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Abstract  The single particle potentials for both asymmetric nuclear matter and pure neutron matter are presented. The 

Brueckner-Hartree-Fock (BHF) approximation + two body density dependent Skyrme potential which is equivalent to three- 

body interaction are used. Various modern nucleon-nucleon (NN) potentials are used as follows: CD-Bonn potential, Nijm1 

potential, Reid 93 potential and Argonne V18 potential are used in the framework of the Brueckner-Hartree-Fock 

approximation (BHFA). 
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1. Introduction 

One of the most challenging aims of nuclear physics and 

nuclear astrophysics is to study the equation of state (EOS) 

and single particle (s.p.) properties of asymmetric nuclear 

matter in a wide density range. At densities around and 

below the nuclear saturation density the properties of 

asymmetric nuclear matter and their isospin-asymmetry 

dependence are closely related to the structure, decay and 

collective properties of heavy nuclei and neutron-rich nuclei 

away from the nuclear stability line, such as the radius, the 

neutron skin thickness and the density distribution. The 

properties of asymmetric nuclear matter can be predicted by 

adopting various nuclear many-body approaches, including 

phenomenological methods and microscopic approaches. In 

the phenomenological methods such as the Skyrme-Hartree- 

Fock framework and the relativistic mean field theory, the 

many-body correlations in nuclear medium have been 

incorporated implicitly and effectively into the parameters of 

the adopted effective interactions. Microscopic many-body 

approaches start from the realistic nucleon-nucleon (NN) 

interactions which are determined by reproducing the 

experimental NN phase shifts. It is well known that the 

nonrelativistic microscopic approaches adopting realistic 

two-body NN interactions miss the empirical saturation 

point of nuclear matter, and three-body forces (TBF) are 

required. In recent years, the EOS and s.p. properties of 

asymmetric nuclear matter have been investigated 

extensively within the framework of various microscopic 

approaches including the Brueckner-Hartree-Fock (BHF) 
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and the extended BHF approaches [1, 2-7], the relativistic 

Dirac-BHF (DBHF) theory [8-15], the in-medium T-matrix 

and Green function methods [16-27], and the many-body 

variational approach [28-33]. Up to now, several different 

kinds of TBF models have been adopted in nuclear 

microscopic many-body calculations. One is the semi 

phenomenological TBF such as the Urbana TBF [34]. 

Another TBF model adopted in the Brueckner theory is the 

microscopic one [35-37] based on the meson exchange 

theory for the NN interactions. In the BHF calculation, the 

TBF contribution has been included by reducing the TBF 

into an equivalent effective two-body interaction according 

to the standard and extensively adopted scheme [37]. As an 

important input for calculations of nuclear structures and 

simulations of heavy-ion reactions, the single-nucleon 

potential Un/p (k) itself can also be obtained. The results of 

BHF calculations depend on the choice of single particle 

potential U(k). The conventional choice, which assumes a 

single-particle potential U = 0 for single-particle states above 

the Fermi level, and approximate the energies by the kinetic 

energy only [15], and U is self-consistent BHF potential for k 

< kF, while the continuous choice for which U is extended to 

k > kF, which leads to an enhancement of correlation effects 

in the medium and tends to predict larger binding energies 

for nuclear matter and pure neutron matter than the 

conventional choice. 

In a previous work [39], the bulk properties of cold and 

hot asymmetric nuclear matter were calculated in the 

framework of (BHF interaction + two-body density 

dependent Skyrme potential which is equivalent to three 

body force). In the present work we extend the calculation to 

present the single particle potentials for the proton and 

neutron using modern nucleon-nucleon (NN) potentials in 

the framework of (BHFA). 

In the next section we show the model used and in section 

3 the results are presented. 
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2. Single-Particle Potential (BHFA) 

The G-matrix is defined by: 
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This is known as the Beth-Goldstone equation; here ω is 

the starting energy which is usually the sum of the single 

particle energies of the states of the interacting nucleons 

ω = e (k) + e (k')             (2.2) 

The dashed and wiggly lines denote the bare interaction V 

and G matrix respectively.   

