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Abstract  System identification algorithms use data to obtain mathematical models of systems that fits the data, permitting 

the model to be used to predict and design controls for system behavior beyond the scope of the data. Thus, accurate modeling 

and characterization of the system equations are very important features of any mission. These system equations are 

principally populated with variables from physics (e.g. material properties). Simple control algorithms begin by using the 

governing physics expressed in mathematical models for control, but usually more advanced techniques are required to 

mitigate noise, mismodeled system parameters, of unknown/un-modeled effects, in addition to disturbances. Characterization 

of the physical system a priori is an important step, and this research article will describe research into identifying system 

equations for several complex structures. Under the auspices of the Digital Manufacturing Analysis, Correlation and 

Estimation (DMACE) (pronounced “DEE-MACE”) Challenge, the Defense Advanced Research Projects Agency (DARPA) 

digitally manufactured several complex structures and then conduct a series of structural load tests upon them to determine 

material properties. Data from the manufacture and load tests was then posted on the worldwide web. Participants were 

challenged to develop a correlation model that accurately correlates digital manufacturing (DM) machine inputs to output 

structural test data. Participant models were then evaluated by their ability to predict the test results of the final DM structures. 

The model that most accurately predicted the final test results won the Challenge. Many disparate technical approaches were 

investigated by researchers from all over the world, and this paper introduces readers to several of those interesting technical 

approaches. The authors have permission to publish these government owned submissions, but every efforts is made to credit 

the researchers themselves, and furthermore each submission is presented in its original form to the maximum extent 

permitted by the journal’s peer reviewers and editors.  
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1. Introduction 

Space system guidance and control algorithms need a 

source of systems states to function properly and the most 

common two sources (usually used in concert together) are 

state estimators and sensors. Which system model and sensor 

models should engineers choose? Astrom and Wittenmark 

described the techniques in their textbook on adaptive 

control [1]. Slotine [2, 3] reveals adaptive control techniques 

that utilize system and sensor math models in their adaptive 

strategies can often make acceptable system identifiers. 

Fossen [4] subsequently improved Slotine’s technique with 

mathematical simplifying problem formulation, and Sands  

[5, 7-11] and Kim [6] developed further improvements to the 

algorithm based on Fossen’s problem formulation followed   
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by Nakatani [12, 13, 32] and Heidlauf-Cooper [14, 15], but 

alas these improvements were not revealed in time for 

publication in Slotine’s text. Troublingly, Wie [16] 

elaborated singularities that exists in the control actuation 

that can exacerbate or defeat the control design as articulated 

[17-21], 0 and solved by Agrawal [22]. Lastly, Sands [23], 

[24], 0 illustrated ground experimental procedures and 

on-orbit algorithms for system identification. This research 

article reveals initial system identification procedures using 

ground experiments and several data analysis techniques. 

The aforementioned technical developments individually 

address key facets that facilitate challenging defense 

department missions in space 0.  

Under the Digital Manufacturing Analysis, Correlation 

and Estimation (DMACE) (pronounced “DEE-MACE”) 

Challenge, DARPA digitally manufactured several complex 

structures [25, 26] and then conduct a series of structural 

load tests upon them. Data from the manufacture and load 

tests was then posted on the worldwide web. Participants 

were challenged to develop a correlation model that 

accurately correlates digital manufacturing (DM) machine 
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inputs to output structural test data. Participant models were 

then evaluated by their ability to predict the test results of the 

final DM structures. The model that most accurately 

predicted the final test results won the Challenge. Many 

disparate technical approaches were investigated by 

researchers from all over the world, and this paper introduces 

readers to several of those interesting technical approaches. 

 

Figure 1.  Participants in the DARPA DMACE Challenge 

2. Materials and Methods 

2.1. Titanium Digital Manufacturing 

Manufacturing parts in titanium often proves to be an 

expensive process displayed in Figure 2 and Figure 3. Notice 

how many extensive processes are required to modify 

titanium from an ore (precursor to sponge) to a final part. All 

of these processes drive the cost of parts made from titanium. 

Figure 4 displays emerging technologies seeking to 

address these processes with the goal of reducing the end 

cost of titanium parts. Similar evaluations may be performed 

for other tradition parts manufacturing.  

Note in particular the lower path that uses relatively new 

additive digital manufacturing techniques to convert raw 

titanium powder into a final product, greatly simplifying the 

processing and thereby the cost. Notice the cost rising 

significantly in the recent decade per Figure 5. 

An unsolved issue is the quality of the final part produced 

by additive digital manufacturing (DM) methods, and this 

un-solved issue motivated this study.  

 

 

Figure 2.  Vacuum arc process for converting titanium into ingot [Seong] 

 

Figure 3.  Converting titanium ingot into a part [Seong] 
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Figure 4.  Emerging technologies for titanium production [Seong] 

 

Figure 5.  Titanium mill products producer price index trend [Seong] 

If you needed a titanium rotor assembly for an engine, DM 

methods could produce such a part in mere hours in the field 

(potentially) directly from titanium powder, but would you 

put the part in your engine without any idea when the part 

will fail? This study addresses this question by not only 

addressing aluminum, but DM in general by adding a second 

(non-metal) building material seeking to investigate 

underlying properties of the process. The Challenge includes 

digital manufacturing of highly complex titanium and 

polymer parts and asks participants to analyze the data of 

structural tests, correlate the input settings of the DM 

machine to the eventual output structural properties, and then 

estimate the failure of an entirely dissimilar part being given 

the CAD design a priori. 

2.2. Titanium Spheres 

Titanium Spheres were digitally manufactured using an 

Arcam A with an electron beam (e-beam) melting process 

and Ti6Al4V titanium alloy powder. During the build of the 

titanium spheres, two input parameters in the e-beam control 

were varied: 

1) e-beam velocity (100, 200, and 300 mm/sec), 

2) e-beam current (1.3, 1.7, and 2.1 mA). 

The build direction is defined as the vertical axis at which 

the e-beam machine built the spheres. Furthermore, each 

sphere had two distinct geometric axes of symmetry, which 

were structurally different. The two axes of symmetry were 

recognizable on the sphere surface by a square grid of 

titanium mesh or a hexagonal grid of titanium mesh along the 

diameter of the sphere. 

For the Challenge, the build direction was aligned through 

the sphere diameter along one set of the square grids. This 

particular set of square grids was referred to as 0° from build 

direction. Another set of square grids was located at 90° from 

the build direction. The hexagonal grids were located at 60° 

from the build direction. Each sphere was tested in 
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compression to failure along one of these three axes (0°, 60°, 

90°) to the build direction. During the compression tests, the 

maximum (or ultimate) compressive load was recorded. The 

average maximum load, standard deviation, and maximum 

load of repeated tests were summarized, along with 

individual and summary plots, in a single Excel data file. 

These files are available online at www.dmace.net for 

registered participants. 

81 spheres were tested at 0° from the build direction, 81 

spheres were tested at 90° from the build direction, and 6 

spheres were tested at 60° from the build direction. This 

equals a total of 168 total spheres as a minimum, for which 

the data is available to participants for model development. 

The first 9 Excel files of sphere data posted on the website 

were crushed at 0° from the build direction, consisting of a 

full factorial of the 3 beam velocities and 3 current settings 

with 9 repeats at each condition. This resulted in a total of 81 

spheres. The second 9 Excel files of sphere data posted on 

the website consist of the same 9 combinations of e-beam 

velocities and current settings, however the spheres were 

tested at 90° from the build direction. Both the 0° and 90° 

scenarios are geometrically the same; however, the 90° 

scenario is perpendicular to the build direction. Additionally, 

a single set of 6 spheres at a single beam velocity and current 

were tested at 60° from the build direction. 

In summary: 81 spheres were tested at 0° from the build 

direction, 81 spheres were tested at 90° from the build 

direction, and 6 spheres were tested at 60° from the build 

direction. This equals a total of 168 total spheres as a 

minimum, for which the data is available to participants for 

model development. 

 

Figure 6.  One-piece titanium mesh spheres directly from powder 

Each participant or team should use this sphere data to 

develop a model that will allow them to predict the 

maximum compressive load for various e‐beam velocities, 

e‐beam currents, and build directions. A final set of spheres 

for the Challenge finale was built at another beam velocity 

and current setting and tested at 60° from the build angle. 

This is the setting that the participants must predict based on 

the previous sphere data. 

For the titanium spheres, models were built to predict 

ultimate compressive load based on the two complete 

factorial sets of data tested at 0° and 90° from the build angle, 

plus the one condition tested at 60° from the build angle. 

Then, contestants made predictions for the ultimate 

compressive load tested at 60° from the build angle with 

different beam velocity and current settings, which was not 

made known to all participants until December 3, 2010. 

  

Figure 7.  Load-test of one-piece titanium mesh spheres 

2.3. Polymer Cubes 

The polymer cube problem is different from the titanium 

sphere problem in that initial tests were performed to 

establish basic material properties, and then subsequent tests 

evaluated structures made from the basic material. 

The polymer material properties were suspected to be 

anisotropic and bi‐modular, so the compression and tension 

tests were conducted in order to establish the basic material 

properties of the polymer (ABS‐M30 production‐grade 

thermoplastic) extruded by the 3‐D printer (FORTUS 

400mc). During the build of the compression and tension 

specimens, four processing variables were varied: 

1)  printer tip size (T12=0.178 mm and T16=0.254 mm), 

2)  machine raster angle (0° and 90°), 

3)  machine build angle (0° and 90°), and 

4)  bake time after fabrication (0 and 12 hours), referring 

to how long the sample remained in the printer‐oven 

after fabrication. 

