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Abstract  This paper presents the design of anew optimal adaptive diagnosis observer (OAD) which is designed for 
additive fault and disturbance; its gain matrix verifies the proposed Lyapunov conditions. In the presence of disturbance and 
fault, the performance of the ODA observer is tested using Matlab software by comparing it with six different good linear 
observers Luenberger Observer (LO), Kalman (Filter) Observer (KO), Unknown Input Observer (UIO), Augmented Robust 
Observer (ARO), High Gain Observer (HGO) and Sensitive High Gain Observer (SHGO). The assumed disturbance and 
faults are white noise, coloured noise and non-Gaussian fault while a MIMO DC servomotor has been used as a benchmark in 
the performance assessments. As the results show, the comparison results of the ODA observer is the best overall in 
diagnosing fault and disturbance as well asit is the highest instates estimation performance.  

Keywords  New Optimal Adaptive Diagnosis Observer (OAD), Luenberger Observer (LO), Kalman (Filter) Observer 
(KO), Unknown Input Observer (UIO), Augmented Robust Observer (ARO), High Gain Observer (HGO), Multiple Inputs 
Multiple Outputs (MIMO), Sensitive High Gain Observer (SHGO) 

 

1. Introduction 
Observers are techniques that are used to estimate and 

detect the faults of the systems. diagnosis in dynamic 
systems because of an increase demand for high reliability In 
the design of observers there are two key elements that 
should be taken into account, these are as follows 1) the type 
and size of the fault which is either multiplicative fault 
(parameter faults) or additive faults (actuator or sensor 
faults); 2) the disturbance characteristics. Over the past three 
decades, much attention has been paid to the problem of fault 
detection and industrial processes. The observers have been 
formed in design of an integral part of numerous control 
systems. Luenberger observer was firstly proposed and 
developed in [1, 2]. The theory of the observer design has 
been extended by many researchers to include time-variant, 
discrete, stochastic issues and deterministic continuous 
time-invariant linear systems. In general, Luenberger 
Observer possesses a relative simple design that makes it an 
attractive general design technique [3, 4]. Later, the 
Luenberger observer was extended to form a Kalman filter 
[5]. Although the Kalman filter is in use for more than 35 
years and has been described in many papers and books, its 
design is still an area of concern for many researches and 
studies. It could be argued that the Kalman filter is one of the  
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good observers against a wide range of disturbances [4, 6]. 
The problem of estimating a state of a dynamical system 
driven by unknown inputs has been the subject of a large 
number of studies in the past three decades. An observer that 
is capable of estimating the state of a linear system with 
unknown inputs can also be of tremendous use when dealing 
with the problem of instrument fault detection, since in such 
systems most actuator faults can be generally modelled as 
unknown inputs to the system [7, 8]. A new methodology for 
fault detection and identification subject to plant parameter 
uncertainties is presented in [7]. A full-order observer 
procedure was developed for linear systems with unknown 
inputs using straightforward matrix calculations in [9]. 
Estimating using a reduced order disturbance de-coupled 
observer was presented in [10]. A full-order unknown input 
and output structure is used in order to generate residuals, 
which can be used to detect fault and isolate on a vertically 
taking-off and landing aircraft dynamic model in [11]. 
Designing the unknown input and output observer was 
reported by considering  the unknown constant disturbance 
of parameters in chaotic systems in [12]. However, when the 
numbers of sensors and unknown inputs are equal, the 
observer may not exist. Hence, the unknown input observer 
method is not always feasible for fault detection. To 
overcome this drawback, several studies have been 
developed and implemented for augmented observers by 
given bounds of plant uncertainty. The fault detection 
scheme facilitates determining free matrices in the partial 
state observer, by which the residual function can be 
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identified and distinguished for the sensor and actuator faults. 
An augmented system model that a residual function could 
be generated according to partial state observers was 
presented in [13, 14]. The generated residual signals, which 
disclose the fault, are sensitive to faults while insensitive to 
uncertainties. To derive residual functions, existence 
conditions and its design procedure are presented in [15]. 

Since typically disturbance signals are not affected by the 
gain parameter; therefore the reasonable high gain observer 
criterion can be implemented. In addition this observer can 
not only estimate the angular positions and velocities of the 
system, but also reject the disturbance [16]. A sensitive 
high-gain actuator was presented in [17] where faults are 
sensor and actuator faults, input disturbances, and 
measurement noises. The sensitive high-gain observer-based 
identification approach has shown to be suitable for 
applications of bounded processes [18]. 

As a result, in section0, owing to the importance of 
optimal adaptive diagnosis observer (OAD) with state 
additive fault as well as sensor disturbance, optimal 
theorems has been designed for the observe. However, the 
performance criteria are chosen as presented in section 0 as 
well as a multiple inputs, multiple outputs (MIMO) DC 
servomotor model, which is considered as a benchmark. In 
this paper, a DC servo motor is considered as multiple inputs 
and multiple outputs (MIMO) model. The model is 
controllable and observable [19]. Moreover, the continuous 
linear system has been discretized [20] with the sampling 
time of 0.1 second. 

