
Journal of Mechanical Engineering and Automation 2016, 6(5): 95-100
DOI: 10.5923/j.jmea.20160605.01

A Study on the Compression of Voxel Simulation
Results Using Tensor Decomposition

Yixiang Feng*, Ichiro Kataoka

Research & Development Group, Hitachi, Ltd., Ibaraki, Japan

Abstract With the ever-growing trend of globalization, product design is often conducted collaboratively among several
divisions, thus making it a huge challenge to transfer large CAE (Computer Aided Engineering) data between different
locations. Our goal is to reduce the size of transfer data so that fast data transfer can be realized even when the network
speed is slow. In this study, we have developed a data compression method based on TD (Tensor Decomposition). In this
method, voxel simulation results data are represented as tensors and tensor decomposition based on HOOI (Higher-Order
Orthogonal Iteration) algorithm is applied to the tensors. After tensor decompression, the original tensor is decomposed into
a core tensor and a series of basis matrices, whose summed size is considerably smaller than that of the original tensor. As a
result, a compression ratio of over 60:1 is achieved for steady flow simulation results data and the error is below 5%. A
compression ratio of over 70:1 is achieved for unsteady flow simulation results data and the error is below 5%. We have
confirmed that at 5% error, no significant information is lost during the data compression process. Tensor decomposition has
been applied for image data compression, dimensionality reduction, and more recently for the compression of hexahedral
mesh-based simulation result database. However, it is a first application of tensor decomposition to the data compression of
voxel-based simulation results.

Keywords CAE, Product design, Signal simulation, Tensor decomposition, Data compression

1. Introduction
With the ever-growing trend of globalization, it is

common for a company to have multiple international R&D
(Research and Development) facilities that are optimized
according to the company’s global business strategy. As a
result, product design is often conducted collaboratively
among different design sites.

Collaborative global design has brought new challenges,
one of which is data sharing among different sites. Most
manufacturing companies use computer simulation in their
product design. In product design, more accurate simulation
models are required for detailed analysis. As a result, the
data size became huge. For collaborative global design, it is
important that the simulation database be shared within a
short period of time.

Methodologies for sharing data among different sites can
be divided into two major categories. One is the so-called
thin-client method, in which data are post-processed in
servers and the generated results are transferred to client PCs
as images. The other one is a direct data transfer method, in
which the whole data or subsets of the data are transferred

* Corresponding author:
yixiang.feng.cq@hitachi.com (Yixiang Feng)
Published online at http://journal.sapub.org/jmea
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

directly to the client PCs where post-processing is conducted
[1]. The thin-client method is useful for easy data
management and controllable information security [1].
However, the thin-client method requires real-time
correspondence and therefore depends highly on the network
condition and transfer speed. In the developing countries
where many R&D centers are located, the network
infrastructure is often poorly equipped. Based on these facts,
we adopt direct transfer method in this research. To achieve
the rapid processing speed required by collaborative product
design, it is important to fasten the speed of data transfer.
Fast data transfer can be achieved by either reducing the
transferring data size, or by improving the network speed. In
this research, we focus on the former approach.

Data compression has long been studied in data-intensive
disciplines such as image/video processing, signal
processing, bioinformatics, etc. However, there were only
few studies in the compression of CAE results data. In one of
the studies, EZT (Embedded Zero-Tree) wavelet encoding
method was used to compress BCM (Building-Cube
Method)-based CFD (Computational Fluid Dynamics)
results data [2]. In another study, SVD (Singular Value
Decomposition) method was applied to particle simulation
data [3]. Recently, high order SVD was used to compress
CFD results of the outer flow around a wing with hexahedral
mesh [4].

TD (Tensor Decomposition), or tensor factorization, is the

96 Yixiang Feng et al.: A Study on the Compression of Voxel Simulation Results Using Tensor Decomposition

expansion of SVD to higher-dimensional arrays. In tensor
decomposition, the original tensor is decomposed into a core
tensor g and several basis matrices U V W whose total
element number is equal to the dimension of the input tensor
[5] [6] [7]. Figure 1 illustrates the image of tensor
decomposition.