Figure 8 below provides a visual reference for the raster 

and build angles. 

 

Figure 8.  Nomenclature for digital manufacture of polymer cubes 

The second series of tests were cubes of various 

geometries to introduce Challenge participants to basic 

structural properties and to test their models. Figure 10 

depicts representative cube geometries. These cubes were 

then tested in compression to failure, and the maximum (or 
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ultimate) compressive loads were recorded and posted online. 

Based on both the material property tests and the cube tests, 

participants built a model to predict the ultimate compressive 

load of a cube design given the geometry of the cube. Similar 

to the spheres, the final cube geometry was made available to 

all participants on December 3, 2010. 

 

 

Figure 9.  “Dogbone” samples used to evaluate DM polymer properties 

 

 

Figure 10.  Sample CubeSat structures 

  

Figure 11.  Final contest CubeSat structure being crushed 

2.4. Putting It all Together 

For the DMACE Challenge, participants submitted 

predictions for the maximum compressive load in newtons 

for both the final titanium sphere configuration and the final 

cube configuration. Predictions and model descriptions were 

submitted by 1630 EST, December 6, 2010. A winner was be 

determined by DARPA using sample mahalanobis distance, 

and the winning team or individual received the $50,000 

Challenge prize.  

3. Results – Individual DARPA 
Challenge Submissions 

In the paragraphs that follow, individual submissions are 

inserted from the original source authors listed in the 

acknowledgements. Only minor edits for grammar and 

format into this paper were made on the original submissions 

of the authors. All submissions to DARPA are not included 

in this paper, rather a sampling of several different 

techniques and variations of the same technique are 

presented here. The submissions are listed by official 

affiliation, while authors and participants are listed in the 

acknowledgements.  

3.1. Submission 1: University of Missouri-Columbia 

The models used for predicting maximum load for both 

the sphere and the cube were accomplished using neural 

networks. Utilizing the nftool command in Matlab, a 

network for each was trained using the test data to provide 

sample inputs and targets. Note that the inputs and targets 

were normalized about the maximum values for each 

parameter to improve network performance. The networks 

were then simulated under the test conditions to predict the 

maximum loads for both example cases.  

The inputs given to the sphere network included current, 

velocity, and crush angle. The inputs for the cube network 

were tip size, raster angle, build orientation, and hours 

“baked.” An additional term for the aspect ratio of the loaded 

surface was included to make the network adaptable to 

various geometries. The outputs from both networks then are 

values between 0 and 1, which are multiplied by the 

respective maximum loads from each dataset to determine 

the final maximum load for the given case. Predicted 

strength for the cube is 78,866.4N. 

Predicted strength for the sphere is 31428.01N. 

3.2. Submission 2: Greystones Group 

I went with a numerical analysis approach. After seeing 

the test data provided up to the 2nd practice question was 

approximately unimodal, I decided to try symbolic 

regression software. After seeing the data for the 3rd and 

final estimations it became clear that CAD or FEA software 

might provide better modeling for the cube. After looking at 

all the data and calculating the surface area of the spiral cube, 

I just guessed at a scaling value of the 2nd practice cube 
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average max force. So I guess that however my brain signals 

were configured over the time I was looking at the data is the 

implicit math model for the final cube data estimate. 

Math model for spheres, where force p [Newtons] is a 

function of current c [mA], velocity v [mm/sec] and crush 

angle a [degrees] (this was used for the final question 

estimation):  

p=f(c,v,a) 

=2001028.4*c/(61.678883+v+39.40654*sin(33.266514

*a))–3891.9854 

→f(2.5, 110, 60) = 33620.1N 

Math model for cubes, for the final question estimation: 

64890N * 1.285 = 83392.355N 

Math model for cubes, for the 2nd practice question 

estimation, a area, t tip size, r raster angle, b build angle: 

p=g(t,r,b,a)=a*(59.430218+38.952698*t+7.5636129*cos

(0.372657+b-0.052924275*r)/(41.201572*t*t - 

0.60272503)) 

3.3. Submission 3: Pennsylvania State University  

3.3.1. Sphere Model 

The sphere model uses the average maximum load values 

for the calculation average maximum force of desired 

conditions. First step-The standard deviation of average 

maximum load for currents 1.3 mA, 1.7 mA and 2.1 mA for 

0 degrees of crush angle have been calculated. This 

calculations covers all velocity ranges (100-300 mm/sec) for 

corresponding current value and crushing angle. This 

process has been repeated for 90 degrees of crush angle. See 

Figure 12. Second Step- Then these calculated standard 

deviation values are further divided by the square of the 

velocity displacement of the data they have been comprised 

from. This would be (300-100=200). The calculated values 

are represented in blue boxes in the figure. Third 

Step-Average of all these values obtained in second step 

(which is calculated as 0.15076) is used to determine the 

standard deviation of the average maximum load for the 

desired conditions. This is obtained by multiplication of the 

average obtained value by the square of the velocity 

displacement for the desired conditions (135-110=25). The 

multiplication is due to the pattern of increase in in 

maximum load whenever there is a decreased velocity 

condition. Last Step-Having the given data and calculating 

the standard deviation for the average maximum load 

enables us to use the solver application to reach to the desired 

result of average maximum load of 27025 Newtons. 

3.3.2. Cube Model 

The first step in cube model deals with calculating the 

area under compression first for a cube with no windows. 

Then estimated maximum stress is calculated by using the 

average maximum stress values. The ratio between actual 

load and average maximum load is calculated. (can be seen 

as fraction in the Figure 13) Same calculations are also 

carried out for the lattice cube (cube with windows) and the 

ratio between actual load and average maximum load is 

calculated. The average of these two ratios (fractions) has 

been calculated. After calculating spiral cube compression 

area and average maximum load respectively. The fraction 

value obtained from two previous cube calculations is used 

to determine the actual load for spiral cube. The final 

answer has been calculated as: 62045 Newtons 

  

 

Figure 12.  Calculations of Sphere Model 

 

Figure 13.  Calculations of Cube Model 
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3.4. Submission 4: “Snowballs Chance” 

3.4.1. Titanium Sphere Predictions 

The goal of the titanium sphere predictions was to 

estimate the maximum compressive load that a sphere made 

with a current of 2.5 mA, velocity of 110 mm/s, and a 

crushed at an angle of 60 degrees could sustain. There is no 

given data for a velocity of 110 mm/s, but there is data for 

velocities at 100, 200, and 300 at angles of 0 and 90 degrees 

with currents of 1.3, 1.7, and 2.1 mA. There is also data for 

current at 2.5 mA and 135 mm/s and an angle of 60 degrees. 

The first step taken in the modeling process was to predict 

what the curve for a variation with speed chart would look 

like. This was accomplished by using Figure 14 and 

extrapolating to determine how much the maximum load 

varies with current. The right set of data points in Figure 14 

are the estimated data points. 

 

Figure 14.  Sphere data extrapolation 

 

Figure 15.  Sphere data extrapolation 

 

Figure 16.  Sphere data extrapolation 
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This data was then plotted on a variation with speed curve 

for a crush angle of 0 degrees, as shown in Figure 15. This 

yielded the quadratic equation: y=0.404x2 – 255.8x + 50925, 

shown by the blue dashed line in Figure 15. However, this 

did not match the known data, which can be seen because the 

blue dashed line does not intersect the known data point. 

Therefore, a C value in the quadratic equation was solved for 

so that the estimated curve fits the known data, which is 

shown by the orange dashed line in Figure 15. Using the new 

equation, y=0.404x2 – 255.8x + 47778, the maximum load at 

a velocity of 110 mm/s was solved for. It should be noted that 

this model is probably not accurate for higher velocities 

because of insufficient data in that range. 

Lastly, the strength at a crush angle of 60 degrees was 

solved for. Figure 16 shows how the maximum load usually 

varies with the crush angle. Typically, with an angle of 0 or 

90 degrees there is not much variation. However, as shown 

by the purple curve (I=2.5, V=135) there is variation with a 

crush angle of 60 degrees. 

Therefore, to estimate what the strength would be for a 

crush angle of 60 with I=2.5 mA and V=110 mm/s the 

percentage increase from 0 to 60 degrees was calculated for 

I=2.5 mA and V =135 and this data was applied to V=110 

mm/s. The percentage increase was 30.493%, so the 

predicted strength for I= 2.5 mA, V=110 mm/s, and a crush 

angle of 60 degrees is 32007.5 Newtons. 

3.4.2. Cubic Predictions 

The goal for the cubic predictions was to model the 

maximum load that a digitally manufactured cube could 

withstand. In order to accomplish this, the maximum load on 

a cube with solid outer walls was known, as well as the 

maximum load for a cube with lattice outer walls. The 

unknown was a cube built as in Figure 17. 

 

Figure 17.  Unknown Cube configuration 

The method that was used to solve for the maximum 

compressive load involved a finite element model. Since the 

model is concerned with compressive fracture, the maximum 

compressive principle stress was used for calculations. 

Figure 18 shows the finite element models used for the two 

known samples. 

 

Figure 18.  Known cube configurations 

These samples had a nominal load of 20,000 applied at the 

top, and the maximum compressive loads from the finite 

element model were nominally -8.42 for the solid walled 

cube and -13.9 for the lattice cube structure. This means that 

the solid walled structure would only see 60% of the stress of 

the lattice structure. This also matches closely with the given 

data, where the average maximum load for the lattice 

structure was 62% than the maximum load for the solid 

walled structure. 

Figure 19 shows the finite element model for the final test 

specimen. In this case, the maximum compressive principle 

stress was nominally -12.3. This is 68% the strength of the 

solid walled structure and 113% the strength of the lattice 

structure. Therefore, the predicted maximum load for the 

final configuration would be either 44,420 N if going off of 

the solid walled cube or 45,900 N if going off of the lattice 

structure. The best estimate the model will give is an average 

of these two values, 45160.52 N. 

