can be done 
by the network. An example, if multicast is enabled; the 
recipient collects the output symbols, and leaves the 
transmission as soon as it has been received by them. That 
time, it uses the decoding algorithm to recover the original 
symbols. That, the number is the same regardless of the 
channel characteristics between the sender and the receiver. 
More loss of symbols just translates to a longer waiting time 
to receive the packets.  

This paper surveys the channel coding methods in the 
physical layer and Digital Fountain code proposals in the 
application layer. The following paper is arranged as follows. 
Section 2 presents the RS codes architectures, applications 
and limitations. Section 3 discusses the fountain codes 
properties, the related erasure channel and construction. 
Section 4 Recent advances have produced powerful fountain 
codes, such as Tornado codes, Luby Transform (LT) codes 
and Raptor codes. Finally, section 5 discusses the advantages 
of fountain code over Reed Solomon code. Finally section 6 
presents the conclusion. 

2. Developing Background Related 
Work and Motivations 

2.1. Error Correction Control (ECC) 
In information and coding theory with applications in 

computer science and telecommunication system, error 
detection and correction are techniques that enables reliable 
and efficient delivery of digital data over communication 
channels. Many communication channels are subject to 
channel noise, and thus errors may be inserted during 
transmission from the source to a receiver.  Error detection 
techniques permit detecting such errors, while error 
correction enables regeneration of the original data in many 
cases. 

Error correction control is accomplished by adding 
redundant symbols to the message. These redundant 
symbols make it possible for the receiver to detect and /or 
correct some of the errors that may occur in the received 
message. The main challenge is to ensure the required 
protection against the determined transmission errors 
without paying too high a price in adding extra symbols.  

Error correction may generally be accomplished in two 
different ways: 
• Forward error correction (FEC): The sender encodes 

the data using an error-correcting code (ECC) before 
transmission. The receiver used the additional 
redundancy added the code to recover the original data.  

•  Automatic repeat request (ARQ): (referred also to as 
backward error correction): Every block of data 
received is checked using the error detection code used, 
and if the check fails, retransmission of the data is 
requested – this may be done repeatedly, until the data 
can be executed. This is an error control technique 
whereby an error detection scheme is combined with 
requests for retransmission of incorrect data.  

FEC and ARQ may be combined, this is called hybrid 
automatic repeat-request (HARQ), such that minor errors 
are corrected without retransmission, and major errors are 
corrected via a request for retransmission. There are many 
different families of error-correcting codes of major 
importance for recording applications is the family of 
Reed-Solomon (RS) codes. 

2.2. Binary Erasure Channel 

The Binary Erasure Channel (BEC) is a channel model 
where the receiver either receives the transmitted bit or is 
informed with the erasure of the bit, that is, the bit was not 
received or erased. Therefore, the receiver has no idea about 
the transmitted bit with a certain probability p, and is exactly 
sure about the transmitted bit with a certain probability 1-p. 
According to Shannon, the capacity of BEC is 1-p, which 
means that for the alphabet size of 2k, where k is the number 
of bits in the alphabet, no more than (1− p) k bits/symbol can 
be reliably communicated over the binary erasure channel 
[20]. 

Feedback from the receiver to the transmitter will not 
increase the capacity of the channel and reliable 
communication should be possible at this rate. Automatic 
Repeat Request (ARQ) schemes have so long been used as a 
classical approach to solve the reliable communication 
problem. However, redundant number of feedbacks used in 
the case of erasures causes improvident usage of bandwidth, 
network overloads and impossible delays. Also known as 
rateless erasure codes are a class of erasure codes with the 
property that a potentially limitless sequence of encoding 
symbols can be generated from a given set of source symbols 
such that the original source symbols can ideally be 
recovered from any subset of the encoding symbols of size 
equal to or only slightly larger than the number of source 
symbols. The term fountain or rateless refers to the fact that 
these codes do not exhibit a fixed code rate. 

2.3. Reed-Solomon Code 

Reed-Solomon (RS) code is a forward error-correcting 
code first invented in 1960 by Irving Reed and Solomon [1]. 
Only in the past few years has it become computationally 
possible to send high-bandwidth data using RS. Versions of 
Reed-Solomon codes are now used in error-correction 
systems found just about everywhere, including the storage 
devices, wireless communications, satellite communications 
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and digital television. 
RS codes are non-binary cyclic error-correcting codes. 