2. Design of Optimal Adaptive Diagnosis 
Observer (OAD) 

A new observer has been proposed based on assumed 
optimal conditions. The new optimal adaptive diagnosis 
observer (OAD) has been studied through comparison with 
six types of linear additive observer

,  ,  ,  ,  ,  LO KO UIO ARO HGO SHGO . To study the 
observers, the model of the system (plant) was assumed to be 
affected by additive fault in the states with a disturbance 
(noise) present in the measure of the output named sensors 
faults.  

2.1. Model of the System 
The system has been assumed to be influenced by additive 

faults ( )lf k  in the states and additive disturbance ( )mf k  
on the output. The matrices L  and  M are faults matrices: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

l l

m m

x t Fx t Gu t L f t
y t Cx t Du t M f t

= + +

= + +


       (1) 

where ( ) nx t ∈ is a state vector, ( ) mu t ∈ represents a 

control input vector, ( ) py t ∈ is a measurement output 
vector, and F, G, C and D are known constant matrices [4]. 

2.2. Design a New Optimal Adaptive Diagnosis Observer 
(OAD) 

A new optimal adaptive observer has been implemented to 
detect and diagnose an additive fault, a sensor disturbance 
and estimate the states of the plant in (1) as follows: 

( )
( )

ˆˆ ˆ( 1) ( ) ( ) ( )
ˆ ˆ( ) ( )

lx k Ax k Bu k H k f k

y k Cx k Du k

ε+ = + + +

= +
    (2) 

where the gain matrix of the observer is H  where it can be 
found based on the optimal conditions. ( )kε  is assumed to 
be the residual while ( )e k  is the state error defined as: 

ˆ( ) ( ) ( )k y k y kε = −                 (3) 

ˆ( ) ( ) ( )e k x k x k= −                 (4) 

By substituting (1) and (3)into(4), the dynamical error can 
be rewritten as: 

( )

ˆ( 1) ( 1) ( 1)
ˆˆ ˆ( ) ( ) ( ( ) ( )) ( )

( ( ) ( ) ( ))
ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

( ) ( ) ( )

l

l

m

l l

l m l

l m

e k x k x k

Ax k Bu k H y k y k f k
Ax k Bu k Lf k

A HC x k Hy k HMf k

Ax k Lf k f k
A HC x k A HC x k

Lf k HMf k f k

Ae k f k HMf k

+ = + − +

= + + − +

− + +

= − + +

− − +

= − − −

+ − − +

= + +

 (5) 

where ( )ˆ( ) ( ) ( ) ( )l l l mf k f k Lf k HMf k= − + , A A HC= − . 
Therefore, the residual can be rewritten to become: 

ˆ( ) ( ) ( ) ( ) ( )mk y k Cx k Ce k Mf kε = − = +    (6) 

Faults detection depends on the threshold λ  for the 
system being realized as: 

( ) no fault occurs

( ) fault has been occured

k

k

ε λ

ε λ

<

≥
     (7) 

Theorem: Assume that the gain matrix H of the adaptive 
observer in (2) can be obtained such that the following 
conditions: 

1

2

T

T

APA P Q
L P C Q

− = −

− =
               (8) 

are satisfied, where 1 1 2 2, ,T T TP P Q Q Q Q= = = are 

positive definite and A A HC= −  is a Hurwitz. The goal of 
fault diagnosis is to find a diagnostic algorithm for ˆ ( )lf k  
and an observer gain vector H  such that: 

k
lim ( ) 0

lim ( ) 0lk

k

f k

ε
→∞

→∞

→

→              (9) 

 
 



 Journal of Mechanical Engineering and Automation 2015, 5(1): 43-55  45 
 

where the following adaptive diagnostic algorithm: 

( )

1 2

ˆ( )  ( ) ( ) ( )
ˆ ˆ( 1)  ( ) ( )    

ˆ( 1) ( 1)

l l l m

l l f

l l

f k f k Lf k HMf k

f k f k k k k

f k f k

ε

= − +

+ = − Γ − Γ >

+ = +





 (10) 

can realize(9). The tuning rate is defined in (10) by 

1 1 2 2,T TΓ =Γ Γ =Γ  which are pre-specified gain matrices and 
for any 0ζ > , there exists 0η > , yielding: 

( )
1 2

( )
( ) ,

( ) ( )
l mf k HMf k

e k
e k e k

ζ η η< ⇒ < <


, (11) 

Hence, 1 2,η η  should be positive definite matrices. 
Proof of the Theorem: Define the Lyapunov function 

( )v e  candidate: 
1

1( ( ), ( )) ( ) ( ) ( ) ( )T T
l l lv e k f k e k Pe k f k f k−= + Γ    (12) 

and assume that  1
TAPA P Q− = −  where 1 0Q > . Then: 