 

Figure 19.  Final test specimen 
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3.5. Submission 5: Embry-Riddle & Harvard 

Cavanaughs 

The DARPA DMACE Challenge seeks to determine if it 

is possible to predict the strength of a structure constructed 

via rapid prototyping methods. This contest will select the 

participant group with the closest estimation to two test 

samples as a winner, provided that documentation of the 

method used in the estimation is provided. This document 

describes the method used by “Team Cavanaugh" in 

fulfillment of that requirement. 

3.5.1. Sphere Challenge 

The sphere challenge tested a complicated spherical shape 

with 6-fold symmetry made of a titanium alloy with the 

Arcam A2 additive manufacturing device. This device uses 

an electron beam to melt a titanium alloy powder, thus fusing 

together neighboring pieces of the powder into a solid 

structure. The input parameters to the machine included the 

speed at which the beam was moved across the material, v, 

and the current of the electron beam, I. Spheres created by 

this system were then tested for strength by crushing the 

sphere at in a direction relative to the build angle, (either 0° 

or 90°). For each combination of input parameters and crush 

angle, a sample of ten different spheres was generated and 

tested.  

The Model: The goal of this model is to be able to predict 

the strength of an sphere created with an arbitrary set of input 

parameters and crush angles. Here, the strength of a sphere is 

defined as the average maximum amount of force, Fmax, that 

a sphere can withstand before complete failure. A decision 

was made to separate the data based on crush angle in the 

event that there was some angular dependency. A prediction 

for an arbitrary angle and input parameters, P(v,I,) would 

then be calculated by combining the prediction for the tested 

angles according to the following way: 

P(v,I,) = (cos2X P(v, I, 0o) + sin2 + P(v, I, 90o)  (1) 

Such a prediction would only take into account differences 

in the objects strength due to the underlying materials 

strength. It would then be necessary to scale such a 

prediction for an arbitrary angle to account for the additional 

changes in strength due to the actual shape of the structure. In 

this case, since the sphere has 6-fold symmetry, it is expected 

that some difference in strength will be located about a 45 

crush angle. However, no tests are made in this configuration. 

Therefore, any final prediction would include a material 

strength adjustment as shown in equation 1 that has been 

shifted up or down to pass through a given test point for a 

non trivial configuration (that is, an angle not equal to 0 or 

90). Since the general principal behind this manufacturing 

process is similar to welding, it was decided that the strength 

should be proportional to the amount of energy applied over 

a given area. The power delivered by the electron beam is 

proportional to I2R, where R is some arbitrary system 

resistance. This power is delivered over a longitudinal area 

per unit time specified by v. The transverse area is given by 

the beam spot size, which is proportional top I. Therefore, 

the resulting formula for applied energy per area is given as  

Energy/Area= C * [I2/sqrt(v)]        (2) 

where C is an arbitrary constant of the system. 

A decision was made to t the provided data for a statistical 

approach to the problem. It is expected that the actual 

behavior would be something like Fmax ln(Energy/Area) in 

general. However, since the parameter space that we are 

looking at only covers a portions of this curve, we can safely 

approximate the behavior with a second order polynomial. 

The Energy Area values obtained from the data are 

summarized in Table 1. These values were t separately for 

each of the compression angles. A plot of the data points is 

given in figure 2. An uncertainty of 5% was assumed for 

each of the machine input parameters, resulting in roughly a 

12% uncertainty in the Energy Area parameter. The resulting 

t parameters are given in Table 2. 

Table 1 
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Table 1 displays the sphere test data. Predicted values are 

shown using the fit values found in Table 2. Note that a 

separate fit is not done for each test case and that the actual 

value for a test point is included in creating the estimation for 

that point. The 60° case presented here only accounts for 

material differences in that configuration. The prediction 

presented does not take into account differences due to the 

6-fold symmetry of the structure. 

Table 2 displays the resulting fit parameters for Fmax=P0 + 

P1(Energy/Area) + P2(Energy/Area)2. Note that the fit for 60° 

is an estimation obtained from combining the _t results from 

the 0° and 90° cases and shifting that result to pass through 

the only 60° test point. 

Table 2 

 

  

Figure 20.  Maximum force sustained versus energy/area 

Figure 20 contains a plot of the maximum force sustained, 

Fmax, by the test spheres as a function of the Energy/Area for 

each of the crush angles. The black curves illustrate the result 

of the second order polynomial fit. The dashed curve 

illustrates the t obtained from the 0° and 90° cases combined 

and shifted to pass through the only 60° test point. This 

estimation is done to both accounts for material strength at 

60° and for the structural differences in the 6-fold symmetry 

structure at this angle. 

The Challenge Prediction 

The final challenge asks for a prediction of the maximum 

force, Fmax, that a sphere of this design can withstand with the 

machine parameters I=2:5mA and v=110 mm/s and with a 

crush angle of  = 60°. The prediction for this set of 

parameters is P(v,I,) = 24,947.78 N. 

Sphere Summary 

While this statistical method provides a means to predict 

the strength of this unique spherical structure, this exercise 

does not actually examine the resulting properties of the 

material formed. A more thorough test would have generated 

bar samples for material strength tests, as done in the other 

part of the challenge. Very little is known about the 

underlying structure of the material. It would have been 

instructive to have samples crusted at 45°. 

[1] 3.5.2 Prototype Method 2 - Thermoplastic 

The second challenge tested a different manufacturing 

technique which involved creating various sample 

geometries, and cube-structures in a FORTUS 400mc 

thermoplastic 3-d printer with ABS-M30 thermoplastic. The 

manufacturing process involves a variable width nozzle that 

extrudes the thermoplastic material in layers. The final 

geometry to be tested was one roughly the size of a cube- 

satellite. Cube satellites are purpose built for a multitude of 

missions but they share the same external dimensions. 

Having an ability to build and predict performance of various 

structural designs would be highly desirable. Compression 

and tensile tests were performed on the thermoplastic 

samples to demonstrate the material properties of the various 

manufacturing orientations. Each set of samples differed by 

extrusion diameter, raster angle (the direction at which the 

nozzle moved while extruding the thermoplastic in the oven), 

and by build angle (the direction between the longitudinal 

axis of the part and the oven floor). Half of the samples were 

heat cured for 12 hours prior to test. Three cube structures 

were then produced with various open and closed wall 

designs, similar to many weight saving techniques used in 

aerospace structures. The first two were sample designs and 

the third was the challenge test subject. 2.1 The Model This 

method of manufacturing seems to have much higher 

repeatability as compared to the Arcam A2 machine. The test 

structure is a five sided box with solid sides. This structure 

can withstand 64890  779.8867 N before failure. The 

contest asks us to predict a structure that has cutouts. The 

solid wall box can be estimated as being comprised of many 

adjacent columns. When the cutouts are made, the number of 

effective columns is reduced. 

In the test cutout box, the effective column count is 

reduced by 40% when four columns of 10 mm cutouts are 

made per side in the 100 mm per side box, the resulting 

strength should be reduced by 40%. This thinking leads to a 

prediction for this test structure of a maximum force of 

38934  467.93 N which is well within the agreement of the 

actual value which is 40616.91  885.19 N. Note that the 

estimation is off by only -1.9. 

The Challenge Problem 

The challenge problem provides for a more complicated 

problem that the simple cutout challenge problem. The 

structure now has no bottom, has substantial cutouts of the 

four sides (with cross members) and has an inner spiral 

which serves to give a non uniform support to the walls. This 

structure is substantially different from the other two 

structures because it does not have any bottom. As such, it 

can be roughly modeled as four corner columns held in a 

configuration by the cross members. The box is loosely 

prevented from caving in by the spiral structure, although it 

is not simple to perform this calculation without advanced 

simulation software. The estimation therefore will seek to 
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pull the entire strength of the structure from the four corner 

beams. Each corner beam is approximately 10mm on each 

side and 5mm thick. This Following the adjacent column 

model described previously, this would result in a total of 

80mm of 5mm thick columns for the wall of the structure. 

The center of the spiral provides an additional 5mm by 5mm 

column, for a total of 85mm of effective 5mm column. The 

test box had effectively 400mm of 5mm column. Therefore, 

neglecting the absence of a bottom, this final challenge box 

should capable of support a force of 85mm/400mm X 

64890.00N = 13789.125N. This estimation does not account 

for the fact that the structure is more likely to fail after 

rotating about Z, whereas the original test box did not 

express a rotational preference as a failure mode. 

Thermoplastic Summary 

This statistical method relied on more consistent sample 

sets; however each sample set only contained only two data 

points. Additional repetitions of each sample set would have 

improved the robustness of the model. More complex 

cube-sat geometries would require different lab tests to be 

conducted to test the shear-interface between multiple layers 

of thermoplastic. 

3.6. Submission 6: North Carolina State A&T University 

A general regression neural network (GRNN) was used to 

model both the sphere and the cube problems. Data from the 

previous practice problem was utilized as past history to 

develop the models. The GRNN is a statistical technique that 

estimates the most probable curve to fit a collection of points 

by optimizing the choice of a set of model parameters. It 

consists of four layers:  

1. Input Buffer  

2. Gaussian Displacement Layer  

3. Summation/Divison Layer  

4. Output Layer  

The input buffer distributes the activity patterns of the 

input to the neurons in the Gaussian displacement layer. The 

computation of the Gaussian displacement layer is governed 

by the following equations. 