Figure 1. Image of Tensor Decomposition

Tensor decomposition has been applied for image data
compression [8], dimensionality reduction [9], and more
recently for the compression of hexahedral mesh-based
simulation result database [4]. However, to the best of our
knowledge, there has been no application of tensor
decomposition to the data compression of voxel-based
simulation results.

In this study, we propose a data compression method for
voxel simulation results based on tensor decomposition.

2. Tensor Decomposition
2.1. Theory of Tensor Decomposition

Tensor decomposition can be formulated as an
optimization problem of minimizing the distance between an
input tensor and its approximate tensor of a lower rank.
Mathematically, it is written as Eq. (1):

1 2 ...:
ˆ ˆ: ()

: , 1 ~

NI I I

F

i i

Given

Minimize f

Subject to J I for i N

× × ×∈ℜ

=

< =

X

X X - X (1)

where X is the Nth-order input tensor consisting of real
numbers. Ii is the dimension of the ith-mode and Ji is the
rank of the ith-mode.

Two popular tensor decomposition schemes are CP
decomposition, where the core tensor is diagonal [10], and
Tucker decomposition, where the core tensor is dense [11]
[12]. In this research, we use Tucker decomposition due to its
flexibility in controlling the approximated tensor through
adjusting the size of the core tensor. In Tucker
decomposition, the approximated tensor A is decomposed
as shown in Eq. (2):

(1) (2) ()
1 2ˆ N

N= × × ×U U UX G (2)

where G is the core tensor and 1 2 ... NJ J J× × ×∈ℜG . U

is the basis matrix and () i iI Ji ×∈ℜU .
In this research, we adopt the HOOI (Higher-Order

Orthogonal Iteration) tensor decomposition algorithm
proposed by Lathauwer et al. [13] [14]. Using HOOI, the
core tensor G can be calculated using the following
equation.

(1) (2) ()
1 2

T T N T
N= × × ×U U UG X (3)

The basis matrix U is calculated using an ALS
(Alternating Least Squares) method which is an expansion of
the Least Squares method. The initial basis matrices are
calculated using the HOSVD algorithm [13]. That is to say,

()
0

iU is calculated as the left singular vector of the ith
mode expansion of X .

2.2. Tensor Decomposition as a Data Compression
Method

One important property of tensor decomposition is that
the overall size of the core tensor and basis matrices is
usually much smaller than that of the original tensor. We
take advantage of this property and use tensor
decomposition for lossy data compression.

CR (Compression Ratio) is defined as the number of
elements before and after tensor decomposition.

1

11
()

N

i
i

N N

i i i
ii

I
CR

J I J

=

==

=

+ ×

∏

∑∏
 (4)

The approximation error caused by tensor decomposition
is defined as follows.

ˆ
100%F

F
NORME

−
= ×

X X

X
 (5)

where NORME is the approximation error based on the
Frobenius norm. The Frobenius norm is defined as follows.

2

1

N

iF
i

x
=

= ∑X (6)

where xi is the elements of the tensor X .

3. Test Results
3.1. Test Model

In this study, we use voxel–based simulation to generate
simulation results. Voxel simulation is sometimes used to
simulate thermal fluid phenomena for actual industrial
products due to the simplicity and robustness of grid
generation [15] [16] [17]. In voxel simulations, the
simulation models tend to be huge because of the fact that the

Basis matrix

Core tensorInput tensor

 Journal of Mechanical Engineering and Automation 2016, 6(5): 95-100 97

voxel grids have to be divided at a high resolution to ensure
precision [15]. Therefore, it is even more important to
compress the voxel-based simulation results when
transferring the database.