( )( ) ( )( )( )

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( )

1
2

1
2

1( ( ), ( )) 1
2

1 1 1
2

1
ˆ 1

l

l

l

T T

T
l

T
l

v e k f k v e k v e k

e k Pe k e k Pe k

f k f k

f k f k

−

−

∆ = + −

= + + −

+ Γ +

+ Γ +



 



 (13) 

It can be further expressed as follows: 

( )( )

( )( )
( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

1
2

1
2 2

1

1( ( ), ( )) ( ) ( )
2

( ) ( )

1

1
2

1 1
2 2

1

1 1
2 2
1
2

l

l

l

l l

l

T

l l m

l m

T T

T
l

T T

TT
l m

T T T
l

T T
l

T
m

v e k f k Ae k f k HMf k

P Ae k f k HMf k

e k Pe k f k Ce k

f k f k

e k A P A P e k

f k P f k HMf k

f k L P Q e k f k f k

e k Q e k f k Pf k

HMf k P

−

−

 ∆ = + + 

 + + 
− +

+ Γ +

 = − 

+ +

+ − + Γ +

= − +

+

 





 

 

  

 

( )( )mHMf k

 (14) 
Through substituting (1), (2) and (8) into (14), it can be 

shown that: 

( ) ( )2
min 1

1 1 1ˆ( , ) ( ) ( )
2 2 2l l mv e f Q e k P f k P HMf kλ∆ ≤− + +

 (15) 
If the Raleigh–Ritz inequality is used for the first term and 

the Cauchy–Schwarz inequality and the index matrix norm 

for the second and third terms respectively, then the derivate 
function will be: 

( ) ( )
min 1

ˆ( , )

1( ) ( ) ( )
2 2 ( ) 2 ( )

l

l m

v e f

P f k P HMf k
e k Q e k

e k e k
λ

∆ ≤

 
 − + +
 
 



(16) 
Assume that for any 0γ >  , no matter how small, there 

exists 0η > , yielding: 

( )
( ) ( )

1 2,
( ) ( )

l mf k HMf k
e k

e k e k
γ η η< ⇒ < <


 (17) 

Therefore, we have obtained as follows: 

( )min 1 1 2
1ˆ( , ) ( ) ( ) ( )
2lv e f e k Q e k Pλ η η ∆ ≤ − + + 

 
(18) 

To ensure stability, which means ( )( , ) 0lv e f k∆ <  , the 
linear system is asymptotically stable by Lyapunov stability 
theorem the condition to be satisfied is: 

min 1
1 2

( ) ( )
,

2
Q e k

P
λ

η η <             (19) 

The Raleigh–Ritz inequality and the Cauchy–Schwarz 
inequality have been used to rewrite the derivate function as: 

( )

( )
( )

1

min 2

1

2

1

min 2

( )

ˆ( , ) 0

0 ( )

T
l

T

Q e k P P P

v e f P

P Q

λ η

η η

λ η

−

−

 − −
 
 ∆ ≤ − + 
 

−  
(20) 

3. Linear Observers 
Six Known Linear Observers to detect and diagnose the 

fault are studied and demonstrated. The observers differ in 
model and method of fault dealing which cover most fault 
detection techniques. Models of the observers will be 
introduced as follows: 

3.1. Luenberger Observer (LO) 
The plant shown in (21)and (22) is influenced by additive 

faults ( )lf k on states and the additive faults ( )mf k  on the 
output. The matrices L  and  M are faults matrices 

( 1) ( ) ( ) ( )lx k Ax k Bu k Lf k+ = + +       (21) 

( ) ( ) ( ) ( )my k Cx k Du k Mf k= + +        (22) 

where  L and M  are known constant matrices.  
The states and output of observer is given by 

ˆ ˆ( 1) ( ) ( ) ( )x k Ax k Bu k Hr k+ = + +      (23) 
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ˆ ˆ( ) ( )y k Cx k=                (24) 

where H  is the gain matrix of the observer, r(k) is the 
residual and e(k) is the errors between the plant’s states and 
states of observer. 

ˆ( ) ( ) ( )r k y k y k= −               (25) 

ˆ ˆ( 1) [ ] ( ) ( ) ( )x k A HC x k Bu k Hy k+ = − + +   (26) 

Then the equation of the error between the states of plants 
and observers will be  

( 1) [ ] ( ) ( ) ( )l me k A HC e k Lf k HMf k+ = − + −  (27) 

and the residual becomes  

ˆ( ) ( ) ( ) ( ) ( )mr k y k Cx k Ce k Mf k= − = +      (28) 

It can be seen that the residual is zero if no faults and 
disturbances are present. The gain matrix of the observer can 
be found by pole placement method. 