        (3) 

A Gaussian matrix is formed to represent the entire system 

such that a set of weights can found to represent the 

relationship between the Gaussian transformation of the 

input space and the target output. Weights are obtained using 

a pseudo-inverse. 

 

         (4) 

Table 3 

 

3.6.1. Cube Problem Data Set  

The cube problem data set was formed only from the data 

given for the compressive load of the previous cubes and 

only cubes with a 0 degree raster angle. The features in the 

data set consisted of the type of tip size used, volume of 

material that made up the cube, and the estimated percentage 

of material missing from the with respect to its overall 

volume. To get the fill percentage we estimated the volumes 

of the cutouts within the box such as the inner triangles in the 

final block. Max Stress served as the output for the model. 

(Example below) 

Final Cube Parameters Used  

Tip Size: 1  

Volume: 205250 mm  

Fill Pct: 0.20520  

Predicted strength is 51,463N. 

3.6.2. Sphere Problem Data Set  

The sphere problem data set was formed from all of the 

past data given in the practice problems. The features in the 

data set consisted of the velocity, current, and crush angle. 

(Example below) 
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Table 4 

 

Predicted strength is 28,698N. 

3.7. Submission 7: Auburn University 

3.7.1. Modeling of Maximum Compressive Loads for 

Titanium Spheres  

Machine: Arcam A2 (electron beam melting process) 

Parameters  

v = e-beam velocity (100, 200, and 300 mm/sec),  

I = e-beam current (1.3, 1.7, and 2.1 mA).  

E = e-beam energy  

Material: Ti6Al4V titanium alloy powder, Tensile 

Strength [Titanium Information Group]: min 897 MPa, 

typical 1000 MPa Tensile Strength [Arcam data sheet]: req, 

860 Mpa, 930 Mpa, typical 1020 Mpa. Elastic Modulus 

[Titanium Information Group]: 114 GPa, Modulus of 

Elasticity [Arcam data sheet]: 120 Gpa. 

Angle between build direction and compression testing 

direction: a (0, 60, and 90 degrees). Sphere Dimensions: The 

outer diameter is approximately 40mm and inner diameter is 

approximately 30mm.  

Model 

We denote by F the maximum compressive load.  

After analyzing the data, we have the following relations 

between the involved parameters. Provided that the angle 

between build direction and compression testing direction is 

fixed, E-beam velocity (v) is proportional to ln F and also 

e-beam current (I) is proportional to ln F. So, we have a plane 

as the surface of the function which gives ln F in function of 

v and I:  

AI + Bv + C ln F = D            (5) 

where A, B, and C are constants to be determined using the 

data. Since, we are assuming linear relations we will take the 

information of the three most accurate points (with the 

smallest standard deviation) to find A, B, C, and D.  

he points are: P1 (1.3, 300, 3467.06), P2 (2.5, 135, 

20607.67) and P3 (1.3, 200, 5713.97) or with ln F we have 

P1 (1.3, 300, 8.151061), P2 (2.1, 300, 8.968461) and P3 (1.3, 

200, 8.650669). With the calculated values for the 

coefficients, the corresponding mathematical model for F 

will be: 

11503882298164500 I - 56250860065783 v - 

11258999068426240 (ln F) = -93692999237806510 

or  

ln F = (11503882298164500 I - 56250860065783 v + 

93692999237806510) / 11258999068426240 

Then, we correct for the testing angle with the factor  

fac = [1 + ( 0.010269 (2a)/Pi + E Sin (2 a))]    (6) 

where E is a constant to be found with the testing data at 

angle 60 degrees. The value for E is -0.05. So, the model is  

F=[1+(0.010269(2a)/Pi-0.05Sin(2a))] 

*exp[(115e1403882298164500I¬56250860065783v+936

92999237806510)/ 11258999068426240]  

Estimation (in newtons) of the maximum compressive 

load of a sphere that is digitally manufactured using the 

following setting:  

Current = 2.5mA Velocity = 110 mm/sec Crush Angle = 

60 degrees  

Fmax = 29415.58 N 

3.7.2. Modeling of Maximum Compressive Loads for 

Polymer Cubes  

Machine: FORTUS 400mc (3D printer) Parameters  

•  Printer tip size (T12=0.178 mm and T16=0.254 mm)  

•  Machine raster angle: R (0° and 90°)  

•  Machine build angle: B (0° and 90°)  

•  Bake time after fabrication: tc (0 and 12 hours)  

Material: ABS-M30 production-grade thermoplastic 

[ABS-M30] Tensile Strength: 36 MPa Tensile Modulus: 

2413 MPa Flexural Strength: 61 MPa Flexural Modulus: 

2317 Mpa. Compression test specimen geometry: square 

prism of nominal dimension of 12.7 mm x 12.7 mm x 50.8 

mm.  

MODEL  

We denote by F the maximum compressive load. 

According to the experimental data for maximum stress, the 

build angle and raster angle affect it as follows: It is ordered 

from higher to lower R0B0, R90B0, R0B90, and R90B90. 

Smaller print tip size gives higher maximum stress only for 

the case R0B0.  

For testing failure we have two options: 1) Compression 

failure (depends only on critical cross-section area) and 2) 
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Buckling failure (depends directly on the Inertia of the 

critical cross-section area) by Euler buckling equation. Since 

the manufacturing process is process is by printing 

(depositing material), the arrangement of material is layer by 

layer of a given thickness and the adhesion of one layer 

against the neighbor layers is the most relevant. So, we will 

correlate the maximum compressive load with both the 

smallest critical cross section area (A1) and the lowest Inertia 

(Ix and Iy) of a critical cross-section area A2. 

F = p A1 + q sqrt(Ix
2 + Iy

2)          (7) 

 

With the data we find p and q. Estimation (in newtons) of 

the maximum compressive load of a spiral-cubic structure 

built with tip size 16 (0.254mm) at raster angle as depicted in 

'SpiralWebWindowCube_V2_dwg.pdf' and a build angle 

along the Z axis that has these dimensions: 100 mm x 100 

mm x 100 mm (outside dimension), Wall thickness 5mm.  

The top and bottom sides are open while the remaining 

four sides have an 'X'-shaped structure. The compressive 

load will be applied along the Z-axis; that is, in line with the 

axis of the spiral inset  

Fmax = 57275.72 N 

 

 

Figure 21.  Data fit to straight line 
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3.8. Submission 8: Isakson Engineering 

3.8.1. The Sphere 

The first realization that occurred to me was that the 

strength of the material is likely a function of the energy put 

into a given point of the sphere. The rational for this is that 

the material with more energy put into it will melt together 

better. So the higher the beam current and the slower the scan, 

the more energy added and the stronger the material. So I 

reorganized the data to show the yield strength verses the 

quantity current/speed. Additionally, however, I expected 

some leveling off of the strength at higher energy levels as 

the material will at some point reach the ultimate strength of 

the raw material completely melted together. I therefore tried 

to match the data to a sigmoid curve. However, no set of 

parameters for this seemed to be a good fit. My conclusion is 

that we are still some distance from the ultimate yield 

strength (and possibly a sharper inflection then a sigmoid is 

needed). More tests would have to be performed to 

determine what the ultimate strength while maintaining good 

manufacturing tolerances. I therefore fitted the data to a 

straight line and found a reasonable fit. In Figure 21, you can 

see the results of this plot. As part of this plot you can see 

separate trend lines for both the 0 degree crush angle and the 

90 degree crush angle. It can be seen that the results indicate 

slightly higher crush strength at 90 degrees, particularly at 

higher input energy levels. As will be seen later, this 

difference is small compared to another problem with the 

data. This plot also suggests a small change at higher current 

levels as well. The plot suggests that the higher currents 

cause a higher strength in the mid energy levels which might 

decline again at higher levels. This would require the fitting 

of a curve to fit this, but I do not believe there is sufficient 

statistics to justify this. Also, a straight line could be fit to 

just the 2.1 ma (or 2.1 ma and 2.5 ma), 0 degree data (it 

would change little if the 90 degree data was included as 

well). However, such fitting would only change the final 

result a little bit. 

Even a weighted fit changes only results in minor changes 

as the 0.021 current/speed data would tend to dominate and it 

is close to the trend lines. In the end, I chose to use the 0 

degree trend line as the basis for the prediction, as 0 degrees 

was a given set of data points that was experimentally 

determined. I used that trend line to predict the force needed 

for a 0 degree failure for a energy of 0.02273 (2.5 ma and 110 

mm/sec). From there I used the ratio of the mean 60 degree 

failure to the mean 0 degree failure at 2.5 ma and 135 

mm/sec to project the failure level at the final desired 

solution level. This use of the ratio assumes that the failure 

level for 60 degrees would also fit a straight line to 

approximates zero (it is not exactly that, but close) to be valid, 

but I do not think that is a bad assumption. 

The final result was 30803.88 Newtons (which I consider 

the best estimate with the available data). The previous 

explanations could certainly justify increasing or decreasing 

the result a little bit, but these errors are minor compared to 

the last step of the procedure outlined. 

While the standard deviation (SD) at low energy levels 

tended to be in the 4% range, as the data moved to higher 

energy levels the SD fell to around 1.5%. The regression line 

would have been even better. The limited 2.5 ma 0 degree 

data was less than 0.4%. However, when the 60 degree data 

was presented, the SD rose to 5%. I would have thought this 

was manufacturing out of control, except the 0 degree data 

came from the same batch and it was highly controlled. As a 

consequence, this large standard deviation is the largest 

source of error (by far) in the final result. I would look for a 

different method of generating this final step, but the data at 

60 degrees is very limited and this appears to be the best 

procedure available. 

