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Abstract  This paper deals with the performance of blind multiuser detectors for CDMA is analyzed. The blind multi-
user detectors are Direct Matrix Inversion (DMI) blind detector and subspace blind detector. The performance analysis is 
performed by means of the Signal to Interference Noise Ration (SINR) and Bit Error Rate (BER). The numerical results are 
plotted as variation of SINR Vs SNR and ρ , SINR with respect to correlation coefficient ( ρ ) and BER Vs signal samples 
(M) using MAT LAB software. It is observed that the SINR Vs SNR and ρ  for both blind detectors. The performance of 
subspace blind detector deteriorates in the high cross correlation and low SNR region whereas the performance of the DMI 
blind detector is less sensitive to cross correlation and SNR in this region. The performance gain offered by the subspace 
detector is significant for smaller value of K, and the gain diminishes as K increases. For large number of signal samples 
(M), both detectors converge to the true linear MMSE detector, with the subspace blind detector converging much faster 
than the DMI blind detector and the performance gain offered by the subspace detector is quite significant for small values 
of M. The BER performance of subspace approach is better than the DMI approach with increasing SNR. 
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1. Introduction 
Code Division Multiple Access (CDMA) implemented 

with direct-sequence spread-spectrum (DS–SS) modulation 
is emerging as a popular multiple-access technology for 
personal, cellular and satellite communication services[4]. 
Multiuser detection techniques can substantially increase the 
capacity of CDMA systems. Over the past decade, a sig-
nificant amount of research has addressed various multiuser 
detection schemes. Considerable recent attention has been 
focused on adaptive multiuser detection[8]. For example, 
methods for adapting the decorrelating, or zero-forcing, 
linear detector that require the transmission of training se-
quences during adaptation have been proposed in[9], and[10]. 
An alternative linear detector, the minimum-mean-square-er
ror (MMSE) detector, however, can be adapted either 
through the use of training sequences or in the blind mode, 
i.e., with the prior knowledge of only the signature waveform 
and timing of the user of interest adaptation schemes are 
especially attractive for the downlinks of CDMA systems, 
since in a dynamic environment, it is very difficult for a 
mobile user to obtain accurate information on other active 
users in the channel, such as their signature waveforms; and  
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the frequent use of training sequence is certainly a waste of 
channel bandwidth. There are primarily two approaches to 
blind multiuser detection, the direct matrix inversion (DMI) 
approach and the subspace approach. In this paper, we pro-
pose a new blind multiuser detection schemes which is based 
on DMI and signal subspace estimation. Subspace-based 
high-resolution methods play an important role in sensor 
array processing, spectrum analysis, and general parameter 
estimation[11].  

The contribution of this work is based on signal subspace 
estimation, both the decorrelating detector and the linear 
MMSE detector can be obtained blindly, i.e., they can be 
estimated from the received signal with the prior knowledge 
of only the signature waveform and timing of the user of 
interest.  

2. Synchronous CDMA Model  
A baseband, K-user, time-invariant, synchronous additive 

white Gaussian noise (AWGN) system, employing periodic 
(short) spreading sequences, and operating with a coherent 
BPSK modulation format. The continues-time waveform 
received by a given user in such a system can be modeled as 
follows[1]. 
r(t) =  ∑ Ak ∑ bk[i]sk(t − iT) + n(t)M−1

i=0
K
k=1 , 0 ≤ t ≤  MT        

(1) 
where M is the number of data symbols per user in the 

data frame of interest; 
 

 is the symbol interval; Ak , 
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{bk [i]}i=0
M−1 and sk(t)denote respectively the received com-

plex amplitude, the transmitted symbol stream  and the 
normalized signaling waveform of the kth  user and n(t) is 
the baseband complex Gaussian ambient noise with inde-
pendent real and imaginary components and with power 
spectral density σ2 . It is assumed that for each user k , 
{bk [i]}i=0

M−1 is a collection of independent equiprobable ±1 
random variables, and the symbol streams of different users 
are independent. For direct-sequence spread-spectrum for-
mat, each user’s signaling waveform is of the form 

sk(t) = 1
√N
∑ cj,kψ(t − jTc)N−1

j=0 , 0 ≤ t < 𝑇𝑇         (2) 

where N  is the processing gain; �cj,k�j=0

N−1
 is a signature 

sequence of ±1’s assigned to the kth user; and ψ(·) is a 
chip waveform of duration Tc = T