3.2. Kalman Observer (State Estimation Observer) (KO) 

For the linear system which is represented in (29) and (30) 
Kalman observer can be formed through the prediction and 
correction of the states of plant to give 

( 1) ( ) ( ) ( )lx k Ax k Bu k Lf k+ = + +        (29) 

( ) ( ) ( ) ( )my k Cx k Du k Mf k= + +        (30) 

Predictive equation is given by   

( ) ˆˆ 1| ( | ) ( )x k k AX k k Bu k+ = +        (31) 

and the correction is realized by 

( )ˆ ˆ ˆ1| 1 ( 1| ) [ ( 1) ( 1| )]x k k x k k k y k Cx k k+ + = + + + − + (32) 

where K is correction matrix 
1( ) [ ( ) ]T TK P k C CP k C N −= +     (33) 

1( 1) ( 1) [ ( 1) ]T TK k P k C CP k C N −+ = + + +    (34) 

In the above algorithm, the covariance matrix is given by 

( 1) { ( 1| ) ( 1| )}TP k E e k k e k k+ = + +     (35) 

whereµ > 0 is the covariance matrix of the estimation error 
and satisfies the following matrix Riccati equation 

( 1)   ( )   T TP k AP k A BQB+ = +       (36) 

where the error of states is denoted as  
ˆ( ) ( ) ( )e k x k x k= −               (37) 

and N  is the covariance matrix of the faults on the output  

{ ( ) ( )}T
m mN E f k f k=            (38) 

If the prediction (31) is inserted in correction (32) it 
follows  

ˆ( | ) ( ) ( 1)[ ( 1)
ˆ( 1| 1)

ˆ( ( | ) ( ))]
Ax k k Bu k K k y k

x k k
C Ax k k Bu k

+ + + + 
+ + =  − + 

(39) 

The initial conditions are expressed as: 

var
T

Q iance
P BQB
=


=

               (40) 

3.3. Unknown Input Observer and Robust Fault 
Detection (UIO) 

The plant in (41) and (42) is influenced by additive faults 
( )lf k  on states and additive faults ( )mf k  on output, and 

then the linear system is represented as  

( 1) ( ) ( ) ( )lx k Ax k Bu k Lf k+ = + +        (41) 

( ) ( ) ( )my k Cx k Mf k= +            (42) 

To design the observer, let us consider the observer to 
have the parameters 1 2(  ,  ,   ,   and  ) R T K K H  in the 
form of 

1 2( 1) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( )
z k Rz k TBu k k k y k
x k z k Hy k

+ = + + +
 = +

   (43) 

ˆ ˆ( ) ( )y k Cx k=                 (44) 

The residual and the state errors are therefore given by  

ˆ( ) ( ) ( )
ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )m

r k y k y k
e k x k x k
e k I HC x k z k HMf k

= −
 = −
 = − − −

 (45) 

Leading to the dynamics of the states error (without
( )mHMf k ) as 

1

1

1 2

( 1) ( ) ( )
( ) ( )
[( ) ] ( )
[( ) ] ( )
( ) ( )l

e k A HCA K C e k
A HCA K C R z k
A HCA K C H K y k
I HC T Bu k

I HC Lf k

+ = − −
 + − − − + − − −
 + − −
 + −

 (46) 

The state error should converge to zero asymptotically 
when the time ( k →∞ ), this leads to the following 
conditions 

-1( ) ( ) ( )  T TH L CL CL CL=        (47) 

( )T I HC A= −             (48) 

1 ( )A I HC A= −             (49) 

where 

1

1

1 2

1 1

2

0
( ) 0

0
( ) 0
( ) 0

 
 

T

A HCA K C
I HC L

A HCA K C R
I HC T
A HCA K C H K

R A K C
K R H

 − − =


− =
 − − − =
 − − =
 − − − =
 = −


=

    (50) 
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At this stage one can find 1K  using the pole placement 
method by using ( )1 ,  A C and assume the observer is stable.  

The Eigen values of ( )LM t  are the same of the assumed 
poles. If all Eigen values of R are stable, ( ) e k will 
approach to zero asymptotically. Therefore, it is a key to 
design gains. The assumption is that the matrices (  ) A L is 
of a full column rank (This condition can ensure that 
( 1 0A HCA K C− − = ), so that ( -  ,  ) A HCA C is an 
observable pair. 

3.4. Augmented Robust Observer (ARO) 

Let us consider the plant is a linear system which is 
represented in (51) and (52) as  

( 1) ( ) ( ) ( )lx k Ax k Bu k Lf k+ = + +        (51) 

( ) ( ) ( ) ( )my k Cx k Du k Mf k= + +        (52) 

The second derivate of the abrupt and incipient faults 
should be zero  

( 2) 0f k + =                 (53) 

By using (51), (52) and (53), the augmented plant is 

( 1) 0 ( )
( 1) 0 0 0 ( 1) 0 ( )
( 2) 0 0 ( ) 0

x k A L x k B
f k f k u k
f k I f k

+       
       + = + +       
       +       

 (54) 

[ ]
( )

( ) 0 ( 1) ( )
( )

x k
y k C M f k Du k

f k

 
 = + + 
  

       (55) 

System in (54)and (55) can be simplified as 

( 1) ( ) ( )x k Ax k Bu k+ = +          (56) 

( ) ( ) ( )y k Cx k Du k= +              (57) 

where [ ]
0

0 0 0 , 0 and 0
0 0 0

A L B
A B C C M

I

   
   = = =   
      

 

The stability condition for observer is described in (58). 
To obtain asymptotically stable observer, a sufficient 
condition for this is that the pair ( A  and C ). 