While I do not know what is causing this large SD in the 

60 degree crushing tests, I would expect this same problem 

to exist in the final spheres as well which will give a lower 

sample Mahalanobis distance. 

3.8.2. The Cube 

To determine the crushing force for the cubes, I split the 

cube into three parts and two types of faces (a total of 6 areas 

to determine). The three parts are the corners, the X portion 

on the face, and the spiral. The two faces are the face parallel 

to the raster scan and the face perpendicular to the raster scan 

(it is a little more complicated for the spiral, but the idea is 

the same). For each case, there is two of each part, so the 

force is multiplied by two. To start with, I should say that 

while I have some models of how the failures should be 

occurring, I have found that much of the data does not agree 

with my (mental) models. As I consequence, I must yield to 

the data and much of my conclusions as to the final force is 

based on the data tests result more than what I think should 

have (but obviously did not) happened. So if my 

explanations seem to leave a little to be desired, my 

apologies. I will tell you how I calculated the results I 

provide. One of the first assumptions that I am making is 

about the (mounting) holes in the sides of the cubes. They are 

all located in areas that have a significant polymer around 

them. As a consequence, I do not believe they will lead to a 

failure and therefore I am ignoring them. However, 

confirmation of this would be one advantage to finite 

element analysis, which I did not do. 

The Corners 

 

Figure 22.  The corners 

It is my belief that the side parallel to the raster scan fails 

at a lower level than the portion perpendicular to the scan. 

This is shown in the data as well as a model about how a wall 

fails. The one exception here is that each wall is very short 

and does not completely qualify. However I will still use the 

same model here (for lack of a better model that would 

require finite element analysis that I do not have access to 
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and did not set up in advance as the practice questions were 

simpler). The only question is how I treat the corner (the 5 

mm by 5 mm area). I will treat it as if the entire corner is on 

the stronger side. 

This corner is roughly 9 mm on each side with 5 mm thick 

walls. This gives an area of 45 sq mm on the strong side and 

20 sq mm on the weaker side. In addition there are four 

corners, so these areas are multiplied by four. The first side 

gives way at a strain of 0.01252 mm/mm and a pressure of 

30.59 MPa. The second side gives way at a strain of 0.01849 

mm/mm and a pressure of 66.43 MPa. 

Applying this data would give a force plot similar to 

Figure 23.  

 

Figure 23.  The corners 

Note that I have shown a failure as total and a drop in force. 

The real plots do not tend to show a sudden drop always. We 

will see if this makes a difference. 

The X Portion 

This can be analyzed in a similar manner to the corners, 

except there are new types of stresses. (Please note that I 

accidently placed this picture in upside down from the 

conventional thinking. The place where the pressure is 

applied (the + z axis) is at the bottom. This however makes 

no difference in the results, so I have no time for replacing 

this picture).The top and bottom are about 9 mm wide and 

the 45 degree cross bars are about 18 mm wide. As the force 

is applied at an angle (45 degrees) to the raster scan, there are 

more direct shear forces at play. This is particularly 

significant since the material is anisotropic. 

Additionally, the top and bottom horizontal bars are put in 

tension. On one face this is a particularly strong bar and on 

the other a weak bar. At this time I am not giving credit to the 

forces applied from the corners to help take tension off the 

bars as these forces would add to the corner failures to some 

extent. On the parallel to raster scan the top bar is the strong 

T16R0B0 configuration with a tensile strength of 62.77 MPa. 

This is what I normally consider the weaker of the two wall 

however (the side I expect to fail first). The other side has a 

T16R90B0 configuration with a tensile strength of 50.05 

MPa. This gives the forces at failure of 2824.5 Newtons and 

2252.3 Newtons for each single bar. Meanwhile, the pressure 

on the diagonal is the vertical pressure divided by the cosine 

of 45 degrees. And the pressure in tension on the top and 

bottom bars is (by vector addition) equal to twice vertical 

pressure (since the wide of the horizontal bar is half the 45s – 

and therefore twice the pressure to equal the vertical force). 

The parallel side then fails at a pressure of 21.63 MPa (A 

strain of 0.00602) (the pressure on the diagonal causing 

failure on the weaker side) and the perpendicular side would 

fail at 25.03 MPa (A strain of 0.00697) in tension on the top 

bar. This all ignores the shear component, but I suspect that 

is not a big deal right now. This gives a stress-strain plot of 

Figure 25. 

 

Figure 24.  The X-portion 

 

Figure 25.  The X-portion 

I suspect I have underestimated the forces to some extent, 

but this is my best organized guess at this point.  
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The Spiral 

(I cannot find a good picture to put in here, but I think you 

understand the portion I mean in the center of the cube). This 

item is best modeled using finite element analysis (more so 

than the other portions). However I give it a shot here. Again 

I am going to ignore the shear forces and the chances for 

delaminating of the layers, since my models of the material 

are too crude for a good analysis. The spiral is a constant area 

from top to bottom (225 sq mm for each of the four arms 

(including half the center shaft that does cause a little 

overlap). The angle of the pressure is perpendicular at the 

center and 30 degrees at the outside. This increases the 

pressure on the outside. Additionally the cross section in the 

plane of the force is smaller. I will again assume a strong side 

and a weak side (though this is somewhat confused by the 

rotation). Failure is assumed to start at the outside (with its 

higher pressure because of the angle) and will move to the 

center at constant force (increasing pressure) until the failure 

at the center. The result is Figure 26. 

 

Figure 26.  The spiral 

The Final Result 

Summing these all together you get is displayed in Figure 

27 with a maximum force of 40617.91 Newtons. 

 

Figure 27.  The final result 

3.9. Submission 9: University of California, Santa 

Barbara 

3.9.1. Sphere Crushing Model 

The prediction of the sphere crushing load was obtained 

principally from finite element calculations. To this end, a 

script was used to generate a model of 1/8th of the sphere, 

starting from a single unit cell of the lattice structure. The 

strut length was taken to be 1.08 mm and the inner and outer 

sphere radii were 30 and 40 mm, respectively. Several 

different values of strut diameter were used. The mechanical 

response of the Ti6Al4V alloy was represented by a bilinear 

material model (Young’s modulus E=120GPa, yield strength 

σy=950MPa, tangent modulus in the plastic domain 

Et=0.012E, and Poisson’s ratio ν=0.3). The cut faces of the 

sphere section were constrained to in‐plane motion as the 

sphere was crushed by an analytically rigid surface. 

The key unknown in the challenge is the strut diameter and 

its variation with deposition conditions. This was inferred 

from comparisons of the finite element results with the 

experimental measurements for crushing parallel to the build 

direction. The results suggest that the key parameter 

controlling the strut diameter and the sphere crushing load is 

Ω = I1.31/V where I is the current and V the velocity of the 

electron beam. Finite element calculations were then 

performed for sphere loading at 60° to the build direction 

using the pertinent values of strut diameters in order to infer 

the sphere failure load. 

3.9.2. Cube Crushing Model 

1. Stress strain data for compressive samples were 

converted to true stress vs. plastic strain. 2. The ratio of flow 

stress in the R-B90 and R90B0 to the R0B0 direction was 

calculated from representative curves and used to define a 

Hill criterion yield surface with the plastic strain hardening 

data from the R0B0 direction. 3. The elastic modulus for 

each orientation was measured at stresses from 10-25 MPa 

and used to define orthotropic elasticity. 4. The solid walled 

cube was simulated using these parameters. It was assumed 

that the wall thickness was slightly different from the 

specification due to the printing process. The wall thickness 

in the model was adjusted to match the initial measured 

stiffness of the structure (adjusted wall thickness = 4.68 mm). 

5. The spiral web cube was simulated (in Abaqus/EXPLICIT) 

assuming a 4.68 mm wall and web thickness. 6. Structural 

collapse was assumed to occur when the tensile failure 

strength in a given composite direction (20.7 MPa between 

build planes, 50.1 MPa between raster lines in the build plane, 

62.5 MPa along the raster lines) was exceeded. The load at 

this point was reported as the peak load of the structure. 

3.10. Submission 10: North Carolina State University 

3.10.1. Cube Challenge (See Figure 28) 

Model of Buckling Load Factor (BLF) and Applied Load: 

Calculate BLFs using computation methods (x), employ 
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applied load (y), compute FS bias (z), then F(x,y,z)=x*y*z. 

Vary material properties to fit data. Resulting Output Value 

= 61,518.07 N. 

 

Figure 28.  Cube geometries 

3.10.2. Sphere Challenge 

 

Figure 29.  Sphere crushing behavior 

No model required for the sphere’s final challenge! 

Crunching behavior exhibited! The reason why the load is so 

high is because of the organized successive collapse at 60 

degrees. Independence from build parameters! Hence the 

maximum load for the sphere is equal for all parameters 

when tested at 60 degrees. Although I have no model for the 

final challenge I built several models for the practice rounds 

(I won the first practice run doing so), resulting in a best 

estimator is mean provided by 60 Degrees data. 

Output Value = 26,892 N 

3.11. Submission 11: Washington University in St. Louis 

3.11.1. Titanium Sphere 

With the amount of data presented for the Titanium 

Sphere we were confident an accurate mathematical model 

could be found based solely on statistical analysis. Our 

program of choice to perform this analysis was the free 

software ‘R’. We began by importing all 9 runs for the first 

17 sets of data provided on the sphere. Variables were 

designated as Current, Velocity, and Angle. We then used R 

to perform a linear regression on the data including all the 

cross terms of the variables. An analysis of variance showed 

that the only significant variables were Current, Velocity and 

Current*Velocity. However, the coefficients generated for 

these variables did not provide an accurate model. Looking 

at residual plots of the variables, it appeared a nonlinearity 

was not being accounted for in Velocity and possibly Current. 