The RS encoder takes a block of digital data and adds extra 
information to the original data. While the errors occur 
during transmission or storage, the RS decoder processes, 
each block and attempts to correct errors and recover the 
original data. The number and type of errors that can be 
corrected depends on the characteristics of the RS code. 

2.3.1. Encoding RS Codes 

The basic structure of RS code is represented in Fig(1), as 
shown in that the codeword symbols (n) is unite of two 
segments information symbols (k) and parity symbols (2t). 
The information symbols (k) are having a message that is to 
be transmitted and parity symbols (2t) is the redundancy 
added to message to transmit it from source to destination 
without error [7]. 

 

Figure 1.  Encoding of RS codes 

Reed-Solomon codes are nonbinary cyclic codes with 
symbols made up of m-bit sequences, where m is any 
positive integer having a value greater than 2. An RS code is 
specified as an RS (n, k) codes on m-bit  

0 < k< n< 2𝑚𝑚+2                     (1) 
Where k is the number of data symbols being encoded, and 

n is the total number of code symbols in the encoded block. 
For the most conventional R-S (n, k) code, 

(n, k) = ( 2𝑚𝑚 -1,  2𝑚𝑚  – 1 - 2t)                (2) 
Where t is the symbol-error correcting capability of the 

code, and n - k = 2t is the number of parity symbols. An 
extended R-S code can be made up with n =  2𝑚𝑚  or n =  2𝑚𝑚  
+ 1.  

Reed-Solomon codes attain the largest possible code 
minimum distance for any linear code with the same encoder 

input and output block lengths. For nonbinary codes, the 
distance between two code words is defined as the number of 
symbols in which the sequences differ. For Reed- Solomon 
codes, the code minimum distance is given by:  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = n - k + 1                    (3) 
The code is capable of correcting any combination of t or 

fewer errors, where t can be expressed as [3]: 

𝑡𝑡 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 −1
2

�=�𝑛𝑛−𝑘𝑘
2
�                   (4) 

RS differs from a Hamming code in that it encodes 
groups of bits instead of one bit at a time. Classical coding 
scheme for recovering erasures are Reed-Solomon codes [1, 
3] employed in a variety of commercial applications, most 
notably in data storage as a key component of compact disks. 
In coding theory, Reed-Solomon codes are an example of 
Maximum Distance Separable (MDS) codes which achieve 
the Singleton bound [4]. The maximum distance separable 
(MDS) codes are practical codes that achieve the capacity of 
the erasure channel. A (n, k, d) MDS code, has a property 
that any k coordinates constitute an information set [2]. A 
receiver that receives any k symbols from a total of n 
symbols in each codeword can reconstruct the original 
message, provided it knows the position of the k received 
symbols. Reed Solomon (RS) codes are the most 
well-known MDS codes. These can be decoded in time O 
(K2), using algebraic methods such as list decoding. 

2.3.2. Decoding of RS Codes  

The RS decoder consists of two main stages; (1) error 
detection stage, and (2) error correction stage as shown in 
Fig. (2) [15]. Firstly, a serial syndrome is used to check if 
this codeword is a valid codeword or not. If errors occurred 
during transmission, the decoder carried out error detection, 
then try to correct these errors. Secondly, the key equation 
solver is used as decoding algorithm to find the coefficients 
of the error-location polynomial σ(x) and error-evaluator 
polynomial W(x). Thirdly, the Chien search block which is 
used to find the roots of σ(x) which present the inverse of the 
error locations. Fourthly, the Forney algorithm block is used 
to find the values of the errors. Finally, after getting the 
values and locations of the error, the received codeword can 
be corrected by XOR-ing the received vector with the error 
vector. 

 
Figure 2.  RS decoder 
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2.3.3. Reed-Solomon Code Applications 

Reed-Solomon codes are the most frequently used digital 
error control codes in the world, due their usage in computer 
memory and non-volatile memory applications. A hurried 
list of significant applications includes the Digital Audio 
Disk, Deep Space Telecommunication Systems, and Error 
Control for Systems with Feedback, Spread-Spectrum 
Systems, and Computer Memory [8]. 