Figure 2 shows the voxel simulation model used for
testing. In voxel simulation, the 3D simulation volume is
automatically divided into orthogonal grids and then thermal
or fluid simulations are performed. Our model is a simplified
inverter model, which consists of fan unit, bus bar, resistors,
etc. Thermal and fluid simulations are performed in the 3D
volume containing these parts. The fan unit is regarded as
fluid since it is the duct for air flow. The number of cross
sections along the Z-axis is 251 and the number of voxels in
the X and Y axes are 156 and 125, respectively. Therefore,
the total number of voxels in the test model is
251x156x125=4,894,500. We performed simulation of air
flow using in-house voxel simulation software and obtained
results for eight physical quantities. Table 1 shows a list of
physical quantities of the test model.

Figure 2. Test model

Table 1. List of physical quantities of the test model

Physical quantity Symbol Unit

Humidity h %

Mass flow rate m Kg/s

Density o Kg/m3

Pressure P Pa

Temperature T K

Velocity component x u m/s

Velocity component y v m/s

Velocity component z w m/s

Humidity h %

To test data compression of 4th–dimensional simulation
data, we also perform unsteady flow simulation for 10 time
steps.

All calculations are performed on an HP Z800 PC with
CPU of Intel Xeon W5590 @ 3.33 GHz and 32GB physical
memory.

3.2. Evaluation of Compression Ratio

First, we represent simulation results of one time step with
a 3rd-order tensor and then perform tensor decomposition.
The three dimensions of the 3rd-order tensor correspond to
the X, Y and Z axes of the voxel model. For comparison, we
also expand the input simulation results data to 2D matrix
and perform SVD. Figure 3 shows a comparison between TD
and SVD in terms of compression ratio and approximation
error. The X-axis is compression ratio and log scale is used.
It is obvious that, at any error level, TD has higher
compression ratios than those of SVD. For example, when
approximation error is 5%, the compression ratio for SVD is
about 5.4, while for TD it is about 60.0 and is about 11 times
over that of SVD.

Figure 3. Comparison between TD and SVD (3rd-order)

Figure 4. Comparison between TD and SVD (4th-order)

Next, we represent the 10-step time series of voxel
simulation results with a 4th-order tensor and then perform

605.4

70
4

98 Yixiang Feng et al.: A Study on the Compression of Voxel Simulation Results Using Tensor Decomposition

tensor decomposition to compress the data. The four
dimensions of the 4th-order tensor correspond to the X, Y, Z
axes and t (time) of the voxel model. Figure 4 shows a
comparison between TD and SVD in terms of compression
ratio and approximation error. The X-axis is compression
ratio and log scale is used. Similar with the results of the
3rd-order tensor, when error level is the same, TD gains
higher compression ratios than SVD does. For example,
when error is 5%, the compression ratio for SVD is about 4.0,
while for TD it is about 70.0, which is about 17 times over
that of the SVD. Comparing with the results of 3rd-order
tensor, the compression ratio for 4th-order tensor is higher
than that of the 3rd-order tensor, which suggests that TD is
suitable for the compression of large-scale and
high-dimensional database.

3.3. Computational Time

Figure 5 shows the comparison of computational time
between TD and SVD in terms of compression ratio.

Figure 5. Comparison of CPU time in terms of CR

As shown in Figure 5, the computational time of TD is
about an order greater than that of SVD, which is due to the
complexity of the HOOI algorithm. The HOOI algorithm
requires SVD to be calculated in each mode and iterates until
the ALS algorithm converges [14].

It is also observed from Figure 5 that TD and SVD operate
at different zones. TD is more time-consuming, but the
compression ratio is much higher than that of the SVD.
However, it is not sufficient to look at the compression ratio
alone, because there is a tradeoff between the compression
ratio and approximation error.

Figure 6 shows a comparison of computational time
between TD and SVD in terms of approximation error.