We performed the analysis again this time including 

Velocity^2 and Current^2 terms and their crosses. 

Velocity^2 was divided by 1000 to make its magnitude more 

comparable to the other terms. An analysis of variance 

showed the significant terms to be Current, Velocity, 

Current*Velocity, Velocity^2/1000 and to a less extent 

Current^2. We dropped Current^2 and were left with four 

terms. To reduce the range of the Ultimate Stress to a smaller 

range we changed our model to solve for the square root of 

the ultimate strength. When data set 18 became available we 

checked our model against the given value and were satisfied 

with the results. We then included all 18 sets of data and 

solved for the coefficients again. This left us with the 

following equation: 

 

After data on the spheres crushed at 60˚ became available, 

we again tested our model. It gave an error of about 12% so 

we decided to go back and try to find a dependence on angle. 

Repeating the analysis, however, did not return any new 

significant variables. The dependence on Current^2 

increased slightly so we included it in our final model: 

 

Using this approximation the predicted value for a Sphere 

constructed at 2.5mA, 110mm/sec and crushed at an angle of 

60° is 27196.04 Newtons. 
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3.11.2. Polymer Cube 

The shape of the stress-strain curve exhibits an unusual 

behavior. It increases fairly linearly until it reaches its 

ultimate strength, common for brittle materials. Thereafter, 

the stress decreased with increasing strain until it could no 

longer support any loading. This behavior can either be 

attributed to strain-weakening in the material or is an artifact 

of the compression test method used (the material failed at 

the peak and the crumbled structure continued to offer some 

support). We concluded that the material is primarily brittle 

and failure coincides with the ultimate strength. 

 

Figure 30.  Cube stress-strain 

The data provided for the T16 material samples in 

compression was used to obtain an effective modulus of 

elasticity of the material. The averaged ultimate strength of 

the two T16R90B90 samples and their averaged associated 

strain produced the following line whose slope was extracted 

as the modulus of elasticity for all our work. This modulus is 

1781.3 MPa. 

Initially, hand calculations were performed on the Practice 

1 cube structure to get a feel for the behavior of the geometry. 

This back-of-the-envelope analysis first modeled a wall of 

the cube as a thin plate to find its buckling strength. The ends 

of the plate were considered to be simply supported and the 

sides clamped. In addition, we calculated the short beam 

buckling of the cube minus the bottom. Ultimately, the final 

structure of the cube was too complex to continue this simple 

analysis. 

From there we move to finite element analysis in 

Stress-Check. The material was chosen to be a perfectly 

elastic material to keep the analysis linear. Using a 

compressive loading of -1 on the top surface, we could find 

the maximum local stress concentration. This value or the 

average of the stress in a particular area could be used to find 

failure of the structure. Considering the setup for the 

compression test, we again took another approach. We 

imposed a 1 mm downward displacement on the top surface 

of the cube. We had already decided that the corners and the 

central axis of the spiral were the primary load carriers, so we 

took the maximum principle strain on a column which was 

found to be .02004 mm/mm. Since, the analysis was linear, it 

was straightforward to come up with a linear relationship 

between this strain and the stress on the top surface of the 

cube (5.878 MPa) combined with the strain at failure of our 

material, we got the following relationship and result of 

30,176.8N 

 

3.12. Submission 12: Lamar University 

3.12.1. Sphere Model 

A kriging model based on the 20 experiment points 

(Average Max Load) was constructed. Pattern search was 

used to find a suitable set of parameters. The generated 

kriging model was evaluated in a MATLAB .m file 

containing Matlab script. The predicted strength for 60 

degree, .5mA and 110 speed is 28395N.  

3.12.2. Cube Model 

Material Model: Linear elastic orthotropic structural 

material. The young’s modulus was estimated based on the 

cube compression test results. The strength along the raster 

direction is the highest (75~77 MPa), while the strength 

representing the bonding strength between layers are the 

weakest (57~59 MP), the bonding strength between raster is 

slightly better (61~63 MP). Since the loading is along the 

weakest direction, it is expected that the failure most likely to 

be caused by the stress along the loading direction exceed the 

ultimate strength of the material. A FE simulation model was 

built in Ansys with the following material properties:  

EX = 2.34 E9; EY = 1.86E9; EZ =1.97E9;  

Rho_xy = Rho_yz = Rho_xz = 0.48.  

GXY = 6.65E8; GYZ = 7.85E8; GXZ = 6.28E8.  

The estimated maximum load is 45193N. 

3.13. Submission 13: Team PAM (UC Irvine, Rapidtech, 

CalRAM) 

ASIDE: This is a note from the authors. Submission 13 

has been substantially modified in form-only, but unaltered 

in content. The form was modified to accommodate 

comments by peer reviewers regarding the unwieldy 

presentation of regression formulas and results. These items 

have been reformatted by the authors merely for athletics.  

3.13.1. Synopsis and Problem Statement 

The DMACE Challenge has been to determine the 

maximum compressive loads that can be supported by two 

structures manufactured by direct digital manufacturing 

methods. The structures were a mesh sphere manufactured 

by the Arcam electron beam melting process using Ti 6Al 4V 
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and a cube with an internal structure manufactured by the 

Fortus 400mc 3D Printer extruded polymer process using 

ABS-M30. To address this challenge, a team was assembled 

comprising Professor Lorenzo Valdevit’s research group and 

others from the University of California, Irvine, Rapidtech – 

the leading educational organizational group for freeform 

fabrication, and CalRAM – the leading vendor for titanium 

parts built by the Arcam process in the US.  

3.13.2. Overview of Modeling Approach 

The two structures were addressed using different 

approaches. In the case of the sphere, the team felt that the 

dimensions of the sphere’s detailed structure were too close 

to the resolution of the build technique to enable the spheres 

to be reliably modeled with a lattice model using known Ti 

6Al 4V handbook properties; additionally, the posted data 

showed relatively minor anisotropy. Therefore a numerical 

approach based solely on provided measurements was 

adopted. In the case of the cube, a finite element model of the 

final challenge structure was built and necessary choices 

were made about material response in order to have a model 

that would run within the available time for the challenge. 

These approaches are described below. 

3.13.3. ABS Cube 

Cube prediction methodology [Lorenzo Valdevit, 

valdevit@uci.edu] Tensile and compressive test data were 

provided for a number of samples, along three different 

orientations: raster direction (1), build direction (3) and the 

direction normal to 1 and 3 (2). The results were very 

reproducible, with minimal scatter. Representative 

stress-strain curves for a tip diameter of 0.254 mm are 

presented in Figure 31. 

A number of salient features clearly emerge. The material 

has very different response in tension and compression: in 

particular, it is both strong and ductile in compression, with 

hardening and pronounced softening following the onset of 

yielding, and weak and brittle in tension (with minimal 

hardening and no softening following the yield point). This 

behavior is qualitatively similar to that of grey cast iron. The 

material is strongly anisotropic in tension and somewhat 

anisotropic in compression. In tension, the strongest 

direction is the raster direction (i.e. the direction of the 

squirted polymer lines); the build direction is by far the 

weakest, with an ultimate strength approximately a factor 4 

lower than the raster direction; the third direction lies 

somewhere in between. This behavior is to be expected: the 

material is naturally strongest along the direction of the 

polymer ‘columns’; additionally, the columns bond well 

along the 2-direction (in-plane and normal to the raster 

direction), as adjacent ‘columns’ are still soft when bonded; 

conversely, by the time the next layer is deposited, the 

‘columns’ underneath have already hardened, and the bond 

along the build direction is consequently less strong. Under 

compressive loads, the behavior is much more isotropic, with 

the raster direction only ~10% stronger than the 2- and 

3-directions (which are nearly indistinguishable). The 

Young’s modulus of the material is roughly independent on 

the loading direction and is lower in tension than in 

compression. 

 

 

Figure 31.  Materials properties for ABS Tip 16 in tension and compression 
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Additionally, the material is most likely plastically 

compressible (unlike most metals under normal conditions), 

as the manufacturing approach inevitably introduces a 

substantial amount of porosity (which can be as high as 

~20-30%). The Finite Elements package of choice for 

modeling of non-conventional materials is ABAQUS. Even 

with the extensive library of non-elastic materials models 

available in ABAQUS, a built-in model that captures all the 

features mentioned above is not available. Given sufficient 

development time, a user-defined materials model 

encompassing most (if not all) the features described above 

can be defined and implemented into ABAQUS via a user 

defined subroutine (UMAT). For example, a plasticity model 

featuring orthotropic elasticity, an orthotropic initial yield 

surface and orthotropic hardening (i.e. different hardening 

curves in tension and shear along the 3 directions), together 

with plastic compressibility, was developed by Xue, Vaziri 

and Hutchinson [Zue]. The only missing feature to capture 

the interesting materials behavior exhibited by rapid 

prototyped ABS would be the different behavior in tension 

and compression. The model described in [Zue] was not used 

for this challenge, for the following reasons: (a) it requires 

shear experiments for parameter calibration, which were not 

provided; (b) the plastic compressibility data were not 

provided; (b) there was no sufficient time to implement the 

difference of behavior in tension and compression (which 

was deemed to be critical for the correct crushing strength 

prediction). Instead, we decided to use the materials model 

available in ABAQUS which closely captured the most 

important feature for the test under consideration: it is 

important to notice that a different assignment would have 

possibly required a different materials model. The structure 

to be analyzed under the challenge is depicted in Fig. 2. The 

cube is crushed along the vertical direction, which coincides 

with the build direction (i.e., direction 3 in Figure 31). 