2.3.4. Reed-Solomon Codes Limitations 

RS codes are not proper for bulk data distribution over the 
internet although spreading. When data rates are of the order 
of Mbps, the quadratic decoding time is unacceptable [2]. 
Moreover, typical RS code implementations have small 
block lengths such as the NASA standard (255; 233; 33) 
code. This requires a large file to be divided into many small 
blocks before transmission. Finally, since RS codes are block 
codes, they need to be designed for a specific rate. This 
requires that we need previous to evaluate the erasure 
probability of the channel. It is not possible when multiple 
clients over different quality of channels are being served 
simultaneously. 

3. Fountain Codes 
A fountain code is a forward-error-control code that can 

produce as many redundant packets as needed for packet 
erasure correction. Unlike automatic-repeat-request (ARQ) 
transmission, fountain coding does not require the 
destination to inform the source of the identities of the 
packets that are erased or even keep track of which packets 
are erased. We discuss the use of fountain coding for both 
unicast and multicast transmission in packet radio systems, 
where communication occurs over time-varying channels 
with fading, shadowing, and other types of propagation 
losses. 

A decoding algorithm for a Fountain code is an algorithm 
which can recover the original k input symbols from any set 
of n output symbols with high probability [16]. For good 
Fountain codes the value of n is very close to k, Note that the 
number n is the same regardless of the channel 

characteristics between the sender and the receiver. More 
loss of symbols just translates to a longer waiting time to 
receive the n packets. For noisy wireless channels, the 
waiting time and then the overall throughput performance of 
the fountain coding system depend heavily on the selection 
of the channel code and the modulation format used to 
transmit the wireless signals.  

Proposed for wireless mesh networks by Katti, et al not 
only forwards the packets, but also mixes packets from 
different sources into a single transmission and resolves the 
packets at the receiver. In upper layers, a coding concept 
called Digital Fountain has been introduced in 1998 by Byers, 
et al to generate a stream of packets including some 
redundant packets, like in a water fountain to address the 
potential packet loss in multicast applications that do not 
allow retransmission. Since then, many Digital Fountain 
coding methods have been invented such as Luby transform 
coding and Raptor codes. 

Consider a setting where a large file is disseminated to a 
wide audience who may want to access it at various times 
and have transmission links of different quality. Current 
networks use unicast established protocols such as the 
transport control protocol (TCP), which requires a 
transmitter to continually send the same packet until 
acknowledged by the receiver. It can easily be seen that this 
architecture does not scale well when many users access a 
server concurrently and is extremely inefficient when the 
information transmitted is always the same. In fact, TCP and 
other unicast protocols place strong importance on the 
ordering of packets to simplify coding at the expense of 
increased traffic. 

3.1. Digital Fountain Codes 

The digital fountain was devised as the ideal protocol for 
transmission of a single file to many users who may have 
different access times and channel fidelity. The name is 
drawn from an analogy to water fountains, where many can 
fill their cups with water at any time. The output Packets of 
digital fountains must be universal like drops of water and 
hence be useful independent of time or the state of a user’s 
channel [12, 13].  

 

Figure 3.  Fountain code 
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The encoder of fountain codes is like a fountain spewing 
as show in Fig (3). Infinite coded symbols can be produced. 
Source data is divided into k input symbols of size l. With 
fountain codes, the k input symbols are combined into 
infinite encoding symbols at source. All k input symbols can 
be cured from any set of (1+ε) k encoding symbols, where  
0< ε <1. Encoder of fountain codes is bit rate independent 
which is not limited by the size of the source data and can 
generate an unlimited number of encoding symbols. 

3.2. Fountain Codes Properties 

Consider a file that can be split into k packets or 
information symbols and must be encoded for a BEC. A 
digital fountain that transmits this file has the next 
properties: 

1. It can generate an endless supply of encoding packets 
with constant encoding cost per packet in terms of time 
or arithmetic operations. 

2. A user can reconstruct the file using any k packets with 
constant decoding cost per packet, meaning the 
decoding is linear in k. 

3. The space needed to store any data during encoding and 
decoding is linear in k. 

These properties show that the digital fountains are as 
reliable and efficient as TCP systems, but also universal and 
tolerant, properties desired in networks. 