N
 and with unit energy[i.e., 

∫ ψ(t)2dt = 1Tc
0 ] 

At the receiver, the received signal r(t) is filtered by a 
chip-matched filter and then sampled at the chip rate. The 
sample corresponding to the jth chip of the ith symbol is given 
by 

rj[i] ≜ � r(t)ψ(t − iT − jTc)dt
iT +(j+1)Tc

iT +jTc

, 

 j = 0, … , N − 1;    i = 0, … , M − 1       (3) 
The resulting discrete-time signal corresponding to the ith 

symbol is then given by   
              𝐫𝐫[i] = ∑ Akbk[i]𝐬𝐬k + 𝐧𝐧[i]K

k=1       (4) 
                     = 𝐒𝐒𝐒𝐒𝐒𝐒[i] + 𝐧𝐧[i]             (5)  
With 

𝐛𝐛 = �

r0[i]
r1[i]
⋮

rN−1[i]

� , 𝐬𝐬k =
1
√N

�

c0,k
c1,k
⋮

cN−1,k

� ,𝐧𝐧[i] ≜ �

n0[i]
n1[i]
⋮

nN−1[i]

� 

where nj[i] ≜ ∫ n(t)ψ(t − iT − jTc)dtiT +(j+1)Tc
iT +jTc

 is a com-
plex Gaussian random variable with independent real and 
imaginary components; 𝐧𝐧[i] ∼ 𝒩𝒩c(0,σ2𝐈𝐈N )  (Here 𝒩𝒩c (⋅,⋅) 
denotes a complex Gaussian distribution, and 𝐈𝐈N  denotes the 
N × N  identity matrix.);𝐒𝐒 = [𝐬𝐬1  · · ·  𝐬𝐬K ];  𝐀𝐀 = diag(A1,· · ·
, AK);  and 𝐛𝐛[i] =  �b1[i] · · ·  bK [i]�T . 

Suppose that we are interested in demodulating the data 
bits of a particular user, say user 1, {bk[i]}i=0

M−1,  based on 
the received waveforms {r[i]}i=0

M−1. A linear receiver for this 
purpose is described by a weight vector𝐰𝐰1 ∈ ℂN , such that 
the desired user’s data bits are demodulated according to        
                                z1[i] = w1

Hr[i]              (6) 
b�1[i] =  sign{ℜ(A1

∗ z1[i])}           (7) 
In case that the complex amplitude A1  of the desired user 
is unknown, we can resort to differential detection. Define 
the differential bit as 

β1[i] ≜ b1[i]b1[i − 1].             (8) 
Then using the linear detector output, the following diffe-
rential detection rule can be used 

β�1 = sign{ℜ(z1[i]z1[i − 1]∗)}            (9) 

Substituting  𝐫𝐫[i] inz1[i], the output of the linear receiver 
𝐰𝐰1 can be written as 

    
z1[i] = A1(𝐰𝐰1

H𝐬𝐬1)b1[i] + ∑ Ak(𝐰𝐰1
H𝐬𝐬k)bk[i] +K

k=2 𝐰𝐰1
H𝐧𝐧[i] 

(10) 
The first term contains the useful signal of the desired user; 

the second term contains the signals from other undesired 
users – the so-called multiple-access interference(MAI); and 
the last term contains the ambient Gaussian noise. The sim-
plest linear receiver is the conventional matched-filter, 
wherew1 = s1. A matched filter receiver is optimal only in a 
single-user channel (i.e.,K=1). In a multiuser channel 
(i.e.,K > 1), this receiver may perform poorly since it makes 
no attempt to ameliorate the MAI, a limiting source of in-
terference in multiple-access channels. Two popular forms 
of linear detectors that are capable of suppressing the MAI 
are the linear decorrelating detector and the linear minimum 
mean-square error (MMSE) detector, which are discussed 
next. 

3. Linear Multi User Detectors. 
a. Direct Matrix Inversion (DMI) approach 

For the linear MMSE detector, directly solving the opti-
mization problem we obtain 

m1 = arg min
𝐰𝐰∈ℂN

�𝐰𝐰H E{𝐫𝐫[i]𝐫𝐫[i]H }�������
𝐂𝐂r

𝐰𝐰

− 2𝐰𝐰Hℜ�A1
∗ E(𝐫𝐫[i]b1[i])�������

A1𝐒𝐒1

�� 

                   = |A1|2𝐂𝐂r
−1s1.                 

