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Abstract  With the ever-growing trend of globalization, product design is often conducted collaboratively among several 
divisions, thus making it a huge challenge to transfer large CAE (Computer Aided Engineering) data between different 
locations. Our goal is to reduce the size of transfer data so that fast data transfer can be realized even when the network 
speed is slow. In this study, we have developed a data compression method based on TD (Tensor Decomposition). In this 
method, voxel simulation results data are represented as tensors and tensor decomposition based on HOOI (Higher-Order 
Orthogonal Iteration) algorithm is applied to the tensors. After tensor decompression, the original tensor is decomposed into 
a core tensor and a series of basis matrices, whose summed size is considerably smaller than that of the original tensor. As a 
result, a compression ratio of over 60:1 is achieved for steady flow simulation results data and the error is below 5%. A 
compression ratio of over 70:1 is achieved for unsteady flow simulation results data and the error is below 5%. We have 
confirmed that at 5% error, no significant information is lost during the data compression process. Tensor decomposition has 
been applied for image data compression, dimensionality reduction, and more recently for the compression of hexahedral 
mesh-based simulation result database. However, it is a first application of tensor decomposition to the data compression of 
voxel-based simulation results. 
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1. Introduction 
With the ever-growing trend of globalization, it is 

common for a company to have multiple international R&D 
(Research and Development) facilities that are optimized 
according to the company’s global business strategy. As a 
result, product design is often conducted collaboratively 
among different design sites.  

Collaborative global design has brought new challenges, 
one of which is data sharing among different sites. Most 
manufacturing companies use computer simulation in their 
product design. In product design, more accurate simulation 
models are required for detailed analysis. As a result, the 
data size became huge. For collaborative global design, it is 
important that the simulation database be shared within a 
short period of time. 

Methodologies for sharing data among different sites can 
be divided into two major categories. One is the so-called 
thin-client method, in which data are post-processed in 
servers and the generated results are transferred to client PCs 
as images. The other one is a direct data transfer method, in 
which the whole data or subsets of the data are transferred  

 
* Corresponding author: 
yixiang.feng.cq@hitachi.com (Yixiang Feng) 
Published online at http://journal.sapub.org/jmea 
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved 

directly to the client PCs where post-processing is conducted 
[1]. The thin-client method is useful for easy data 
management and controllable information security [1]. 
However, the thin-client method requires real-time 
correspondence and therefore depends highly on the network 
condition and transfer speed. In the developing countries 
where many R&D centers are located, the network 
infrastructure is often poorly equipped. Based on these facts, 
we adopt direct transfer method in this research. To achieve 
the rapid processing speed required by collaborative product 
design, it is important to fasten the speed of data transfer. 
Fast data transfer can be achieved by either reducing the 
transferring data size, or by improving the network speed. In 
this research, we focus on the former approach. 

Data compression has long been studied in data-intensive 
disciplines such as image/video processing, signal 
processing, bioinformatics, etc. However, there were only 
few studies in the compression of CAE results data. In one of 
the studies, EZT (Embedded Zero-Tree) wavelet encoding 
method was used to compress BCM (Building-Cube 
Method)-based CFD (Computational Fluid Dynamics) 
results data [2]. In another study, SVD (Singular Value 
Decomposition) method was applied to particle simulation 
data [3]. Recently, high order SVD was used to compress 
CFD results of the outer flow around a wing with hexahedral 
mesh [4]. 

TD (Tensor Decomposition), or tensor factorization, is the 
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expansion of SVD to higher-dimensional arrays. In tensor 
decomposition, the original tensor is decomposed into a core 
tensor g and several basis matrices U V W whose total 
element number is equal to the dimension of the input tensor 
[5] [6] [7]. Figure 1 illustrates the image of tensor 
decomposition. 

 

Figure 1.  Image of Tensor Decomposition 

Tensor decomposition has been applied for image data 
compression [8], dimensionality reduction [9], and more 
recently for the compression of hexahedral mesh-based 
simulation result database [4]. However, to the best of our 
knowledge, there has been no application of tensor 
decomposition to the data compression of voxel-based 
simulation results.  

In this study, we propose a data compression method for 
voxel simulation results based on tensor decomposition. 

2. Tensor Decomposition 
2.1. Theory of Tensor Decomposition 

Tensor decomposition can be formulated as an 
optimization problem of minimizing the distance between an 
input tensor and its approximate tensor of a lower rank. 
Mathematically, it is written as Eq. (1):  
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where X  is the Nth-order input tensor consisting of real 
numbers. Ii is the dimension of the ith-mode and Ji is the 
rank of the ith-mode. 