3.3. Fountain Code Construction Outline 

Fountain Codes are a new class of codes designed and 
ideally suitable for dependable transmission of data through 
an erasure channel with unknown erasure probability. 
Infinite number of output symbols can be produced 
potentially by the encoder. Output symbols can be bits or 
more general bit sequences. However, random linear 
Fountain Codes have encoding complexity of O (𝑁𝑁2) and 

decoding complexity of O ( 𝑁𝑁3 ) which makes them 
impractical for nowadays applications. 

The fountain code constructions we provide all have the 
property that encoded symbols are generated separately 
from one another. Moreover, we will assume that the set of 
receiving encoded symbols is independent of the values of 
the encoded symbols in that set, an assumption that is often 
true in practice. For a given value of k, these assumptions 
mean that the probability of the inability of the decoding is 
only dependent on how many encoded symbols are received 
and independent of the pattern of which encoded symbols 
are received. 

3.3.1. Fountain Coding 

If the original k source symbols can be recovered from any 
k encoding symbols, fountain code is maximized. Fountain 
codes are known that have efficient encoding and decoding 
algorithms and that permit to pick up the original k source 
symbols from any k’ of the encoding symbols with high 
probability, where k’ is just slightly larger than k. 

Digital fountains have changed the standard transmission 
model. A digital fountain can encode and transmit an infinite 
number of data packets until every user has enough 
information to ensure correct decoding. Emerging 
peer-to-peer applications in multimedia broadcasting are 
only two examples of many other scripts where digital 
fountains can be applied successfully. 

Consider a file that can be split into k packets or 
information symbols and must be encoded for a BEC as 
shown in Fig (4) [17]. Regardless of the erasure probability, 
Fountain Codes are near optimal for all BEC. Therefore, on 
the BEC, Fountain Codes are called universal codes. A 
message consists of k*k bits and each drop contains k bits. 

Whoever collects any K' ≥ K number of k bits, where K ' is 
little larger than K, can recover the original message with 
high probability. 

 

Figure 4.  Fountain code 
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Fountain Codes can be accomplished at random with an 
average degree of k / 2. The degree is the number of one's 
divided by the total number of bits in the generator matrix. 
The average degree of the generator matrix determines the 
complexity of encoding and decoding process. The higher 
the degree, the higher the complexity at the transmitter and 
receiver side and the more successful the receiver is in the 
decoding phase. Let us assume that we transmit k source 
symbols k s, s, s... s 1 2 3 with a random generator matrix of 
degree k / 2. The encoding process of Fountain Codes is 
given by the following equation [9]: 

 𝑡𝑡𝑛𝑛 =  ∑ 𝑠𝑠𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘=1                (5) 

Where  𝑡𝑡𝑛𝑛  indicates to the transmitted symbols. 𝐺𝐺𝑘𝑘𝑘𝑘  Can 
be generated at the transmitter side pseudo-randomly with a 
random seed, namely by a key, and transmitted to the 
receiver causing an extra overhead cost. Therefore, the 
symbol size is much larger than the key size, this overhead is 
neglectable. One other way to produce a unique 𝐺𝐺𝑛𝑛𝑛𝑛  is to 
synchronize the receiver and the transmitter with same clock 
pulses and to use deterministic random number generators on 
both sides. 

3.3.2. Fountain Decoding 

The decoding process of Fountain Codes is given as: 
𝑠𝑠𝑘𝑘 = ∑ 𝑡𝑡𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛−1𝑘𝑘

𝑛𝑛=1 .                    (6) 
In order for a k*k G matrix to be invertible, each row 

should be linearly independent from the others. The 
probability that the first row is not an all zero row is 1-2−𝑘𝑘 , 
the probability that the second row is neither all zero nor 
same with the first row is 1 − 2−𝑘𝑘+𝑖𝑖 . Iterating until K, we get 
as the overall success rate: 

1−δ = ∏ (1 − 2−𝑘𝑘+𝑖𝑖𝑘𝑘−1
𝑖𝑖=0 )              (7) 

1−δ is lower bounded by 0.289 for k > 10. For any NxK 
binary matrix to be invertible, δ is upper bounded by 
2−(𝑁𝑁−𝐾𝐾) . Accordingly, each additional row increases the 
success probability drastically. Thus, as the message size 
increases, random Fountain Codes come arbitrarily close to 
the channel capacity. Despite a very small overhead and rate 
erasure independency, random Fountain Codes have a 
quadratic encoding complexity, k bits times the degree k/2, 
and cubic decoding complexity ~2𝐾𝐾3/3. This makes them 
far away from most of the applications such as mobile 
broadcasting, where only a limited processor power can be 
used on the receiver side. 