(11) 
Where 

𝐂𝐂r ≜ E{𝐫𝐫[i]𝐫𝐫[i]H } = 𝐒𝐒|𝐀𝐀|2𝐒𝐒H + σ2𝐈𝐈N ,      (12) 
is the autocorrelation matrix of the received signal. Note 

that 𝐂𝐂r  can be estimated from the received signals by the 
corresponding sample autocorrelation. Note also that the 
constant |𝐀𝐀|2 does not affect the linear decision rule. Hence 
MMSE detector leads straight forwardly to the following 
blind implementation of the linear MMSE detector the 
so-called direct matrix inversion (DMI) blind detector. Here 
we do not assume knowledge of the complex amplitude of 
the desired user; hence differential detection will be em-
ployed.  

3.1. DMI Blind Linear MMSE Detector - Synchronous 
CDMA 

1. Compute the detector: 
𝐂𝐂�r = 1

M
∑ 𝐫𝐫[i]𝐫𝐫[i]H ,M−1

i=0              (13) 

                                  𝐦𝐦�1 = 𝐂𝐂�r
−1𝐬𝐬1          (14) 

2. Perform differential detection: 
                       z1[i] = 𝐦𝐦�1

H𝐫𝐫[i],                  (15) 
β�1[i] = sign{ℜ(z1[i]z1[i − 1]∗)} ,    = 1, … M − 1   (16) 
The above algorithm is a batch processing method, i.e., it 

computes the detector only once based on a block of received 
signals {𝐫𝐫[i]}i=0

M−1 ; and the estimated detector is then used to 
detect all data bits of the desired user contained in the same 
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signal block, {b1[i]}i=0
M−1. The idea is to perform sequential 

detector estimation and data detection. That is, suppose that 
at time(i −  1), an estimated detector 𝐦𝐦1[i −  1] is em-
ployed to detect the data bit b1[i −  1]. At time i, a new 
signal𝐫𝐫[i] is received which is then used to update the de-
tector estimate to obtain𝐦𝐦1[i]. The updated detector is used 
to detect the data bit b1[i]. Hence the blind detector is se-
quentially updated at the symbol rate. In order to develop 
such an adaptive algorithm, we need an alternative charac-
terization of the linear MMSE detector[7].  
b. Subspace approach 

This approach is based on estimating the signal subspace 
spanned by the user signature waveforms. This approach 
leads to blind implementation of both the linear decorrelating 
detector and the linear MMSE detector. It also offers a 
number of advantages over the direct methods[2]. 

Assume that the spreading waveforms {𝐬𝐬k}k =1
K  of K users 

are linearly independent. Note that 𝐂𝐂r  is the sum of the 
rank-K matrix 𝐒𝐒|𝐀𝐀|2𝐒𝐒H and the identity matrixσ2𝐈𝐈N  .This 
matrix then has K Eigen values that are strictly larger thanσ2, 
and  (N − K)Eigen values that equal toσ2 .Its Eigen de-
composition can be written as 

𝐂𝐂r = 𝐔𝐔s𝚲𝚲s𝐔𝐔s
H + σ2𝐔𝐔n𝐔𝐔n

H            (17) 
Where𝚲𝚲s = diag(λ1,· · · , λK ) contains the largest K Eigen 

values of 𝐂𝐂r ,𝐔𝐔s  =  [𝐮𝐮1,· · · ,𝐮𝐮K ]contains the K orthogonal 
eigenvectors corresponding to the largest K Eigen values 
in𝚲𝚲s ; 𝐔𝐔n  = [𝐮𝐮K+1,· · · ,𝐮𝐮N]  contains the(N − K)  orthogo-
nal Eigen vectors corresponding to the smallest Eigen value 
σ2 of 𝐂𝐂r . It is easy to see thatrange(𝐒𝐒)  =  range (𝐔𝐔s ). The 
column space of 𝐔𝐔s  is called the signal subspace and its 
orthogonal complement, the noise subspace, is spanned by 
the columns of.𝐔𝐔n  
Linear Decorrelating Detector 

The linear decorrelating detector is characterized by the 
following results. 

1. The linear decor relating detector 𝐝𝐝1  is the unique 
weight vector 𝐰𝐰 ∈ range (𝐔𝐔s), such that 𝐰𝐰H𝐬𝐬1 = 1,  and 
𝐰𝐰H𝐬𝐬k  =  0, fork =  2,· · ·, K. 