Two popular tensor decomposition schemes are CP 
decomposition, where the core tensor is diagonal [10], and 
Tucker decomposition, where the core tensor is dense [11] 
[12]. In this research, we use Tucker decomposition due to its 
flexibility in controlling the approximated tensor through 
adjusting the size of the core tensor. In Tucker 
decomposition, the approximated tensor A  is decomposed 
as shown in Eq. (2): 
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where G  is the core tensor and 1 2 ... NJ J J× × ×∈ℜG . U  

is the basis matrix and ( ) i iI Ji ×∈ℜU . 
In this research, we adopt the HOOI (Higher-Order 

Orthogonal Iteration) tensor decomposition algorithm 
proposed by Lathauwer et al. [13] [14]. Using HOOI, the 
core tensor G  can be calculated using the following 
equation. 
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The basis matrix U  is calculated using an ALS 
(Alternating Least Squares) method which is an expansion of 
the Least Squares method. The initial basis matrices are 
calculated using the HOSVD algorithm [13]. That is to say, 

( )
0

iU  is calculated as the left singular vector of the ith 
mode expansion of X . 

2.2. Tensor Decomposition as a Data Compression 
Method 

One important property of tensor decomposition is that 
the overall size of the core tensor and basis matrices is 
usually much smaller than that of the original tensor. We 
take advantage of this property and use tensor 
decomposition for lossy data compression. 

CR (Compression Ratio) is defined as the number of 
elements before and after tensor decomposition. 
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The approximation error caused by tensor decomposition 
is defined as follows. 
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where NORME is the approximation error based on the 
Frobenius norm. The Frobenius norm is defined as follows. 
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where xi is the elements of the tensor X . 

3. Test Results 
3.1. Test Model 

In this study, we use voxel–based simulation to generate 
simulation results. Voxel simulation is sometimes used to 
simulate thermal fluid phenomena for actual industrial 
products due to the simplicity and robustness of grid 
generation [15] [16] [17]. In voxel simulations, the 
simulation models tend to be huge because of the fact that the 

Basis matrix

Core tensorInput tensor

 



 Journal of Mechanical Engineering and Automation 2016, 6(5): 95-100 97 
 

voxel grids have to be divided at a high resolution to ensure 
precision [15]. Therefore, it is even more important to 
compress the voxel-based simulation results when 
transferring the database. 

Figure 2 shows the voxel simulation model used for 
testing. In voxel simulation, the 3D simulation volume is 
automatically divided into orthogonal grids and then thermal 
or fluid simulations are performed. Our model is a simplified 
inverter model, which consists of fan unit, bus bar, resistors, 
etc. Thermal and fluid simulations are performed in the 3D 
volume containing these parts. The fan unit is regarded as 
fluid since it is the duct for air flow. The number of cross 
sections along the Z-axis is 251 and the number of voxels in 
the X and Y axes are 156 and 125, respectively. Therefore, 
the total number of voxels in the test model is 
251x156x125=4,894,500. We performed simulation of air 
flow using in-house voxel simulation software and obtained 
results for eight physical quantities. Table 1 shows a list of 
physical quantities of the test model. 

 

 
Figure 2.  Test model 

Table 1.  List of physical quantities of the test model 

Physical quantity Symbol Unit 

Humidity h % 

Mass flow rate m Kg/s 

Density o Kg/m3 

Pressure P Pa 

Temperature T K 

Velocity component x u m/s 

Velocity component y v m/s 

Velocity component z w m/s 

Humidity h % 

To test data compression of 4th–dimensional simulation 
data, we also perform unsteady flow simulation for 10 time 
steps. 

All calculations are performed on an HP Z800 PC with 
CPU of Intel Xeon W5590 @ 3.33 GHz and 32GB physical 
memory. 

3.2. Evaluation of Compression Ratio 

First, we represent simulation results of one time step with 
a 3rd-order tensor and then perform tensor decomposition. 
The three dimensions of the 3rd-order tensor correspond to 
the X, Y and Z axes of the voxel model. For comparison, we 
also expand the input simulation results data to 2D matrix 
and perform SVD. Figure 3 shows a comparison between TD 
and SVD in terms of compression ratio and approximation 
error. The X-axis is compression ratio and log scale is used. 
It is obvious that, at any error level, TD has higher 
compression ratios than those of SVD. For example, when 
approximation error is 5%, the compression ratio for SVD is 
about 5.4, while for TD it is about 60.0 and is about 11 times 
over that of SVD. 