Then, many digital Fountain coding methods have been 
invented such as Tornado codes, Luby transform codes and 
Raptor codes. 

4. Fountain Coding Methods 
4.1. Tornado Code 

4.1.1. Introduction 

Tornado codes first appeared in a technical report in 1997. 

Tornado codes are a new class of erasure randomized codes 
which have linear-time encoding and decoding algorithms. 
They can be used to transmit over erasure channels at rates 
extremely close to capacity. For Tornado codes, the 
encoding and decoding algorithms are both simple and faster 
by orders of magnitude than the best software 
implementations of standard erasure codes. Tornado codes 
will be expected extremely useful for applications such as 
reliable distributions of bulk data, including video 
distribution, software distribution, news and financial 
distribution, popular web site access, and military 
communications. 

We consider a system model in which a single transmitter 
performs evaluated data transfer to a larger number of users 
on an erasure channel. Our objective is to achieve complete 
file transfer with the minimum number of encoding symbols 
and low decoding complexity. For k information symbols, 
RS codes can achieve this with k log k encoding and 
quadratic decoding times. The reason for the longer 
decoding time is that on RS codes, every redundant symbol 
depends on all information symbols. In Tornado codes by 
contrast, every redundant symbol depends only on a small 
number of information symbols. Thus they achieve linear 
encoding and decoding complexity, with the cost that the 
user requires slightly more than k packets to successfully 
decode the transmitted symbols. The main contribution is the 
design and analysis of optimal degree distributions for the 
bipartite graph such that the receiver is able to recover all 
missing bits by a simple erasure decoding algorithm. The 
innovation of Tornado code has also inspired work on 
irregular LDPC codes.    

4.1.2. Construction  

The design and analysis of Tornado codes are 
mathematically simple and interesting. The design requires 
careful choice of a random irregular bipartite graph where 
the structure of the irregular graph is very important. The 
progress of the decoding algorithm is designed by a simple 
AND-OR tree analysis, which instantly gives rise to a 
polynomial in one variable with coefficients determined by 
the graph structure. We design a graph structure based on 
these polynomials assure successful decoding with high 
probability. 

Tornado codes are erasure block codes based on the 
irregular spare graph. Given an erasure channel with loss 
probability p, they can correct up to p (1- ε) errors. They can 
be encoded and decoded in time proportional to n*log (1/ ε). 
There are eight input symbols named x1, x2… x8 as shown in 
Fig (5). With tornado codes, four encoding symbols named 
y1, y2, y3 and y4 is produced by eight input symbols. 
Tornado codes can support that any one of y1, y2, y3 and y4 
can be recovered by three others.  

Tornado codes are not suitable for large data transfer 
systems because the complexity of encoding and decoding 
algorithms for tornado codes is proportional to block length. 
For encoding the large amounts of data, an alternative 
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classical ARQ concept is used as on the Internet. 

 

Figure 5.  Tornado codes 

4.2. LT Code 

4.2.1. Introduction  

LT codes are the first implementation of digital fountain 
codes in 2002 proposed by Michael Luby. Luby Transform 
(LT) codes have been invented to reduce the encoding and 
decoding complexity of random linear Fountain Codes while 
the small overhead is ensured. With a good choice of degree 
distributions of the edges in the Tanner graph, LT codes 
randomly close to channel capacity with certain decoder 
reliability and logarithmically inducing increases in 
encoding and decoding costs. In LT codes, Data was divided 
into blocks with fixed size. Each block is divided into fixed 
size symbols. So the number of input symbols is fixed. The 
encoder of LT codes can generate an infinite number of 
encoded symbols. When the number of encoding symbols is 
received slightly larger than the number of input symbols, 
this means the decoder of LT codes can recover all input 
symbols. 

Reducing the degree distribution resulting linear time 
encoding and decoding complexity leads to decrease in the 
reliability of the decoder. Thus, the decoder cannot decode 
all the input symbols with the lower degree distribution for 
the same overhead limitation. So, correcting the erasures 
arising from the weakened decoder would utilize an erasure 
correcting pre-code. 