Proof: Since rank (𝐔𝐔s) = K, the vector 𝐰𝐰that satisfies the 
above conditions exists and is unique.  

2. The decor relating detector 𝐝𝐝1  is the unique weight 
vector 𝐰𝐰 ∈  range (𝐔𝐔s) that minimizes ϕ(𝐰𝐰)  =
 E{‖𝐰𝐰H(𝐒𝐒𝐒𝐒𝐒𝐒)‖2}, subject to 𝐰𝐰H𝐬𝐬𝟏𝟏 = 1. 
Proof: Since 
              ϕ(𝐰𝐰)  =  𝐰𝐰HE{(𝐒𝐒𝐒𝐒𝐒𝐒)(𝐒𝐒𝐒𝐒𝐒𝐒)H }𝐰𝐰 
                          =  𝐰𝐰H  (𝐒𝐒|𝐀𝐀|2𝐒𝐒H) 𝐰𝐰 

                          =  |A1|2|𝐰𝐰H𝐬𝐬1|𝟐𝟐   + �|Ak|2|𝐰𝐰H𝐬𝐬k|𝟐𝟐
K

k=2

 

                          =  |A1|2  + ∑ |Ak|2|𝐰𝐰H𝐬𝐬k |𝟐𝟐K
k=2 ,         (18) 

it then follows that for 𝐰𝐰 ∈  range (𝐔𝐔s ) = range (𝐔𝐔s), 
ϕ(𝐰𝐰)is minimized if and only if 𝐰𝐰H𝐬𝐬k= 0, for k = 2, …,K. 
The unique solution is 𝐰𝐰 =  𝐝𝐝1. 

The linear decorrelating detector 𝐝𝐝1is given in terms of 
the signal subspace parameters by 

𝐝𝐝1  =  αd𝐔𝐔s (𝚲𝚲s − σ2𝐈𝐈K )−1𝐔𝐔s
H𝐬𝐬1          (19) 

with                αd ≜ [𝐬𝐬1
H𝐔𝐔s (𝚲𝚲s − σ2𝐈𝐈K )−1𝐔𝐔s

H𝐬𝐬1]−1  (20)     

Proof: A vector 𝐰𝐰 ∈  range (𝐔𝐔s ) if and only if it can be 
written as,𝐰𝐰 = 𝐔𝐔s𝐱𝐱 for some.𝐱𝐱 ∈ ℂK  The linear decorre-
lating detector 𝐝𝐝1 has the form 𝐝𝐝1 = 𝐔𝐔s𝐱𝐱1, where 
𝐱𝐱1 = arg min

𝐱𝐱∈ℂK
(𝐔𝐔s𝐱𝐱)H (𝐒𝐒|𝐀𝐀|2𝐒𝐒H )(𝐔𝐔s𝐱𝐱) , s. t. (𝐔𝐔s𝐱𝐱)H𝐬𝐬1  =  1, 

                            
=  arg min

𝐱𝐱∈ℂK
𝐱𝐱H [𝐔𝐔s

H (𝐒𝐒|𝐀𝐀|2𝐒𝐒H)𝐔𝐔s]𝐱𝐱 , s. t. 𝐱𝐱H (𝐔𝐔s
H𝐬𝐬1)  =  1, 

=  arg min𝐱𝐱∈ℂK 𝐱𝐱
H (𝚲𝚲s − σ2𝐈𝐈K )𝐱𝐱 , s. t. 𝐱𝐱H (𝐔𝐔s

H𝐬𝐬1) =  1  (21) 

Where the third equality follows from the fact that 
        𝐒𝐒|𝐀𝐀|2𝐒𝐒H  =  𝐔𝐔s(𝚲𝚲s − σ2𝐈𝐈K)𝐔𝐔s

H  
From the method of Lagrange multipliers  

                  (Λs − σ2IK)x1  =  αd Us
H s1  

Therefore x1  =  αd (Λs − σ2IK)−1Us
H s1 , where αd is deter-

mined from the constraint (Usx1)Hs1  =  1 , that is αd  =
(s1

HUs(Λs − σ2IK )−1Us
Hs1)−1. Finally weight vector of the 

linear decorrelating detector is given by  d1  =  Usx1  =
 αd Us(Λs − σ2IK)−1Us

H s1. 
Linear MMSE detector: 

The following result gives the subspace form of the linear 
MMSE detector. 