2
zI A

n kk rank
C

 −
+ =  

 
           (58) 

When s=0 the condition will be as in (59). Otherwise, it 
will be as in (60) 

fA B
rank n kk

C D
 

= + 
 

          (59) 

zI A
rank n

C
− 

= 
 

              (60) 

ˆ ˆ ˆ( 1) ( ) ( ( ) ( ) ( ))x k Ax k K y k Du k Cx k+ = + − −    (61) 

Therefore the dynamics of states error is given by 

( 1) ( ) ( )e k A KC e k+ = −            (62) 

( 1) ( ) ( ) ( 2) ( )me k A KC e k Nf k Mf k+ = − + + +   (63) 

[ ]0 0 T
kN I=                (64) 

0 0
TTM M =                 (65) 

The condition for designing a stable observer is that the 
pair ( , )A C  is observable. The observer gain can be found 
using the poles placement method. Since the relationship in 
(53) is not always true ( 2) 0f k + ≠  and the bounded 
disturbance signal not affected by the gain parameter 
therefore needs to other type of observers like high gain 
observer. 

3.5. High Gain Observer (HGO) 

Consider the system as a linear system with faults to be 
represented as  

( 1) ( ) ( ) ( )lx k Ax k Bu k Lf k+ = + +         (66) 

( ) ( ) ( )my k Cx k Mf k= +              (67) 

The assumption in (53) is not always true for the system 
and in this case one can assume that the second derivate of 
the abrupt and incipient faults should be as 

( 2) 0f k + ≠               (68) 

Using, (67) and (68), the augmented plant can be given by 

( ) 0 ( )
( 1) 0 0 0 ( 1) 0 ( )
( 2) 0 0 ( ) 0

x k A L x k B
f k f k u k
f k I f k

       
       + = + +       
       +       

 (69) 

[ ]
( )

( ) 0 ( ) ( )
( )

x k
y k C M f k Du k

f k

 
 = + 
  

  (70) 

System in (58) and (59) can be simplified as 

( 1) ( ) ( ) ( ) ( )lx k Ax k Bu k Nf k Lf k+ = + + +    (71) 

( ) ( ) ( ) ( )my k Cx k Du k Mf k= + +       (72) 

where [ ]
0

0 0 0 , 0 , 0 ,
0 0 0

A L B
A B C C M

I

   
   = = =   
      

[ ]0 0 and 0 0
TT T

kN I V L = =   The observer is 
therefore given by  

ˆ ˆ( 1) ( ) ( ) ( )x k Ax k Bu k Hr k+ = + +         (73) 

ˆ ˆ( ) ( )y k Cx k=                 (74) 
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then the state of observer and the dynamic of error will be  
ˆˆ ˆ( 1) ( ) ( ) ( ( ) ( ) ( ))x k Ax k Bu k K y k Du k Cx k+ = + + − − (75) 

( 1) ( ) ( ) ( 2) ( )mr k A KC r k Nf k Mf k+ = − + + +  (76) 

To design an again matrix that effects on the disturbance, 
one needs to design a high gain using Lyapunov function as 
in following three steps: 

1- For continuous system, µ > 0  and µ is less than real 

parts of all Eigen values of A . So obtain a stable 
observer in discrete time model, µ < 1 . In our 
simulation, it has been chosen as 0.92µ = . 

2- Find the matrix P using discrete Lyapunov function: 

( ) ( ) 0T TI A P I A P C Cµ µ+ + − + =    (77) 

3- Calculate the observer gain matrix as  
1 TK P C−=  

It can be seen that when µ is increased the matrix P will be 
decreased. Therefore the observer is robust against the input 
disturbance and faults.  