4.2.2. The Construction 

For the binary erasure channel, LT codes are considered 
the first practical rateless codes. The encoder can produce as 
many encoding symbols as required to decode k information 
symbols. For LT codes, the encoding and decoding 
algorithms are simple and similar to parity-check processes. 
LT codes are efficient in that the transmitter does not require 
an acknowledgement (ACK) from the receiver. This 
property is especially desired in multicast channels because 
it will significantly decrease the overhead incurred by 
processing the ACKs from multiple receivers. 

LT codes are known to be efficient if k information 

symbols can be recovered from any k+ O (√𝑘𝑘𝑙𝑙𝑙𝑙2  (k/𝛿𝛿)) 
encoding symbols with probability 1- 𝛿𝛿 using O (k.ln(k/ 𝛿𝛿)) 
operations. However, their bit error rates cannot be 
decreased below some lower bound, meaning they suffer an 
error floor. 

To reduce the computational complexity, the number of 
edges at the encoder side should be reduced. LT codes with 
simple encoding and decoding algorithms can then be 
considered as sparse random linear Fountain Codes. 
Although, there are simple and fixed encoding and decoding 
schemes defined for LT codes the degree distributions of the 
edges play a crucial role in the design of good codes. Good 
codes are such codes, which have low encoding and 
decoding costs as well as a small overhead and a decoding 
failure. Let us start with the definitions of encoding and 
decoding schemes. 
A. LT Coding 

Any number of encoding symbols can be independently 
generated from k information symbols by the following 
encoding process: 

1)  Determine the degree d of an encoding symbol. The 
degree is chosen at random from a given node degree 
distribution P (x). 

2)  Choose d distinct information symbols uniformly at 
random. They will be neighbors of the encoding 
symbol. 

3)  Assign the XOR of the chosen d information symbols 
to the encoding symbol. This process is similar to 
generating parity bits except that only the parity bits 
are transmitted. 

The degree distribution P (x) in Fig(6), comes from the 
sense that we can draw a bipartite graph, in which consists of 
information symbols as variable nodes and encoding 
symbols as factor nodes. The degree distribution determines 
the performance of LT codes, such as the number of 
encoding symbols and probability of successful decoding. 
The degree distribution is analyzed. 

 

Figure 6.  Generation of encoding symbols 

The encoding symbols are transmitted through a BEC with 
the probability of erasure p. The special characteristic of a 
BEC is that receivers have correct data or no data. There is 
no confusion where the decoder needs to “guess” the original 
data; it recovers the true data or gives up. 
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B. LT Decoding 

For decoding of LT codes, a decoder needs to know the 
neighbors of each encoding symbol. This information can be 
transferred in several ways. For example, a transmitter can 
send a packet, which consists of an encoding symbol and the 
list of its neighbors. There is an alternative method is the 
encoder and the decoder share a random number generator 
seed, and the decoder finds out the neighbors of each 
encoding symbol by generating random linear combinations 
synchronized with the encoder. 

4.2.3. Degree Distribution 

LT codes do not have a fixed rate and hence the desired 
property is that the probability of successful recovery is as 
high as possible while the number of encoding symbols 
required is kept small. Describing the property in the 
terminology of the LT process: 

•  For encoding symbols, the release rate is low in order to 
keep the size of the ripple small and prevent waste of 
encoding symbols. 

•  For encoding symbols, the release rate is high enough to 
keep the ripple from dying out. 

Therefore, the degree distribution of encoding symbols 
needs to be very well designed so as to balance between the 
trade-off. This is the reason that the degree distribution plays 
an important role in LT codes. Several probability 
distributions are investigated as the degree distribution used 
in the fame Fountain encoding process [10] as follows: 

1) Uniform distribution:         
   𝑝𝑝𝑖𝑖=1/𝑛𝑛       ∀𝑖𝑖  =1,2,3, ------------, n       (8) 

2) Normal distribution:               
 µ = [ 𝑛𝑛/2],        𝛿𝛿 =k/2              (9) 

   𝑝𝑝𝑖𝑖 = 1
√2𝜋𝜋𝛿𝛿2  𝑒𝑒−

(𝑥𝑥1−𝜇𝜇 )2

2𝛿𝛿2     ∀𝑖𝑖= 1, ……,𝑘𝑘;      (10) 