The weight vector m1  of the linear MMSE detector is 
given in terms of the signal subspace parameters by 

𝐦𝐦1  =  αm𝐔𝐔s𝚲𝚲s
−1𝐔𝐔s

H𝐬𝐬1           (22) 
With 

αm = (𝐬𝐬1
H𝐔𝐔s𝚲𝚲s

−1𝐔𝐔s
H𝐬𝐬1)−1         (23) 

Proof: The linear MMSE detector defined by 
        𝐦𝐦1  =  𝐂𝐂r

−1𝐬𝐬1�𝐬𝐬1
H𝐂𝐂r

−1𝐬𝐬1 �
−1

         (24) 

                              𝐂𝐂r
−1  =  𝐔𝐔s𝚲𝚲s

−1𝐔𝐔s
H  + 1

σ2 𝐔𝐔n𝐔𝐔n
H        (25) 

Substituting 𝐂𝐂r
−1 into 𝐦𝐦1and using the fact that 𝐔𝐔n

H𝐬𝐬1 =
𝟎𝟎,  obtain the result. 
Subspace blind linear detectors – synchronous CDMA 

1. Compute the detector: 
𝐂𝐂�r = 1

M
∑ 𝐫𝐫[i]𝐫𝐫[i]H ,M−1

i=0                 (26) 
=  𝐔𝐔�s𝚲𝚲�s𝐔𝐔�s

H + 𝐔𝐔�n𝚲𝚲�n𝐔𝐔�n
H            (27) 

 
𝐝̂𝐝1 = 𝐔𝐔�s�𝚲𝚲�s − σ2𝐈𝐈K�𝐔𝐔�s

H𝐬𝐬1, (linear decorrelating detector)     
(28) 

𝐦𝐦�1 =  𝐔𝐔�s𝚲𝚲�s𝐔𝐔�s
H𝐬𝐬1, (linear MMSE detector)   (29) 

4. Performance Measures 
In the paper discussed two approaches to blind multiuser 

detection – namely, the direct method and the subspace 
method. These two approaches are based primarily on two 
equivalent expressions for the linear MMSE detector. When 
the autocorrelation𝐂𝐂r  of the received signals is known ex-
actly, the two approaches have the same perform-
ance[3],[5],[6]. However, when 𝐂𝐂r  is replaced by the cor-
responding sample autocorrelation quite interestingly, the 
performance of these two methods is very different. This is 
due to the fact that these two approaches exhibit different 
estimation errors on the estimated detector . In this section, 
we present performance analysis of the two blind multiuser 
detectors – the DMI blind detector and the subspace blind 
detector. For simplicity[6], we consider only real-valued 
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signals, i.eAk > 0, 𝑘𝑘 = 1,··· ,𝐾𝐾 and. 𝐧𝐧[i] ∼ N(0,σ2𝐈𝐈N ) 
Suppose a linear weight vector 𝐰𝐰1 ∈ ℝN  is applied to the 

received signal 𝐫𝐫[i]in (5). Since it is assumed that the user bit 
streams are independent, and the noise is independent of the 
user bits, the signal-to-interference-plus-noise ratio (SINR) 
at the output of the linear detector is given by 

SINR(𝐰𝐰1) =  
E{𝐰𝐰1

T𝐫𝐫[i]�b1[i]}2

E�Var{𝐰𝐰1
T𝐫𝐫[i]�b1[i]�

 

= A1
2�𝐰𝐰1

T𝐬𝐬1�
2

∑ Ak
2�𝐰𝐰1

T𝐬𝐬k �
2K

k =2 +σ2‖𝐰𝐰1‖2
       (30) 

The bit error probability of the linear detector using 
weight vector w1 is given by, 
Pe(𝐰𝐰1) =  P�b�1[i] ≠ b1[i]� 

= 1
2K−1 ∑ Q �A1𝐰𝐰1

T𝐬𝐬1 + ∑ Ak bk𝐰𝐰1
T𝐬𝐬k

K
k =2

‖𝐰𝐰1‖σ2 �[b2…bk ]∈{−1,+1}K−1    
(31) 

Now suppose that an estimate 𝐰𝐰�1  of the weight vector 
𝐰𝐰1 is obtained from the received signals{𝐫𝐫[i]}i=0