3.6. Sensitive High Gain Observer (SHGO) 

Let us consider the linear system with multiplicative faults 
in the parameters and additive faults on the states, the model 
of the system is given as 

( 1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

i

o

x k A A x k B B u k w k
y k x k w k

+ = + ∆ + + ∆ +
 = +

 (78) 

Let us assume the following  
( ) ( ) , ( ) ( ) , ( ) ( ) ( ) ,i l o mw k Lf k w k Mf k d k Ax k Bu k= = = ∆ + ∆

( ) 0 0
( ) ( ) , 0 , , ,

( ) 0 0

n

n n

i

x k I
x k d k G H I N I

w k o

       
       = = = =       
             

*

0 0
0 0 ,
0 0 0

n

n

n n

I
E I

 
 =  
  

*

0
0 0 0
0 0

n

n n

n

A I
A

I

 
 =  
 − 

and

[ 0 ]n nC I I= −  
where n  is the number of states. The observer can be 
modified as  

( 1) ( ) ( ) ( )
( 1) ( )

( ) ( )

l

o

Ex k Ax k Bu k Gf k
Hd k Nw k

y k Cx k

 + = + +


+ + +
 =

    (79) 

where it is assumed that fault ( ( ) , ( 1)lf k d k +  and ( )mf k ) 
are bounded. The observer can be further modified to give   

1

( 1) ( ) ( ) ( ) ( )
ˆ ( ) ( ) ( )

S k A KC k Bu k Ny k

x k k S Ly k

ζ ζ

ζ −

 + = − + −


= +
   (80) 

where S E LC= +  and ,K L are the gain matrices. 

The following algorithm is implemented to design the gain 
matrix of observer:  

1- Incontinuous time system, choose µ > 0  as a 
positive number where µ is less than real parts of all 
Eigen values of A . For discrete time system, µ is 
chosen to be less than 1 in order to obtain stable 
observer. 

In the simulation of a DC motor, a discrete time model is 
considered, therefore 0.8µ =  and Sensitively =3 .  

2- The Lyapunov function is used to evaluate the matrix 
P  

1 1( ) ( ) 0T TI S A P I S A P C Cµ µ− −+ + − + =   (81) 

3- The observer gain matrix can be founded by  
1 TK SP C−=  

Let us assume the following  
0
0

m

L
M

 
 =  
  

and **s n nM Sensitively I=   

where sM  is a non-singular matrix. One can thus consider  

0 0
0 0

0

n

n

s s

I
S I

M M

 
 =  
  

 and 1

1

0 0
0 0

0

n

n

n s

I
S I

I M

−

−

 
 =  
 − 

  

Then it can be further obtained that 
1

1

nCS L I

AS L N

−

−

 =


= −
               (82) 

The dynamic equation of the plant can be expressed as 

( 1) ( ) ( ) ( ) ( 1)
( ) ( 1)

i

o

Sx k Ax k Bu k Gw k Hd k
Nw k Ly k

 + = + + + +


+ + +
 (83) 

The state of observer and the dynamic of states error can 
be represented in (84) and (85) respectively 

ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( )) ( 1)Sx k Ax k Bu k K y k Cx k Ly k+ = + + − + +
 (84) 

1( 1) [( ) ( ) ( 1) ( )]i oe k S A KC e k Gw Hd k Nw k−+ = − + + + +
 (85) 

4. Performance Evaluation 
In order to evaluate fault detection, diagnosis and 

performance, absolute error and relative error criteria are 
used. Absolute error is the amount of physical error in a 
prediction, while relative error gives an indication of how 
good a prediction is relative to the size of the parameter. Root 
mean squared error (RMSE), mean absolute error (MAE) 
and variance absolute error (VAE) are used to calculate 
absolute error. For relative error, mean absolute relative error 
(MARE) and variance relative error (VRE) are used. The 
above statistic formulas list as follows  
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( ) ( )( )2

1

1 ˆ
N

N

k

RSME k kγ γ
=

= −∑        (86) 

( ) ( )
1

1 ˆ
N

k

MAE k k
N

γ γ
=

= −∑            (87) 

( ) ( )( )
1

1 ˆ=
N

k

VAE k k MAE
N

γ γ
=

− −∑    (88) 

( ) ( )
( )1

ˆ1=
N

k

k k
MARE

N k
γ γ

γ=

−
∑             (89) 

where ( ) ( )ˆ, ,N k kγ γ  represent the number of samples, and 
the measured and desired values respectively. 

5. Case Study and Results 
5.1. General Model of Continuous Linear DC 

Servomotor 
A DC servomotor is a second order system with multiple 

inputs and multiple outputs. It has power of  550 P = watts 
and speed of 2500 n = rpm, and the motor has two pairs of 
brushes and two pole pairs. The model has been obtained 
according to the parameters of armature resistance, armature 
inductance, magnetic flux, voltage drop factor, inertia 
constant and viscous friction. The input signals are the 
armature voltage ( )AU t , which has been represented in 
simulations codes as a step function, and the torque load 

* ( )LM t , which is assumed equal to 0.1. The measured 
output signals are the armature current ( )AI t  and the speed 
of motor ( )tω . The values of the parameters were identified 
by the well-known least square estimation in the continuous 
time domain as follows [4]: 

Armature resistance ( aR ) =1.52 Ω,  
Armature inductance ( aL ) = 6.82*10-3Ω s 
Magnetic flux (Ψ ) = 0.33 V s 
Inertia constant (  J ) = 0.0192 kg m2 
Viscous friction ( 1FM ) = 0.36*10-3N m s 
Dry friction ( FOM ) = 0.11N m 
Voltage drop factor ( BK ) = 2.2*10-3V s /A 

