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Abstract  In this paper, an analytical solution for a J-shaped beam deflection is given when the beam, which is clamped at 

one end and free at the other, is subjected to a point load (both in-plane and out-of-plane load). We assume that the J-shaped 

beam is made up of two parts, i.e., a straight beam and an elliptically curved beam and that the beam is clamped at a straight 

end. The solution which is based on Castigliano’s theorem is deduced by using numerical integration of the modified 

elliptical integral and the differentiation of the beam’s strain energy. The solutions are shown in exact expressions and the 

effects of the curvature on the J-shaped beam deflection are clarified. 

Keywords  Beam theory, Elliptically curved beam, Deflection, Castigliano's theorem, Numerical analysis 

 

1. Introduction 

Curved beams are widely used as parts of many kinds of 

machines and tools. Figure 1 is an example of a curved beam, 

which is generally called a J-bolt or hook bolt. The curvature 

of the J-bolt can be represented by the elliptical curve. 

For structural design, stresses and deflections of the 

curved beams are summarized in a textbook, e.g. [1]. For the 

analytical convenience, many researchers have been 

assumed that the curved beams have a circular curvature, e.g. 

[2]. The deformation of curved elastic beams including the 

effect of large displacement is also discussed by A. 

Shinohara et al. [3] and C. Gonzalez et al. [4], assuming the 

curvature as a circular arc. Only Dahlberg analyzed the 

elliptically curved beams [5] and considered both statically 

determinate and statically indeterminate problems for the 

beams. 

In spite of the practical use of elliptically curved beams as 

parts of structures, very little data on the beam with elliptical 

curvature is available. 

The purpose of the present paper is to obtain exact 

solutions for both in-plane and out-of-plane deflections in a 

J-shaped beam due to a concentrated load based on the 

Castigliano’s theorem and to demonstrate the accuracy and 

usefulness of the present approach. The solutions obtained 

from these formulae are compared with the alternative 

solutions available, including the results of a three 

dimensional finite element method (3- D FEM). 
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Figure 1.  Example of J-shaped beam, or hook-bolt 

2. Method of Solution 

2.1. In-plane Bending of J-shaped Beam 

The J-shaped beam, made up of two parts, a half ellipse 

curve and straight line, is investigated in this paper as shown 

in Figure 2. The half-axes of the ellipse are denoted a and b. 

The beam is clamped at one end and loaded with a force P at 

the free end. The force P acts parallel to the plane of the 

ellipse. The bending stiffness of the curved beam is EI .  

The equation of the ellipse is 

2 2

2 2
1.

x y

a b
                  (1) 

And we introduce the following θ as a parameter. 

cos , sin .x a y b              (2) 

Therefore infinitesimal arc length ds on the ellipse is  
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where, 
21 ( / )e b a   is the eccentricity [6]. Here, the 

aspect ratio b/a = β has the relationship with e by 

2/ 1b a e  . 

 

Figure 2.  Configuration of J-shaped beam 

The strain energy of the beam as shown in Figure 2 is 
written as [7], [8] 
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where, l is the length of straight portion of the beam. The 

contribution of the axial force and the shear force to the 

strain energy U has been neglected and we assume that 

cross-section of the beam is constant.  

Defining the integral term in Eq. (4) as  
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and applying the Castigliano's theorem, we obtain the 

deflection Av  at load P as  
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Introducing the deflection 8Pa3/(3EI), which is the 

maximum deflection of the cantilever beam of span 2a, we 

have a normalized deflection of Eq. (6) as  

The integral term E2(β) is function of the parameter β only 

and can be evaluated by the numerical integration. The case 

β=1 or β=0 gives that the ellipse becomes a circle or a 

straight line, respectively. In those cases, the definite integral 

E2(β) can be analytically integrated as   

   2 2

16
1 1, 0 0.5659.

9
E E


  　       (8) 

Since the axial rigidity kiJ is defined by P/vA, we obtain  

 2
2

.
3

4
2

iJ

A

P EI
k

av
a l E




 
 

 
 

       (9) 

2.2. Out-of-plane Bending of J-shaped Beam  

In this section out-of-plane deformation of J-shaped beam 

will be investigated. The beam is clamped at one end and 

loaded with a force P at the free end, see Figure 3. 

 

Figure 3.  Out-of-plane loading of J-shaped beam 

The force P acts perpendicular to the plane of the ellipse. 

The bending stiffness of the curved beam is EI and the 

torsional rigidity GKt. 
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Differentiation of Eq. (1) gives: 

2
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2
.

dy b x x

dx ya y
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The infinitesimal length of the beam ds is also given:  
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Introducing the angle   as shown in Figure 3, one 

obtains 
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Next, we study the bending moment on the beam 

cross-section situated at angle  . The bending moment Mb 

and the torsional moment Mt are acting at this cross-section. 

Assuming its influence on the beam deflection is negligible, 

the shear force has been omitted. At the cross-section at 

angle  , the moment equilibriums hold as follows:  
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The elastic strain energy stored in the beam can now be 

calculated. We have 
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where L is the total arc length of the beam. 