M−1. Denote 
∆𝐰𝐰1 ≜  𝐰𝐰�1 – 𝐰𝐰1. Obviously both 𝐰𝐰�1  and ∆𝐰𝐰1are random 
vectors and are functions of the random 
quantities {𝐛𝐛[i],𝐧𝐧[i]} i=0

M−1 . In typical adaptive multiuser 
detection scenarios, the estimated detector 𝐰𝐰�1 is employed 
to demodulate future received signals, say 𝐫𝐫[j], j > 𝑀𝑀. Then 
the output is given by 

𝐰𝐰�1
T𝐫𝐫[j] =  𝐰𝐰1

T𝐫𝐫[j] + ∆𝐰𝐰1
T𝐫𝐫[j], j > 𝑀𝑀,      (32) 

Where the first term represents the output of the true 
weight vector 𝐰𝐰1. The second term represents an additional 
noise term caused by the estimation error ∆𝐰𝐰1.Hence from 
the above equation, the average SINR at the output of any 
unbiased estimated linear detector𝐰𝐰�1  is given by 

SINR(𝐰𝐰�1)������������� = A1
2�𝐰𝐰1

T𝐬𝐬1�
2

∑ Ak
2K

k =2 �𝐰𝐰1
T𝐬𝐬1�

2
+ σ2‖𝐰𝐰1‖2+E��Δ𝐰𝐰1

T𝐫𝐫[j]�
2
�
     (33) 

With 
E{(Δ𝐰𝐰1

T𝐫𝐫[j])2} = tr(E{Δ𝐰𝐰1
T𝐫𝐫[j]𝐫𝐫[j]TΔ𝐰𝐰1})     (34) 

                                = tr(E{Δ𝐰𝐰1Δ𝐰𝐰1
T𝐫𝐫[j]𝐫𝐫[j]T})

= tr�E{Δ𝐰𝐰1Δ𝐰𝐰1
T}���������

𝐂𝐂w

E{𝐫𝐫[j]𝐫𝐫[j]T}�������
𝐂𝐂r =𝐒𝐒𝐀𝐀2𝐒𝐒T +σ2𝐈𝐈N

�

=
1
M

tr(𝐂𝐂w𝐂𝐂r) 
Where 𝐂𝐂w ≜ M ⋅ E{Δ𝐰𝐰1Δ𝐰𝐰1

T}  and 𝐂𝐂r ≜ E{𝐫𝐫[j]𝐫𝐫[j]T} . 
Since Δ𝐰𝐰1 is a function of{𝐫𝐫[i]}i=0

M−1, for a fixed i, Δ𝐰𝐰1 and 
𝐫𝐫[i] are in general correlated. For largeM, such correlation is 
small. Therefore in this case we still the above equations as 
the approximate SINR expression 
Asymptotic Output SINR 

We present the asymptotic distribution of the two forms of 
blind linear MMSE detectors, for large number of signal 
samples, M. Recall that in the direct-matrix-inversion (DMI) 
method, the blind multiuser detector is estimated according 
to 

𝐂𝐂�r = 1
M
∑ 𝐫𝐫[i]𝐫𝐫[i]TM

i=1                (35) 

𝐰𝐰�1 = 𝐂𝐂�r
−1𝐬𝐬1      [DMIblindlinearMMSEdetector]  (36) 

In the subspace method, the estimate of the blind 
detector is given by 

𝐂𝐂�r =
1
M
�𝐫𝐫[i]r[i]T

M

i=1

 

= 𝐔𝐔�s𝚲𝚲�s𝐔𝐔�s
T + 𝐔𝐔�n𝚲𝚲�n𝐔𝐔�n

T        (37) 

𝐰𝐰1 = 𝐔𝐔s𝚲𝚲�s𝐔𝐔�s
T𝐬𝐬1    [subspaceblindlinearMMSEdetector] 

(38) 
Where𝚲𝚲�s  and 𝐔𝐔�s  contain respectively the largest K Ei-

gen values and the corresponding Eigen vectors of;
 
𝐂𝐂�rand 

where 𝚲𝚲�n  and 𝐔𝐔�n  contain respectively the remaining Eigen 
values and eigenvectors of 𝐂𝐂�r . 