 

 

Figure 3.  Comparison between TD and SVD (3rd-order) 

 

Figure 4.  Comparison between TD and SVD (4th-order) 

Next, we represent the 10-step time series of voxel 
simulation results with a 4th-order tensor and then perform 
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tensor decomposition to compress the data. The four 
dimensions of the 4th-order tensor correspond to the X, Y, Z 
axes and t (time) of the voxel model. Figure 4 shows a 
comparison between TD and SVD in terms of compression 
ratio and approximation error. The X-axis is compression 
ratio and log scale is used. Similar with the results of the 
3rd-order tensor, when error level is the same, TD gains 
higher compression ratios than SVD does. For example, 
when error is 5%, the compression ratio for SVD is about 4.0, 
while for TD it is about 70.0, which is about 17 times over 
that of the SVD. Comparing with the results of 3rd-order 
tensor, the compression ratio for 4th-order tensor is higher 
than that of the 3rd-order tensor, which suggests that TD is 
suitable for the compression of large-scale and 
high-dimensional database. 

3.3. Computational Time 

Figure 5 shows the comparison of computational time 
between TD and SVD in terms of compression ratio. 

 

 
Figure 5.  Comparison of CPU time in terms of CR 

As shown in Figure 5, the computational time of TD is 
about an order greater than that of SVD, which is due to the 
complexity of the HOOI algorithm. The HOOI algorithm 
requires SVD to be calculated in each mode and iterates until 
the ALS algorithm converges [14]. 

It is also observed from Figure 5 that TD and SVD operate 
at different zones. TD is more time-consuming, but the 
compression ratio is much higher than that of the SVD. 
However, it is not sufficient to look at the compression ratio 
alone, because there is a tradeoff between the compression 
ratio and approximation error. 

Figure 6 shows a comparison of computational time 
between TD and SVD in terms of approximation error.  

It is observed from Figure 6 that the computational time 
for TD is considerably greater than that for SVD. When the 
approximation error is 5%, the computational time for TD is 
about 25s, while for SVD it is about 5s. It should be noted 

that when the compression error is the same, the compression 
ratio of TD is much greater than that of SVD, as shown in 
Figure 3 and Figure 4. We conclude that there is a tradeoff 
between the performance and computational time. To reduce 
the calculation time of TD is one of our most important 
future tasks. 

 

 
Figure 6.  Test result of hierarchical tensor decomposition 

4. Results and Discussion 
To further investigate the information loss caused by data 

compression, we compare the data before and after 
compression by visualizing the data. Figure 7 shows the 
pressure distributions in the cross section of the air flow 
inside the fan unit. The core sizes, compression ratio and 
error are listed in Table 2. It can be seen from Figure 7 and 
Table 2 that, with the increase in core tensor size, the 
pressure distribution in the cross section gradually 
approximates that of the original data. When the 
approximation error is 10.7%, the overall feature of the 
pressure distribution is captured, but there are still noticeable 
differences in the color tone and some other details. 
Meanwhile, when the approximation error is decreased to 
4.8%, there is no noticeable difference between the 
compressed data and the original data, which suggests that 
the compressed data can be used for further analysis or 
design. 

We also compare the data before and after data 
compression of the unsteady flow simulation results. Figure 
8 shows pressure distributions in the cross section of the air 
flow inside the fan unit, which is the same cross section as 
used in Figure 7. In Figure 8, the nth row corresponds to the 
simulation results of the nth time step, where n is a number 
between one and ten. The first column is the original data 
without data compression. The second column is the data 
after data compression with TD at a compression ratio of 
3174. The third column is the data after data compression 
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with TD at a compression ratio of 52. The fourth column is 
the data after data compression with SVD at a compression 
ratio of 10. It can be observed from Figure 8 that, at 
compression ratio 52, the compressed data from TD yields 
almost the same pressure distributions as those from the 
original data. Meanwhile, for the compressed data from SVD, 
even at compression ratio 10, there are considerable 
differences between the compressed data and the original 
data. Even though the overall pressure distributions look 
similar, the data compressed from SVD lose many of the 
detailed characteristics in the pressure distribution. 
Therefore, it is confirmed that data compression using TD 
outperforms data compression using SVD. 

 

(A) Original 

 

(B) 40x40x40 core tensor 

 

(C) 20x20x20 core tensor 

Figure 7.  Navigation data demodulated by tracking loop 

Table 2.  List of physical quantities of the test model 

Data Core size CR Error 

(A) Original data 

(B) 40x40x40 57 4.8% 

(C) 20x20x20 263 10.7% 

 

Column 1: Original data;  
Column 2: TD compressed data, CR=3174;  
Column 3: TD compressed data, CR=52;  
Column 4: SVD compressed data, CR=10. 

Figure 8.  Comparison of data compression results for unsteady flow 
simulation results data  

5. Conclusions 
We proposed a data compression method for simulation 

results database using tensor decomposition. We verified the 
method in a simplified inverter model and obtained the 
following conclusions. 