 

Figure 32.  Geometry for the CUBE Challenge 

The concrete plasticity model was adopted. Although 

developed to simulate primarily reinforced concrete (and in 

particular the micro-cracking phenomena typical in that 

material), this model is typically adaptable to materials 

exhibiting ductile behavior in compression (hardening 

followed by extensive softening) and brittle behavior in 

tension. This model assumes isotropic elasticity (with equal 

moduli in tension and compression) and isotropic hardening 

laws, but allows definition of separate tension and 

compression hardening laws in tabular form. The shape of 

the yield surface and the flo w rule can be extensively 

modified via a number of parameters. In the absence of 

calibration parameters for the material of interest, default 

values were chosen for most parameters. The parameters for 

the Concrete Damage Plasticity model were chosen as 

follows: Young’s Modulus, E=2.854 GPa, Poisson’s ratio, 

ν=0.4, Dilation Angle = 10o, eccentricity = 0.1, fb0/fc0 = 0, 

K=0, Viscosity Parameter = 0. The experimental stress-strain 

curve for direction 3 was chosen to define the compressive 

hardening behavior for the entire structure, as the direction of 

the minimal principal stress (the compressive stress) is 

aligned with the z-direction for most of the structure. For the 

tensile behavior, the experimental curve for direction 1 was 

chosen for the side walls aligned with the x-direction and the 

two internal shells aligned with the x-direction at z=0. For 

the rest of the structure, the experimental curve for direction 

2 was adopted. The rationale for this choice is that ABAQUS 

calculations revealed that the maximum principal stress (in 

tension) is for the most part aligned with the horizontal 

direction (and tangent to the local shell). The 3D CAD file 

was opened in SolidWorks and transformed into a shell 

model (Figure 32), which was subsequently imported in 

ABAQUS as a stand-alone part (Figure 33). Some stitching 

between the internal curved shells and the external walls was 

necessary. The bottom edges were constrained against 

deflection in the z-direction, as well as rotations about the x 

and y axes; two points were constrained against x and y 

translation and y translation, respectively, to kill free-body 

motion. The top edge was constrained against rotations about 

the x and y axes, and was displaced along z by 2 millimeters. 

All points on the top edge were constrained to deflect in z 

equal amounts: this (and the rotation constraints described 

above) simulates the presence of compression test platens. 

The platens will certainly exert some friction on the top and 

bottom edges of the cube, but good agreements with the two 

sample tests was obtained ignoring friction (this will result in 

a slightly conservative load prediction). All the structure was 

meshed with 8-node quadrilateral thick-shell elements, with 

reduced integration (S8R), see Figure 33. Nine integration 

points across the thickness were adopted, to improve 

convergence difficulties possibly related to the concrete 

plasticity model. The internal curved shells were assigned 

variable thickness along z, as prescribed by the CAD file. 

An imperfection sensitivity analysis was performed (by 

calculating the lowest buckling eigenmode, and introducing 

it in the mesh in various amounts for post-buckling (RIKS) 

analysis. The structure did not reveal particular imperfection 
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sensitivity, and the best agreement for both test cases (the 

solid cube and the cube with side windows) resulted to be a 

perfect, non-perturbed mesh. A load-deflection curve 

obtained for the final challenge is shown in Figure 34, 

together with a contour plot of the plastic strain magnitude. 

The maximum load was recorded as 34.178kN, which is our 

answer for the challenge. After this point, substantial 

softening would occur, which resulted in convergence 

difficulties. The onset of convergence difficulties in the 

RIKS algorithm is often a sign that the maximum load is 

extremely close. Based on the above, our answer for the 

CUBE CHALLENGE is Pmax= 34,178 N. 

 

Figure 33.  Mesh used for the ABAQUS simulation with shell-elements  

 

Figure 34.  Load-deflection curve for the cube challenge problem. The 

inset shows contours of the plastic strain at the maximum load 

3.13.4. Titanium Sphere 

Sphere prediction methodology [Scott Godfrey, 

sgodfrey@uci.edu]. 

For prediction of failure loads for the sphere models, we 

implemented an interactive and resume-able multi-threaded 

object-oriented particle swarm optimizer written in C++ 

with a custom swarm particle object. The goal was 

identifying the best polynomial fit to the posted data as a 

function of three variables:  

       
    

        
  

  
          

   
 

  
              

   
 

with      the test angle in radians,      the beam velocity 

in mm/s, and            the beam current, in mA. Four 

different polynomials were explored (of degrees 1 to 4), 

resulting in 50 fitting parameters. 

                      

                            
           

      
           

  

                        
             

    
           

      
 

     
       

        
          

      
      

      
        

 

     
  

                          
             

    
           

      
 

     
       

        
          

      
      

      
        

 

     
 

       
      

       
        

 

               
      

      
  

      
      

  
       

      
       

        
 

               
      

      
  

      
      

  
       

      
       

        
 

               
      

      
  

      
      

   

On inception, the swarm objects considered every data 

point supplied (160+), but an identical result was obtained 

using just the batch-average values for each dataset (20) on 

the early 'practice' problems. This close correlation in 

predictive results indicated that the optimizer was indeed 

converging on useful coefficients and the extra 

compute-overhead of factoring all points in the clouds was 

unnecessary particularly in that we were predicting 

batch-average values. The average error was minimized over 

all batch data points. The average error taken as the 

Euclidean length of an n-dimensional vector composed of all 

the individual errors. Individual errors were determined as 

the difference in measured load relative to the corresponding 

predicted load. Optimizations were considered thorough and 

exhausted when populations in excess of 100,000 particles 

operating with generational life spans of 10,000 calculation 

cycles failed to find any predictive 'improvements' within a 
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complete generation. Particle integration time step (value 

governing particle motion in normalized parameter space) 

was interacted with over the course of optimizations, being 

varied from 1.0 down to ~0.00001 as progress stagnated. 

Three different sets of calculations were executed, as 

described below.  

Set1: All 20 datasets were considered with the constraint 

that all coefficients must be positive. Although the error was 

generally higher than for the other simulations, higher order 

polynomials (quadratic and cubic) performed best, resulting 

in more realistic shapes in the variables space. Additionally, 

all predicted loads were positive. The prediction was viable 

when considered relative to the nearby values.  

SET1: 

Coefficients were permitted to take on values in the range 

[0,+10e6] 

LINEAR: 

Average error: 5.07175e3  Predicted load: 2.0266e4 (low) 

Coefficients: 

a0=6.35328e3 a1=4.48506e-11   a2=3.89185e-13 

a3=9.27537e+003 

a3=9.27537e3 a4=1.31944e8 

QUADRATIC: 

Average error: 4.89191e+003 

Predicted load: 2.3030e+004 (reasonable) 

Coefficients: 

a0=7.45857e3 a1=3.41484e-013 a2=7.67142e-13 

a3=1.53832e+003 a4=3.97031e-012 a5=2.38826e-013 

a6=2.59903e-012 a7=2.89686e-013 a8=8.61911e-013 

a9=5.89490e+003 

CUBIC: 

Average error: 4.86730e+003 

Predicted load: 2.3454e+004 (reasonable) 

Coefficients: 

a0=7.41576e+003  a[1]=2.60426e-012 

a2=3.45478e-013  a[3]=4.31711e+003 

a4=3.65092e-012  a[5]=8.79767e-013 

a6=2.27304e-012  a[7]=6.81765e-013 

a8=1.95699e-012  a[9]=3.57150e-012 

a10=1.19623e-013  a[11]=8.43575e-013 

a[12]=1.29765e-012 a[13]=2.76860e-013 

a[14]=7.15775e-013 a[15]=3.53318e-012 

a[16]=2.69286e-013 a[17]=6.20844e-013 

a[18]=3.27011e-013 a[19]=2.83329e+003 

QUARTIC: 

Average error: 4.57712e+008 

Predicted load: 1.4619e+007 (NOT REASONABLE!) 

Coefficients: 

a[0]=4.54853e+004 a[1]=3.30907e+005 

a[2]=2.52290e+004 a[3]=1.15703e+002 

a[4]=5.25228e-005 a[5]=5.25041e+004 

a[6]=1.88775e-003 a[7]=1.42184e+001 

a[8]=7.05826e-001 a[9]=5.17287e+003 

a[10]=3.14719e+004 a[11]=3.84416e+008 

a[12]=1.55264e+004 a[13]=9.72182e+002 

a[14]=1.99685e+003 a[15]=3.11944e+000 

a[16]=9.80320e+001 a[17]=1.95014e+004 

a[18]=2.55416e-008 a[19]=1.86030e+003 

a[20]=4.64058e-004 a[21]=5.66693e-002 

a[22]=2.85905e+002 a[23]=1.16604e+003 

a[24]=3.24713e+003 a[25]=3.39239e+004 

a[26]=3.74321e+002 a[27]=5.37909e+002 

a[28]=6.89688e+007 a[29]=2.89157e+002 

a[30]=1.26675e+000 a[31]=3.71621e-002 

a[32]=1.66961e-001 a[33]=9.08110e+002 

a[34]=8.51510e+003 a[35]=2.44868e+003 

a[36]=5.06106e+004 a[37]=8.16707e+00 

a[38]=1.00000e+009 a[39]=3.88180e+003 

a[40]=4.63870e+004 a[41]=2.30947e+004 

a[42]=5.83170e+004 a[43]=3.47097e-003 

a[44]=3.45819e+004 a[45]=1.99837e+001 

a[46]=1.34948e+005 a[47]=2.05308e-004 

a[48]=2.20912e+004 a[49]=4.48893e-004 

Set2: Only 6 datasets were considered with the constraint 

that all coefficients must be positive. The solution is similar 

to that of set 1, but with linear and quadratic polynomials 

emerging. 