The average output SINR of the estimated blind linear 
detector is given by, 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒘𝒘�1) =

𝐴𝐴1
2�𝑤𝑤1

𝑇𝑇𝑠𝑠1�
2

∑ 𝐴𝐴𝑘𝑘
2�𝑤𝑤𝑘𝑘

𝑇𝑇𝑠𝑠𝑘𝑘�
2

 + 𝜎𝜎2�|𝑤𝑤1|�2+ 1
𝑀𝑀[(𝐾𝐾+1)𝑤𝑤1

𝑇𝑇𝑠𝑠1−2∑ 𝐴𝐴𝑘𝑘
4�𝑤𝑤1

𝑇𝑇𝑠𝑠𝑘𝑘�
2

(𝑤𝑤𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘)+(𝑁𝑁−𝐾𝐾)𝜏𝜏𝜎𝜎2]𝐾𝐾

𝑘𝑘=2
𝐾𝐾
𝑘𝑘=2

  

             (39) 
Where 

𝐰𝐰1
T𝐬𝐬k = 1

A1
2 [𝐑𝐑(𝐑𝐑 + σ2𝐀𝐀−2)−1]k,l ,      k, l = 1, … , K,    (40) 

‖𝐰𝐰1‖2 = 1
A1

4 [(𝐑𝐑 + σ2𝐀𝐀−2)−1𝐑𝐑(𝐑𝐑 + σ2𝐀𝐀−2)−1]1,1     (41) 

τσ2 =

�
𝐰𝐰1

T𝐬𝐬1                                                     (DMI blind detector)
σ2

A1
4 [(𝐑𝐑 + σ2𝐀𝐀−2)−1𝐀𝐀−2𝐑𝐑−1]1,1(subspace blind detector)

� 

             (42) 
It is seen here that the performance difference between the 

DMI blind detector and the subspace blind detector is caused 
by the single parameter τ given above the detector with a 
smaller τ has a higher output SINR. 

The analytical BER performance is evaluated using the 
approximation 

Pe ≅ Q(√SINR)             (43) 

This effectively treats the output interference-plus-noise 
of the estimated detector as having a Gaussian distribution. 
The output of an exact linear MMSE detector is 
well-approximated with a Gaussian distribution. 

5. Results 

 
Figure 1.  SNR Vs ρ for two blind detectors in each K 
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Figure 2.  Average output SINR vs ρ for two blind detectors. N=16, K=6, 
M=150, SNR=15dB 

 
Figure 3.  Average output SINR vs SNR for two blind detectors. N=16, 
K=6, M=150, ρ=0.4 

 
Figure 4.  Average output SINR vs M for two blind detectors. N=16, K=6, 
SNR=15dB, ρ=0.4 

 
Figure 5a.  Output average SINR vs Number of signal samples (M) for 
DMI detector. N=13, K=11 

 
Figure 5 b.  Output average SINR vs Number of signal samples (M) for 
subspace detector. N=13, K=11 

 
Figure 6a.  BER vs Number of signal samples (M) for DMI detector. N=13, 
K=11 
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Figure 6b.  BER vs Number of signal samples (M) for subspace detector. 
N=13, K=11 

6. Conclusions 
In this paper, the performance of blind multiuser detectors 

is analyzed. The blind multiuser detectors considered are 
DMI detector and subspace detector. The analysis is per-
formed by means of the Signal to Interference and Noise 
ratio (SINR) and Bit Error Rate (BER) obtained during our 
simulation. We have also compared the performance of 
MMSE blind detector with subspace blind. 

Fig. 1 shows SNR Vs ρ for different values of K. It is 
seen that the subspace blind detector outperforms the DMI 
blind detector.  

This phenomenon is more clearly seen in Fig. 2 and 3. 
where the performance of the two blind detectors is com-
pared as a function of ρ  Vs SINR and SINR Vs SNR re-
spectively.  

The performance of the two blind detectors as a function 
of the number of signal samples M and SINR is plotted in  
Fig. 4, where it is seen that, for large M, both detectors 
converge to the true linear MMSE detector, with the sub-
space blind detector converging much faster than the DMI 
blind detector; and the performance gain offered by the 
subspace detector is quite significant for small values of M. 

In Fig.5a&b depicts SINR Vs M for each detector, for es-
timating the detector at some fixed SNR. 

The analytical BER performance is evaluated using the 
approximation given by (43) as shown in Fig .6a&b which 
effectively treats the output interference-plus-noise of the 
estimated detector as having Gaussian distribution. The 
output of an exact linear MMSE detector is 
well-approximated with Gaussian distribution.  

The BER performance of subspace approach is better than 
that of DMI approach and decreases with increasing SNR. 
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