(1)  We represent single voxel simulation results data 
with 3rd-order tensor and decompose it. As a result, 
we obtain a compression ratio of 1:60 while the 
approximation error is about 5%. Compared with 
traditional method in which the compression ratio is 
about 5.4, the compression ratio of our method is 
more than 10 times higher. 

(2)  We represent a time-series of voxel simulation results 
data with 4th-order tensor and decompose it. As a 
result, we obtain a compression ratio of 1:70 while 
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the approximation error is 5%. The proposed method 
is over 17 times higher in terms of compression ratio 
as compared with traditional method in which the 
value is about 1:4. 

(3) Computation time for TD is greater than that for SVD. 
There is a tradeoff between performance and 
computational time. 

 

REFERENCES 
[1] D. Matsuoka, F. Araki, Survey on Scientific Data 

Visualization for Large-scale Simulations, JAMSTEC Report 
of Research and Development, Vol. 13, (2011) 35-63. (in 
Japanese). 

[2] R. Sakai, D. Sasaki, S. Obayashi K. Nakahashi, 
Wavelet-based data compression for flow simulation on 
block-structured Cartesian mesh, International Journal for 
Numerical Methods in Fluids, Vol. 73, Issue 5, (2013) 
462–476. 

[3] K. Wada, K. Iwasaki, Compression of Particle-based Fluid 
Simulation Data, Information Processing Society of Japan, 
Kansai Branch, (2011). (in Japanese). 

[4] L.S. Lorente, J.M. Vega, A. Velazquez, Compression of 
aerodynamic databases using high-order singular value 
decomposition, Aerospace Science and Technology, Vol. 14, 
No. 3, (2010) 168-177. 

[5] T.G. Kolda, B.W. Blder, Tensor decomposition and 
applications, SIAM Review, Vol. 51, No. 3, (2009) 455-500. 

[6] E. Acar E., B. Yener, Unsupervised multiway data analysis: a 
literature survey, IEEE Transactions on knowledge and data 
engineering, Vol. 21, No. 1, (2009) 6-20. 

[7] L. Qi, W. Sun, Y. Wang, Numerical multilinear algebra and 
its applications, Front. Math. China, Vol. 2, No. 4, (2007) 
501-526. 

[8] D. Vlasic, M. Brand, H. Pfister, J. Popovic, Face transfer with 
multilinear models, ACM Trans. Graphics, Vol. 24 (2005) 
426-433. 

[9] H. Wang, N. Ahuja, A tensor approximation approach to 
dimensionality reduction, Intl. J. Comput. Vis., Vol. 76, 
(2008) 217-229. 

[10] R.A. Harshman, Foundations of the PARAFAC procedure: 
Models and conditions for an explanatory multi-modal factor 
analysis, UCLA Working Papers in Phonetics, Vol. 16 (1970) 
1-84. 

[11] L.R. Tucker, The extension of factor analysis to 
three-dimensional matrices, in Contributions to Mathematical 
Psychology, H. Gulliksen and N. Frederiksen, eds., Holt, 
Rinehart & Winston, New York, (1964) 109-127. 

[12] L.R. Tucker, Some Mathematical Notes on Three-Mode 
Factor Analysis. Psychometrika, Vol.31, No.3, (1966) 
279-311. 

[13] L.D. Lathauwer, B.D. Moor, J. Vanderwalle, A multilinear 
singular value decomposition, SIAM J. Matrix Anal. Appl., 
Vol. 21, No. 4, (2000) 1253-1278. 

[14] L.D. Lathauwer, B.D. Moor, J. Vanderwalle, On the best 
rank-1 and rank-(R1,R2,..., RN) approximation of 
higher-order tensors, SIAM J. Matrix Anal. Appl., Vol. 21, 
No. 4, (2000) 1324-1342. 

[15] T. Tawara, K. Ono, Fast large scale voxelization using a 
pedigree, the 10th ISGG Conference on Numerical Grid 
Generation, Sep. 16-20, Forth, Crete, Greece, (2007). 

[16] M. Ikegawa, H. Mukai, M. Watanabe, Airflow-simulation by 
voxel mesh method for complete hard disk drive structure, 
IEEE Trans. Magn., Vol. 45, No. 11, (2009) 4918-4922. 

[17] S. Hayashi, M. Watanabe, Y. Iwase, K. Kanno, K. Fujimori, 
Development of a household vacuum cleaner with a new 
cyclone dust collector, FEDSM2007-37014, (2007) 
1925-1932. 

 

 

 


	1. Introduction
	2. Tensor Decomposition
	3. Test Results
	4. Results and Discussion
	5. Conclusions