Following the Castigliano's theorem, the deflection wA of 

the beam end at the loaded point can be calculated. Then we 

obtain,  
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Substitution Eq. (12) into Eq. (15) yields 
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where I1(β), I2(β) are the integral terms in Eq. (15) and  

are rewritten 
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After inserting the values of β, which determines the 

configuration of the ellipse, the values of the definite 

integrals in Eq. (17) are obtained through the numerical 

integration. For the limiting case β=0 (the arc reduce to the 

straight line) and β=1 (circular curvature), we have 

   1 10 8 3 2.6667, 1 2 1.5708.I I        (18) 

Dividing Eq. (16) by (8Pa3)/(3EI), one obtains the 

following non-dimensional deflection.   
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Axial rigidity of the beam is given as  
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3. Numerical Calculation 

Based on the above derivations, the deflections for both 

the in-plane and the out-of-plane behavior of the J-shaped 

beam are calculated by a closed form solution. The 

deflections are evaluated as a function of aspect ratio b/a or a 

function of beam length l/a and numerical results are 

compared with the 3D-FEM solutions.  

3.1. In-plane Bending of J-shaped Beam  

First, we evaluate the integral E2(b/a), expressed by Eq. 

(5). Figure 4 shows the definite integral values as function of 

b/a. When b/a=1, one obtains E2(1)=1. This agrees with 

what can be found in some handbooks.  
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The non-dimensional displacement curves provided by Eq. 

(7) for J-shaped beams are plotted in Figure 5 and Figure 6. 

It can been seen that the deflection is proportional to the 

parameter b/a and have maximum values when b/a=1, i.e., 

circular arc.  

 

Figure 4.  Definite integral E2(β) 

 

Figure 5.  In-plane non-dimensional deflection as function of b/a  

 

Figure 6.  In-plane non-dimensional deflection as function of l/a 

In order to validate the proposed method, the three 

dimensional finite element results are compared with those 

obtained by the present method under the following 

dimensions and physical properties: 

Young's Modulus: E=206GPa, 

the Poisson's ratio: ν=0.3, 

In-plane load: P=1000N, 

Beam length of straight portion: l=75, 165mm, 

Major axis of the ellipse: a=25mm (l/a=3.0, 6.6),  

Beam diameter: d=12mm, 

Minor axis of the ellipse:b=25, 12.5, 0.0mm. 

The J-beam is divided into about 10,000 quadratic 

tetrahedra elements as shown in Figure 7. The results 

obtained by the two methods are compared in Table 1 and 

Figure 8. Good agreement between the two methods can be 

observed. The difference between the two theory is mainly 

caused by the shear force acting on the cross-section. 

 

Figure 7.  3D-FEM mesh examples of J-shaped beam (Quadratic 

tetrahedral element is employed) 

 
Figure 8.  Comparison between present theory and 3D-FEM results in 

in-plane deflection of J-shaped beam  

Table 1.  Comparison of in-plane deflection at loading point 

b/a l/a Present [mm] 3D-FEM [mm] 

0.0 
3.0 

6.6 
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3.2. Out-of-plane Bending of J-shaped Beam  

Next, we consider out-of-plane deflections of J-shaped 

beam.  

Figure 9 shows the definite integral values of I1(b/a), 

I2(b/a), expressed by Eq. (17). The integrals I1(b/a) and 

I2(b/a) are related to the bending and the torsional 

deformation, respectively. Hence, it is found that the torsion 

contributes to the deflection when b/a → 1. 

 

Figure 9.  Definite integrals I1(b/a) and I2(b/a) 

For a beam with a circular cross-section, we have, using 

ν=0.3: 

1.3.
t

EI

GK
              (21) 

The normalized out-of-plane displacement provided by 

Eq.(19) for J-shaped beams are plotted in Figure 10 and 

Figure 11. When l/a=0 and b/a=0, the J-shaped beam 

coincides with the straight one of the length 2a. It can be seen 

that the deflections increase as the parameters b/a and l/a 

increase.  

 

Figure 10.  Out-of-plane non-dimensional deflection of the J-shaped beam 

as function of b/a 

 

Figure 11.  Out-of-plane non-dimensional deflection of the J-shaped beam 

as function of l/a 

Comparison of 3D-FEM solutions with present solutions 

are tabulated in Table 2 and plotted in Figure 12. The 

J-shaped beam has the same geometrical and physical 

properties as those given in previous section other than 

out-of-plane load P=100N. In spite of concise calculation of 

the present approach, good agreements are again observed 

between the present results and the 3D-FEM ones. 

Table 2.  Comparison of out-of-plane deflection at loading point 

b/a l/a Present [mm] 3D-FEM [mm] 

0.0 
3.0 

6.6 

0.1993 

0.9709 

0.1986 

0.9972 

0.5 
3.0 

6.6 

0.2113 

0.9828 

0.2287 

1.045 

1.0 
3.0 

6.6 

0.2361 

1.008 

0.2547 

1.107 

 

Figure 12.  Comparison of present theory and 3D-FEM results in 

out-of-plane deflection 
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4. Conclusions 

In this paper, analytical expressions are obtained for both 

in-plane and out-of-plane displacement of a J-shaped beam 

subjected to a concentrated load at free end. In the analysis, 

the Castigliano’s theorem is employed and the deflections of 

the beam are given including definite integrals and are 

evaluated through a numerical integration algorithm. 

Comparing with the three dimensional finite element 

method, it is demonstrated that the present method is useful 

and accurate, while requiring only a limited calculation. 

If in-plane and out-of-plane load act on a J-shaped beam 

simultaneously, we can estimate the deflections or stresses of 

the beam by superposing each results. 
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