Nearest Neighbors used (6 points): 

"#(60, 135, 2.5, 26891.5)" 

"#(0, 135, 2.5, 20607.7)" 

"#(90, 100.0, 2.1, 22518.8)" 

"#(90, 200.0, 2.1, 12319.6)" 

"#(0.0, 100.0, 2.1, 22265.8)" 

"#(0.0, 200.0, 2.1, 12088.3)" 

"#(60, 110, 2.5, ?)" 

LINEAR: 

Average error: 4.53880e+003 

Predicted load: 2.3750e+004 (reasonable) 

Coefficients: 

a[0]=4.39517e+003  a[1]=2.02109e-012 

a[2]=5.95773e-013  a[3]=1.29029e+004 

a[4]=3.61422e+008   

QUADRATIC: 

Average error: 4.53880e+003 

Predicted load: 2.3750e+004 (reasonable) 

Coefficients: 

a[0]=4.39517e+003  a[1]=1.89633e-014 

a[2]=1.66074e-014  a[3]=1.29029e+004 

a[4]=4.43955e-013  a[5]=2.61702e-013 

a[6]=1.54637e-014  a[7]=1.63977e-013 

a[8]=3.33209e-013  a[9]=1.57291e-005 

CUBIC: 

Average error: 1.63838e+008 

Predicted load: 1.1703e+007 (NOT REASONABLE!) 

Coefficients: 

a[1]=3.38215e-008 a[2]=5.70549e+001 

a[3]=7.20197e-001 a[4]=2.46508e-001 

a[5]=1.99622e+008 a[6]=2.69121e-009 

a[7]=1.48684e-008 a[8]=1.40350e-004 
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a[9]=9.31964e-003 a[10]=8.44807e-005 

a[11]=6.32504e-003 a[12]=4.50118e+001 

a[13]=9.99979e+008 a[14]=4.41896e+003 

a[15]=6.86222e+002 a[16]=1.02951e+008 

a[17]=4.17366e+004 a[18]=4.84348e+007 

a[19]=1.00714e-007  

QUARTIC: 

Average error: 8.45203e+008  

Predicted load: 1.7148e+008 (NOT REASONABLE!) 

Coefficients: 

a[0]=1.46108e-004 a[1]=1.31497e-010 

a[2]=2.89378e+007 a[3]=8.63696e-011 

a[4]=2.35994e-003 a[5]=5.93825e+008 

a[6]=3.10466e+007 a[7]=4.49505e+008 

a[8]=1.60777e-007 a[9]=2.89633e-022 

a[10]=2.45634e+007 a[11]=3.10651e-001 

a[12]=4.60313e-003 a[13]=5.35690e+006 

a[14]=5.24430e-002 a[15]=8.74116e+007 

a[16]=8.11674e-006 a[17]=3.07632e+008 

a[18]=3.70371e+007 a[19]=1.24302e-002 

a[20]=8.69573e-004 a[21]=4.67716e-004 

a[22]=1.03525e-009 a[23]=6.17450e-009 

a[24]=9.45512e+008 a[25]=1.06283e-004 

a[26]=7.10113e+008 a[27]=1.84922e+005 

a[28]=3.40794e-002 a[29]=3.63728e-002 

a[30]=3.81487e+005 a[31]=8.46148e+006 

a[32]=1.00955e-003 a[33]=1.25748e+008 

a[34]=7.03112e+008 a[35]=1.15695e-004 

a[36]=9.98284e+008 a[37]=6.68138e+005 

a[38]=6.72299e+008 a[39]=1.57639e+002 

a[40]=1.70535e-005 a[41]=5.03212e-001 

a[42]=5.17347e-003 a[43]=5.94306e+008 

a[44]=7.18676e-003 a[45]=1.56883e-002 

a[46]=1.46901e+008 a[47]=5.68642e+005 

a[48]=5.13863e-005 a[49]=4.33668e-008 

Set3: All 20 datasets were considered with no constraint 

on the sign of the coefficients. This resulted in the smallest 

average error of all sets (with cubic and quartic polynomials), 

but also allowed for predictions of negative load values; 

prediction through fitting was not viable. Average errors, 

predicted loads, and equation coefficients for each equation 

are reported below: 

Coefficients were permitted to take on values in the range 

[-10E6,+10E6] 

LINEAR: 

Average error: 1.82252e+003 

Predicted load: 2.3997e+004 (reasonable) 

Coefficients: 

a[0]=1.30068e+004 a[1]=-3.68417e+002 

a[2]=-1.19877e+004 a[3]=7.84891e+003 

a[4]=-5.65705e+006  

QUADRATIC: 

Average error: 3.05536e+002 

Predicted load: 2.9967e+004 (high) 

Coefficients: 

a[0]=1.26714e+004 a[1]=2.09710e+004 

a[2]=-1.96868e+004 a[3]=1.01818e+004 

a[4]=-2.11878e+004 a[5]=4.94270e+002 

a[6]=-5.34164e+002 a[7]=1.02926e+004 

a[8]=-4.98604e+003 a[9]=-6.42217e+002 

CUBIC: 

Average error: 5.44815e+001 

Predicted load: -3.1866e+005 (BAD!) 

Coefficients: 

a[0]=1.26540e+004 a[1]=-1.21226e+006 

a[2]=3.05695e+006 a[3]=-1.85928e+005 

a[4]=9.41128e+006 a[5]=6.14368e+006 

a[6]=-2.62558e+006 a[7]=-9.21652e+006 

a[8]=-6.80647e+003 a[9]=5.84715e+005 

a[10]=-8.19929e+006 a[11]=-6.14308e+006 

a[12]=2.62472e+006 a[13]=-1.07777e+002 

a[14]=-2.22907e+002 a[15]=7.88962e+002 

a[16]=6.15017e+006 a[17]=2.96366e+003 

a[18]=-1.37050e+003 a[19]=-3.88886e+005 

QUARTIC: 

Average error: 2.42912e+001 

Predicted load: 5.8078e+004 (high) 

Coefficients: 

a[0]=1.26261e+004 a[1]=2.68514e+006 

a[2]=-9.10643e+005 a[3]=-9.36078e+005 

a[4]=8.40345e+006 a[5]=-3.97839e+006 

a[6]=3.60419e+006 a[7]=4.71685e+006 

a[8]=-9.16464e+005 a[9]=2.79362e+006 

a[10]=-8.28653e+006 a[11]=-3.20515e+006 

a[12]=3.68519e+006 a[13]=7.78289e+006 

a[14]=2.47131e+006 a[15]=-1.00000e+00  

a[16]=-7.87675e+006 a[17]=6.09266e+006 

a[18]=-3.36214e+006 a[19]=-1.76331e+006 

a[20]=-2.80226e+006 a[21]=2.02519e+006 

a[22]=-2.78974e+006 a[23]=-3.57839e+006 

a[24]=5.62974e+005 a[25]=9.57757e+006 

a[26]=2.87810e+006 a[27]=4.81311e+006 

a[28]=2.18184e+006 a[29]=1.29259e+006 

a[30]=1.59830e+006 a[31]=6.47678e+006 

a[32]=1.45165e+006 a[33]=-9.99899e+006 

a[34]=-9.20655e+006 a[35]=-4.29711e+006 

a[36]=4.06122e+006 a[37]=2.26849e+005 

a[38]=1.93541e+005 a[39]=-7.37710e+006 

a[40]=-3.24453e+006 a[41]=-4.48422e+006 

a[42]=-3.34656e+006 a[43]=4.39333e+006 

a[44]=2.11343e+006 a[45]=1.22121e+006 

a[46]=-4.28788e+006 a[47]=-1.91636e+005 

a[48]=9.61696e+006 a[49]=-8.43286e+004 

Based on the above, our answer for the SPHERE 

CHALLENGE is Pmax= 23,750 N. 

4. Summary 

Seeking to analyze output properties of digitally 

manufactured components DARPA executed a Challenge on 
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the worldwide web to any and all willing participants. 

Participants were challenged to develop a correlation model 

that accurately correlates digital manufacturing (DM) 

machine inputs to output structural test data. Participant 

models were then evaluated by their ability to predict the test 

results of the final DM structures. Several of the participants’ 

predictions are listed in Table 5 and plotted in Figure 35. The 

model that most accurately predicted the final test results 

won the Challenge. Many disparate technical approaches 

were investigated by researchers from all over the world, and 

this paper introduced readers to several of those interesting 

technical approaches. 

Of deeper significance is the residual database of hundreds 

of material property tests performed on articles made with 

various input settings on typical DM hardware. This 

database remains freely available to worldwide researchers 0. 

Thus, the Challenge proves to merely be the simplest 

beginning. 

Table 5.  Summary comparison 

Method 

Predicted 

Cube 

Strength 

(N) 

Predicted 

Sphere 

Strength 

(N) 

MATLAB nftool (neural networks) 78866.4 31428.01 

Regression - curve fit with sine 33620.1 83392.355 

Statistical averaging 27025 62045 

Data Extrapolation 32007.5 45160.52 

Curve fit with cosine 13789.125 24947.78 

General regression neural network 51463 28698 

Curve fit with natural log & square root 57275.72 29415.58 

Proportion to energy (current/speed) & 

superposition of elemental strengths 
40617.91 30803.88 

Finite element method w/ estimated 

modulus & model of buckling load factor 
61518.07 26892 

Regression 30176.8 27196.04 

Kriging model & Estimated modulus 45193 28395 

Finite element method & Particle-swarm 

optimizer 
34178 23750 

Actual Strength 58678.61 30879.44 

 

 

Figure 35.  Challenge participants’ predictions (true value in red) 
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