V is the bare NN potential, η is infinitesimal small number, 

H◦ is the unperturbed energy of the intermediate scattering 

states and Q is the Pauli projection operator, it projects out 

states with two nucleons above the Fermi level, it is given by: 

Q (k, k') = (1– ӨF (k)) (1– ӨF (k'))     (2.3) 

Where ӨF (k) = 1 for k < kF and zero otherwise, ӨF (k) is 

the occupation probability of a free Fermi gas with a Fermi 

momentum kF. Eq.(2.1) sums the ladder-type diagrams 

depicted in fig.(2.1), where the left-hand side represents the 

BHFA, it is the sum of the HF contribution, and all the 

diagrams obtained by adding an arbitrary number of 

interactions between particles.   
In the Brueckner-Goldstone expansion, the average 

binding energy per nucleon is expanded in a series of terms 

as the following 
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where |kk' > refer to antisymmetrized two-body states. This 

first order is known as the Brueckner-Hrtree-Fock 

approximation (BHFA). To completely determine the 

average binding energy one has to define the single particle 

potential U(k) which contributes to the single particle 

energies appearing in the G-matrix elements. The structure 

of the expression (2.4) suggests choosing the following 

BHF single particle potential 
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The G-matrix itself depends on U (k) through the starting 

energy ω, defined in eq.(2.2) and the lowest order 

approximation (2.4) along with choice (2.5) for the single 

particle potential is often known as the lowest order 

Brueckner theory.       
The single particle energy e (k) is defined as  
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     (2.7) 

where K. E is the kinetic energy. The conventional choice for 

the single particle potential has been to take the BHF 

potential (eq. (2.5)) for hole states (k < kF) and zero for 

particle states (k > kF). 

 

Figure 2.1.  Graphical representation of the Bethe-Gold-stone equation 
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Thus introducing a quite large discontinuity in the single 

particle spectrum at the Fermi surface. However, due to the 

unphysical discontinuity at the Fermi surface this auxiliary 

potential cannot be directly related to the average potential 

felt by a particle or a hole. Moreover, many other interesting 

properties can be derived such as the momentum distribution 

and the effective mass which is properly described using a 

continuous spectrum across the Fermi surface. This was the 

main motivation which led [38] to the introduction of the 

continuous choice for the single particle potential thus 

treating particles and holes in a symmetrical way. The use of 

the continuous choice potential implies that the G-matrix 

elements needed in the self-consistent calculation are 

complex and the prescription advocated is 
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Eqs. (2.1) and (2.7) represents the main equations that we 

want to solve self-consistently. In order to obtain such a 

self-consistent solution one often assumes a quadratic 

dependence of the single-particle energy on the momentum 

of the nucleon in the form 
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where m* is the effective mass of the nucleon and ∆ is a 

constant. Starting with an appropriate choice for the 

parameters for the effective m* and the constant ∆, one can 

solve the Bethe-Goldstone equation and evaluate the 

single-particle energy. The parameters m* and the constant ∆ 

can then be readjusted in such away that the parameterization 

eq. (2.10) reproduces these two energies. This procedure is 

then iterated until a self-consistent solution is obtained. The 

parameterization of eq. (2.10), however, is useful not only to 

simplify the self-consistent solution of the BHF equations; it 

also leads to a simplification of the numerical solution of the 

Bethe-Goldstone equation. 