It is observed from Figure 6 that the computational time
for TD is considerably greater than that for SVD. When the
approximation error is 5%, the computational time for TD is
about 25s, while for SVD it is about 5s. It should be noted

that when the compression error is the same, the compression
ratio of TD is much greater than that of SVD, as shown in
Figure 3 and Figure 4. We conclude that there is a tradeoff
between the performance and computational time. To reduce
the calculation time of TD is one of our most important
future tasks.

Figure 6. Test result of hierarchical tensor decomposition

4. Results and Discussion
To further investigate the information loss caused by data

compression, we compare the data before and after
compression by visualizing the data. Figure 7 shows the
pressure distributions in the cross section of the air flow
inside the fan unit. The core sizes, compression ratio and
error are listed in Table 2. It can be seen from Figure 7 and
Table 2 that, with the increase in core tensor size, the
pressure distribution in the cross section gradually
approximates that of the original data. When the
approximation error is 10.7%, the overall feature of the
pressure distribution is captured, but there are still noticeable
differences in the color tone and some other details.
Meanwhile, when the approximation error is decreased to
4.8%, there is no noticeable difference between the
compressed data and the original data, which suggests that
the compressed data can be used for further analysis or
design.

We also compare the data before and after data
compression of the unsteady flow simulation results. Figure
8 shows pressure distributions in the cross section of the air
flow inside the fan unit, which is the same cross section as
used in Figure 7. In Figure 8, the nth row corresponds to the
simulation results of the nth time step, where n is a number
between one and ten. The first column is the original data
without data compression. The second column is the data
after data compression with TD at a compression ratio of
3174. The third column is the data after data compression

0

10

20

30

40

50

60

1 10 100 1000

CP
U

 ti
m

e
(s

)

Compression Ratio

TD
SVD

C
PU

 T
im

e
(s

)

Compression Ratio

0

10

20

30

40

50

60

0% 5% 10% 15% 20% 25%

CP
U

 ti
m

e
(s

)

Error

TD
SVD

C
PU

 T
im

e
(s

)

Error

 Journal of Mechanical Engineering and Automation 2016, 6(5): 95-100 99

with TD at a compression ratio of 52. The fourth column is
the data after data compression with SVD at a compression
ratio of 10. It can be observed from Figure 8 that, at
compression ratio 52, the compressed data from TD yields
almost the same pressure distributions as those from the
original data. Meanwhile, for the compressed data from SVD,
even at compression ratio 10, there are considerable
differences between the compressed data and the original
data. Even though the overall pressure distributions look
similar, the data compressed from SVD lose many of the
detailed characteristics in the pressure distribution.
Therefore, it is confirmed that data compression using TD
outperforms data compression using SVD.

(A) Original

(B) 40x40x40 core tensor

(C) 20x20x20 core tensor

Figure 7. Navigation data demodulated by tracking loop

Table 2. List of physical quantities of the test model

Data Core size CR Error

(A) Original data

(B) 40x40x40 57 4.8%

(C) 20x20x20 263 10.7%

Column 1: Original data;
Column 2: TD compressed data, CR=3174;
Column 3: TD compressed data, CR=52;
Column 4: SVD compressed data, CR=10.

Figure 8. Comparison of data compression results for unsteady flow
simulation results data

5. Conclusions
We proposed a data compression method for simulation

results database using tensor decomposition. We verified the
method in a simplified inverter model and obtained the
following conclusions.

(1) We represent single voxel simulation results data
with 3rd-order tensor and decompose it. As a result,
we obtain a compression ratio of 1:60 while the
approximation error is about 5%. Compared with
traditional method in which the compression ratio is
about 5.4, the compression ratio of our method is
more than 10 times higher.

(2) We represent a time-series of voxel simulation results
data with 4th-order tensor and decompose it. As a
result, we obtain a compression ratio of 1:70 while

Fan (Air flow)

Fan casing

Frame

100 Yixiang Feng et al.: A Study on the Compression of Voxel Simulation Results Using Tensor Decomposition

the approximation error is 5%. The proposed method
is over 17 times higher in terms of compression ratio
as compared with traditional method in which the
value is about 1:4.