Where 𝑥𝑥𝑖𝑖= [randn*𝛿𝛿 + 𝜇𝜇] 

3) Sequential distribution: 

  𝑝𝑝𝑖𝑖=
1

𝑛𝑛−[𝑛𝑛/𝑘𝑘]
          ∀𝑖𝑖= �𝑛𝑛

𝑘𝑘
� , … . , 𝑛𝑛     (11) 

4) Ideal solution distribution  
  𝑝𝑝1=1/𝑛𝑛                   (12) 

 𝑝𝑝𝑖𝑖 = 1/𝑖𝑖(𝑖𝑖 − 1)  For 𝑖𝑖 =2, 3, ----, n      (13) 

5) Robust Soliton distribution, R=ϲ ln �𝑛𝑛
𝛿𝛿
�√𝑛𝑛 where c and 

𝛿𝛿 are extra parameters; c > 0 is some suitable constant.     

𝜏𝜏𝑖𝑖  = �𝑅𝑅
𝑛𝑛
𝑙𝑙𝑙𝑙 �𝑅𝑅

𝛿𝛿
�.          

𝑅𝑅
𝑖𝑖𝑛𝑛

 ,      𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … … …�𝑛𝑛
𝑅𝑅
� .

 
 0,         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

� 

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = �𝑛𝑛
𝑅𝑅
� .    𝑜𝑜                        (14) 

Enough frames can be encoded together as redundant 
frames to make sure there are enough variety of encoded 
frames at the receiver. 

4.3. Raptor Code 

4.3.1. Introduction 

Raptor code has been standardized in the 3GPP (Third 
Generation Partnership Project). Raptor Codes are an 
extension of LT codes combined with a pre-coding scheme. 
Raptor (rapid Tornado) codes were developed and patented 
in 2001 as a way to reduce decoding cost to O (1) by 
preprocessing the LT code with a standard erasure block 
code (as a Tornado code). The main idea of Raptor Codes is 
to refresh the condition of recovering all input symbols and 
to require that only a constant fraction of input symbols be 
recoverable. Then the number of edges in the Tanner graph 
will exhibit only a constant degree which will precede linear 
time encoding and decoding costs. This is done by utilizing 
an erasure correcting pre-code working in linear time. The 
degree distribution, which is used for Raptor Codes, should 
be completely different from the one that of LT codes. 
Because, in the concept of Raptor Codes, we are forced to 
recover as many input symbols as possible for a given 
constant average degree rather than to recover all input 
symbols to be recovered and decoding to be successful. 
Degree distribution design and pre-coding is the heart of 
Raptor Codes. The degree distribution, which is used for 
Raptor Codes, should be completely different from the one 
that of LT codes. From the concept of Raptor Codes, we are 
forced to recover as many input symbols as possible for a 
given constant average degree rather than to recover all input 
symbols while maintaining the small overhead. 

4.3.2. The Construction 

 
Figure 7.  Raptor codes 

Digital Fountain, Inc. proposed Raptor codes in 2006. It is 
a concatenation of a systematic pre-code with LT codes. As 
shown in Fig (7), in the pre-code, k native symbols are first 
mapped to (1+ε) k pre-coded symbols. Infinite coded 
symbols can be generated from pre-coded symbols by LT 
codes. In decoding process of Raptor codes, pre-coded 
symbols are recovered by LT codes firstly, and then input 
symbols are recovered by pre-coded symbols.  

A Raptor code can achieve constant per-symbol encoding 
and decoding cost with overhead close to zero and a space 
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proportional to k. This has been shown to be the closest code 
to the ideal universal digital fountain. A similar vein of work 
was proposed in under the name online codes.       

We have already seen two extreme cases of Raptor codes. 
When there is no pre-code, then we have the LT code. As an 
example of a pre-code only (PCO) Raptor code for the s are 
an extension of LT codes [11]. 

Raptor Codes can produce a potentially infinite stream of 
symbols such that any subset of symbols of size k (1+ε) is 
sufficient to recover the original k symbols with high 
probability. The original symbols are recovered from the 
collected ones with O (k log (1/ε)) operations and output 
symbol is generated using O (log (1/ε)) operations. Raptor 
encoding starts with a suitable design of the pre-code. 
Shokrollahi uses LDPC codes as a pre-code with a constant 
rate of (1+ε /2) (1+ε) and BP algorithm can work in linear 
time and decode (ε / 4) (1+ε) fraction of erasures where ε is a 
real positive number. Next, the intermediate symbols are 
encoded with LT coding using a suitable degree distribution. 