3. Single-Particle Potential (TBF) 

In the present work one may introduce a Skyrme effective 

interaction density dependent term in addition to the BHF 

single particle potential in the previous section [39]. 
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This is a two-body density dependent potential which is 

equivalent to three body interaction. Where ti and xi are 

interaction parameters, Pσ is the spin exchange operator, ρ is 

the density, r1and r2 are the position vectors of the particle (1) 

and particle (2) respectively. αi = (1/3, 2/3, 1/2 and 1). Using 

the above potential for asymmetric nuclear matter the 

following correction for the single particle potential U is 

used:   

∆U = (3/4) t1 ρ
4 / 3 + (3/4) t2 ρ

5 / 3       (2.12) 

And for pure neutron matter we obtain the following 

correction 

∆U = (1/2) t1ρ
4 / 3 [1 – x1] + (1/2) t2 ρ

5 / 3 [1 – x2]  (2.13) 

4. Results  

After adding TBF corrections to the BHF calculations it 

was found that among these corrections the best results to 

obtain the empirical saturation point when αi = (1/3 and 

2/3).The parameters are the same as given in Ref. [39]. 

Figure (3.1) shows a comparison between the EOS in the 

framework of the BHFA in (A) and EOS in the framework of 

BHFA+ two body density dependent Skyrme interaction in 

(B) by using the CD-Bonn potential [40] and Reid93 

potential [41] for conventional Choice.This shows an 

adjustment of the saturation point location and value by 

adding the TBF. 

   

Figure 3.1.  The EOS in the framework of the BHFA in (A) and EOS in the  

framework of BHFA+ two body density dependent Skyrme interaction 

(which is equivalent to three body force) in (B) by using the CD-Bonn 

potential and Reid93 potential for conventional Choice 

The single particle potential of e.g. a proton U is defined 

together with kinetic energy as the energy required to 

remove this proton from the nuclear system leaving a hole in 

the state. The results of BHF calculations depend on the 

choice of the single particle potential U (k) in the "standard 

or conventional" choice, U = 0 for k > kF and U is the 

self-consistent BHF potential for k < kF, the alternative 

"continuous" for which U is again the self-consistent BHF 

potential. The single particle potential for asymmetric 

nuclear matter is calculated using the CD-Bonn potential, the 

Argonnev18 [42], the Nijm1 [41] potential and the Reid 93 
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potential for conventional and continuous choices. The 

dependence of the single particle potential on the momentum 

k for asymme-tric nuclear matter at kF = 1.333 fm-1 for 

various potentials for conventional and continuous choices 

are shown in figure (3.2). The results for all potentials are 

approximately similar in the conventional choice as well as 

the continuous choice. The single particle potential increases 

with increasing the momentum k (U is directly proportional 

to k). 

 

Figure 3.2.  The single particle potential for asymmetric nuclear as a 

function of momentum k at (kF = 1.333 fm-1) for different potentials (A and 

B) for conventional choice, (C and D) for continuous choice 

In figure (3.3) the dependence of the single particle 

potential on the momentum k for the pure neutron matter at 

kF = 1.333 fm-1 is plotted for various potentials for 

conventional choice the CD-Bonn potential (A), the Nijm1 

potential (B), the Reid 93 potential(C) and the Argonne v18 

potential (D).In figure (3.4) we get the same as above but for 

continuous choice. It is observed that the results for all 

potentials are approximately similar in the conventional 

choice and the continuous choice the results for different 

potentials have the same behavior. The single particle 

potential increases with increasing the momentum k. In 

conclusion we claim that a simple and analytic term for the 

three –body potential has corrected the deficiency in the 

BHF calculation in the sense that we get the right value for 

the energy at the saturation point, the symmetry energy 

increases with increasing the density and good agreement 

with other theoretical works for the physical quantities of 

relevance to the nuclear and neutron matter as shown in 

previous works [39, 40-46]. For completeness we present 

here the calculation for the single-particle potential. 

 

Figure 3.3.  The single particle potential for the pure neutron matter in 

[Me V] as a function of momentum k at (kF = 1.333 fm-1) for continuous 

choice of different potentials 

 

Figure 3.4.  The single particle potential for the pure neutron matter in 

[Me V] as a function of momentum k at (kF = 1.333 fm-1) for continuous 

choice of different potentials 
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