(3) Computation time for TD is greater than that for SVD.
There is a tradeoff between performance and
computational time.

REFERENCES
[1] D. Matsuoka, F. Araki, Survey on Scientific Data

Visualization for Large-scale Simulations, JAMSTEC Report
of Research and Development, Vol. 13, (2011) 35-63. (in
Japanese).

[2] R. Sakai, D. Sasaki, S. Obayashi K. Nakahashi,
Wavelet-based data compression for flow simulation on
block-structured Cartesian mesh, International Journal for
Numerical Methods in Fluids, Vol. 73, Issue 5, (2013)
462–476.

[3] K. Wada, K. Iwasaki, Compression of Particle-based Fluid
Simulation Data, Information Processing Society of Japan,
Kansai Branch, (2011). (in Japanese).

[4] L.S. Lorente, J.M. Vega, A. Velazquez, Compression of
aerodynamic databases using high-order singular value
decomposition, Aerospace Science and Technology, Vol. 14,
No. 3, (2010) 168-177.

[5] T.G. Kolda, B.W. Blder, Tensor decomposition and
applications, SIAM Review, Vol. 51, No. 3, (2009) 455-500.

[6] E. Acar E., B. Yener, Unsupervised multiway data analysis: a
literature survey, IEEE Transactions on knowledge and data
engineering, Vol. 21, No. 1, (2009) 6-20.

[7] L. Qi, W. Sun, Y. Wang, Numerical multilinear algebra and
its applications, Front. Math. China, Vol. 2, No. 4, (2007)
501-526.

[8] D. Vlasic, M. Brand, H. Pfister, J. Popovic, Face transfer with
multilinear models, ACM Trans. Graphics, Vol. 24 (2005)
426-433.

[9] H. Wang, N. Ahuja, A tensor approximation approach to
dimensionality reduction, Intl. J. Comput. Vis., Vol. 76,
(2008) 217-229.

[10] R.A. Harshman, Foundations of the PARAFAC procedure:
Models and conditions for an explanatory multi-modal factor
analysis, UCLA Working Papers in Phonetics, Vol. 16 (1970)
1-84.

[11] L.R. Tucker, The extension of factor analysis to
three-dimensional matrices, in Contributions to Mathematical
Psychology, H. Gulliksen and N. Frederiksen, eds., Holt,
Rinehart & Winston, New York, (1964) 109-127.

[12] L.R. Tucker, Some Mathematical Notes on Three-Mode
Factor Analysis. Psychometrika, Vol.31, No.3, (1966)
279-311.

[13] L.D. Lathauwer, B.D. Moor, J. Vanderwalle, A multilinear
singular value decomposition, SIAM J. Matrix Anal. Appl.,
Vol. 21, No. 4, (2000) 1253-1278.

[14] L.D. Lathauwer, B.D. Moor, J. Vanderwalle, On the best
rank-1 and rank-(R1,R2,..., RN) approximation of
higher-order tensors, SIAM J. Matrix Anal. Appl., Vol. 21,
No. 4, (2000) 1324-1342.

[15] T. Tawara, K. Ono, Fast large scale voxelization using a
pedigree, the 10th ISGG Conference on Numerical Grid
Generation, Sep. 16-20, Forth, Crete, Greece, (2007).

[16] M. Ikegawa, H. Mukai, M. Watanabe, Airflow-simulation by
voxel mesh method for complete hard disk drive structure,
IEEE Trans. Magn., Vol. 45, No. 11, (2009) 4918-4922.

[17] S. Hayashi, M. Watanabe, Y. Iwase, K. Kanno, K. Fujimori,
Development of a household vacuum cleaner with a new
cyclone dust collector, FEDSM2007-37014, (2007)
1925-1932.

	1. Introduction
	2. Tensor Decomposition
	3. Test Results
	4. Results and Discussion
	5. Conclusions