The continuous time model of a DC motor as a state-space 
form is thus obtained as: 

[ ]

1

1

2

/ / ( )( )
/ / ( )( )

( )1 / 0
( )0 1 /

( ) ( )( ) 1 0 ( )
0 0

( ) ( )( ) 0 1 ( )

a a AA

F

Aa

L

AA A

L

R L La I tI t
J M J tt

U tL
M tJ

y t U tI t I t
y t M tt t

ωω

ω ω

− −Ψ     
=     Ψ −    

  
+   −   

        
= = +        
        





 (90) 

5.2. Comparison with an Additive Fault and Disturbance 
Matlab code has been used to implement the plant (DC 

servomotor) and the seven discrete time observers 
,  ,  ,  ,  ,  LO KO UIO ARO HGO SHGO and ODA with a 0.1 

second sample time, where the additive faults have been 
proposed on the states after 10 seconds and their faults 
matrices are assumed as: 

1.9 0.2 0.1 2
,

0.19 0.2 0.2 0.3
L M   
= =   − −   

 

The gain matrix of the observers ,   LO ARO and UIO
can be evaluated using the pole placement method. 
Therefore the poles of discrete observers are chosen as
(( 0.1,  0.2), ( 0.2,  0.3), ( 0.09,  0.267,-0.4, 0.4,− − − − − + +

0.6, 0.7)) − − respectively. Moreover, the tuning parameter 
for HGO  is chosen as 0.77µ = whereas for SHGO the 
parameter is 0.8µ =  and the Sensitively =3  while the 
gain matrices for HGO  are as follows: 

 0.1127 1.4705 0 0 0.3054 0.2157
0.0408 0.2872 0 0 0.0534 0.1677
0.0082 0.0216 0 0 0.0035 0.0229
0.0746 0.0953 0 0 0.0116 0.1779
0.0160  0.0307 0 0 0.0045 0.0412

0.2628 0.7982 0 0  0.1334 0.7650

H

− − 
 − 
 −

=  
− − − 
 − − −
 

−  

 

Furthermore, the gain matrix for SHGO  is obtained as 
follows: 

0.3480 0.1993 0.0024 0.1270 2.5842 0.1816
0.2889 0.0282 0.0613 0.0666 0.1816 2.3289

T

H
− − − 

=  − − − − 
 

However, the parameters for the adaptive diagnosis, which 
will verify the conditions in (8), are evaluated as follows: 

30.2 0 0.4 5.4
, 1 10 ,

0 0.15 5.4 73.6
H P −   
= = − ×   
     

2

1 0 1.0019 0.0250
,

0 1 0.0010 0.9863
Q Q

− −   
= =   − −   

 

Whereas for the adaptive fault diagnosis, the parameters 
are: 

1 2

0.27 0 1.02 0
,

0 0.23 0 1.02
   

Γ = Γ =   
   

 

To study the observers’ activity, three types of fault and 
disturbance are applied to the system: white noise (random 
with zero mean), coloured noise (randomly with mean) and 
non-Gaussian noise (randomly sinusoidal noise). The 
effectiveness of each observer design is tested through 
comparing the method of the gain matrix design, according 
to the performance criteria in0. Moreover, Table 1 to Table 3 
include the performance values of the first output of the 
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observer, while Table 4 to Table 6 show the performance for 
the second output of the observers. 

Table 1.  Performance of first o/p (with white noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.120267 2.167208 3.996138 116.0595 

LO 0.100324 1.808617 2.777941 15.57127 

KMF 0.064204 1.161176 1.129071 4.344264 

ARO 0.168401 3.028527 7.87E+00 4.861938 

HGO 0.124362 2.239697 4.278707 8.56527 

SHGO 0.157476 3.055033 5.570723 2.940003 

UIO 0.144559 2.596694 5.816543 3.398448 

Table 2.  Performance of first o/p(with coloured noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.019092 0.427659 0.036173 0.703466 

LO 0.027731 0.621314 0.076139 1.644972 

KMF 0.019989 0.44799 0.039443 0.765377 

ARO 0.019183 0.428832 3.73E-02 0.708286 

HGO 0.015208 0.340669 0.022952 0.478834 

SHGO 0.070687 1.720015 0.044504 2.421445 

UIO 0.001547 0.011916 0.001296 0.012322 

Table 3.  Performance of first o/p (with non-Gaussian noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.030709 0.558601 0.254729 2.805453 

LO 0.038196 0.699717 0.387232 1.836299 

KMF 0.027236 0.50024 0.195565 4.269008 

ARO 0.031101 0.557936 2.70E-01 3.401119 

HGO 0.025261 0.456212 0.175393 2.136725 

SHGO 0.07254 1.61624 0.550228 6.047357 

UIO 0.01916 0.34644 0.100604 1.878128 

Table 4.  Performance of second o/p (with white noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.01402 0.262031 0.049466 0.182056 