Raptor decoding starts with the LT decoding process. In 
the example, LT decoding can recover all the intermediate 
symbols, but the ones filled with black. Since the pre-code is 
systematic, the first three input symbols are immediately 
recovered. The fifth intermediate symbol is encoded by 
xor-ing the third and fourth input symbol. We can recover 
the fourth input symbol by adding the fifth intermediate 
symbol to the third input symbol. Hence, as it is seen that the 
decoding process succeeds. Decoding is done the same way 
as described in this paper for LT decoding. LDPC decoding 
is performed using the BP algorithm. 

The table below summarizes the characteristics of the 
various codes that are designed for the digital fountain ideal: 

5. Advantages of Fountain Code over 
Reed Solomon Code 
•  A DF Raptor code with k input symbols that produces n 

output symbols using symbols of size S bytes is 
designated Raptor (n,k,S).The Digital fountain code 
does not have any limitation to the amount of data that 
can be protected: the number of source symbols k for a 
DF Raptor code can be as large as desired, and the 

symbol size S is not subject to any constraints other than 
that it be less than or equal to the packet size. As a result, 
the value of S can be much smaller for a DF Raptor 
code than is possible for a Reed-Solomon erasure code. 

•  A DF Raptor code’s processing requirements are 
significantly less than that of a Reed-Solomon erasure 
code and grow only linearly with the source block size, 
while a Reed-Solomon erasure code’s processing 
requirements grow quadratically with source block size. 

•  In streaming applications, the erasure correction 
performance of Reed-Solomon erasure codes is directly 
affected by the inefficiencies associated with the 
limited number of symbols that can be used by the 
Reed-Solomon algorithm, while Reed-Solomon erasure 
codes can require an order of magnitude greater 
processing power for encoding and decoding than a DF 
Raptor code. 

•  The Digital Fountain code's offer excellent performance 
compared to the Reed-Solomon erasure codes. For a 
given rate of packet loss, the mean time between 
artifacts for the DF Raptor code is significantly greater 
than that of the Reed-Solomon codes As can be seen 
from Fig (8). 

•  In streaming applications, the length of the protection 
period reflects a trade-off between robustness and 
latency. In general, the longer the protection period, the 
more likely that the actual number of lost packets over 
that period will approach the average packet loss rate so 
that a fixed code rate erasure correction code can be 
sure to provide sufficient protection. The DF Raptor 
code provides greater protection against packet loss, 
one can arbitrarily choose any protection period and 
latency without constraint as shown in Fig (9). The 
Reed-Solomon erasure code with the same amount of 
overhead and with the same mean time between 
artifacts, the protection period that can be supported by 
a single Reed-Solomon code is limited. With 
Reed-Solomon codes, however, a protection period of 
data must be segmented into multiple blocks that are 
protected individually, and the resulting encoded blocks 
are then interleaved, at the cost of additional processing 
as well as reduced packet loss protection. 

 

Table 1.  Summary of fountain codes 
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Figure 8.  A DF Raptor code can provide a mean time than that provided by Reed-Solomon erasure codes [21] 

 

Figure 9.  The maximum packet loss rate for the DF Raptor code is higher than for the Reed-Solomon code [21] 

6. The Conclusions 
It is clear, that the Fountain codes have flexible 

applications at a fixed code rate cannot be determined 
previously, and where efficient encoding and decoding of 
large amounts of data is required as: 

1)  When multiple clients over different quality of 
channels are being served simultaneously.  

2)  The decoding time is acceptable when data rates are of 
the order of Mbps.  

3)  Fountain codes are suitable for large data distribution 
over the internet. 

4)  Raptor Q code, is the more advanced Raptor code with 
greater flexibility and improved reception overhead.  
This code has been introduced into the IETF. It can be 
used with up to 56,403 source symbols in a source 
block, and a total of up to 16,777,216 encoded 

symbols produced for a source block. This code is able 
to recover a source block from any collection of 
encoded symbols equal to the number of source 
symbols in the source block with high probability and 
seldom cases from slightly more than the number of 
source symbols in the source block. 
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