LO 0.021872 0.394609 0.131785 0.330156 

KMF 0.064207 1.162532 1.126176 2.96229 

ARO 0.006047 0.107936 1.03E-02 0.067895 

HGO 0.012038 0.218522 0.039348 0.152632 

SHGO 0.016857 0.313578 0.072445 0.244939 

UIO 0.016857 0.313578 0.072445 0.244939 

Table 5.  Performance of second o/p (with coloured noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.001256 0.013841 0.000756 0.009868 

LO 0.004594 0.102102 0.002261 0.064947 

KMF 0.02 0.449346 0.038483 0.376284 

ARO 0.000382 0.008505 1.52E-05 0.004933 

HGO 0.001191 0.009353 0.000765 0.007247 

SHGO 0.004108 0.035616 0.008875 0.049325 

UIO 0.004108 0.035616 0.008875 0.049325 

Table 6.  Performance of second o/p (with non-Gaussian noise) 

Observers type RMSE MAE VAE MARE 
OAD 0.002807 0.049004 0.002333 0.030822 

LO 0.006269 0.116427 0.010063 0.074227 

KMF 0.027243 0.501596 0.194464 0.637918 

ARO 0.001369 0.02422 5.39E-04 0.014252 

HGO 0.00297 0.047205 0.002383 0.029615 

SHGO 0.00508 0.070803 0.010494 0.070461 

UIO 0.00508 0.070803 0.010494 0.070461 

 

 

Figure 1.  First o/p ODA observer (with white noise) 
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Figure 2.  Second o/p of ODA observer (with white noise) 

 

Figure 3.  First o/p of additive fault observers (with white noise) 

 

Figure 4.  Second o/p additive fault observers (with white noise) 
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Figure 5.  First o/p of ODA observer (with coloured noise) 

 

Figure 6.  Second o/p of ODA observer (with coloured noise) 

 

Figure 7.  First o/p of ODA observer (with coloured noise) 
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Figure 8.  Second o/p additive fault observers (with coloured noise) 

 

Figure 9.  First o/pof ODA observer (with non-Gaussian noise) 

 

Figure 10.  Second o/p of ODA observer (with non-Gaussian noise) 

0 50 100 150 200 250 300
-0.5

0

0.5

1

1.5

2

Samples

O
ut

pt
s

 

 

Second o/p of the system
Second o/p of OAD
Second o/p of LO
Second o/p of KMF
Second o/p of ARO
Second o/p of HGO
Second o/p of SHG
Second o/p of UIO

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Samples

Ou
tp

ts

 

 
First o/p of the system
First o/p of FO

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Samples

Ou
tp

ts

 

 
Second o/p of the system
second o/p of FO

 



54 Ahmad Hussain Al-Bayati:  Model, Implement and Compare a New Optimal   
Adaptive Fault Diagnosis Observer with Six Observers 

 

Figure 11.  First o/p of observers (with non-Gaussian noise) 

 

Figure 12.  Second o/p of observers (with non-Gaussian noise) 

Furthermore, Figure 1, 5and 9 show the first output of the 
observers and Figure 2, 6 and 10 show the second output of 
the observers. The comparisons are also clear in Figure 3, 7 
and 11 for the first outputs while Figure 4, 8 and 12show the 
second outputs. The results of the comparisons according to 
the three types of fault and disturbance show that the new 
proposed observer OAD can more than compete with the 
other six good observers
( ),  ,  ,  ,  ,LO KO UIO ARO HGO SHGO ; it has the highest 
performance. 

6. Summary 
This paper presents the design of anew optimal adaptive 

diagnosis observer (ODA) which is designed for additive 
fault and disturbance; its gain matrix verifies the proposed 
Lyapunov conditions. In fact, the strategy of a design for 

dynamic estimated fault for the observer depends on the two 
positive pre-specified matrices: one tunes the estimated fault 
and the second matrix tunes the residual between the plant 
and the observer. In addition, in the presence of disturbance 
and fault, the performance of the ODA observer is tested 
through comparing it with six different good linear observers 
Luenberger Observer (LO), Kalman (Filter) Observer (KO), 
Unknown Input Observer (UIO), Augmented Robust 
Observer (ARO), High Gain Observer (HGO), and Sensitive 
High Gain Observer (SHGO). 

The assumed disturbance and faults are white noise, 
coloured noise and non-Gaussian fault. A MIMO DC 
servomotor has been used as a benchmark in the 
performance assessments. While the considered criteria of 
performance are root mean squared error (RMSE), mean 
absolute error (MAE) and variance absolute error (VAE) and 
mean absolute relative error (MARE).   
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However, the comparison results of the ODA with the six 
other good observers show that it is the best overall where it 
has a high ability to detect and diagnose different fault and 
disturbance type as well as it is the best in states estimation 
performance.  
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