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Abstract  This study addresses a discretization method with Lebesgue sampling for a type of nonlinear system, and 
proposes a control method based on the discrete system model. A cart- pendulum system is used as this example. Applying 
this control method to some real systems, how to implement the controller is a crucial problem. To overcome the problem, 
an impulsive Luenberger observer is introduced with a numerical forward mapping from the current system state to the 
one-step ahead state by well-known Runge-Kutta method. As the result, a cart- pendulum system with a quantizer, whose 
quantization interval is relatively large amount, can be controlled effectively. Numerical simulations are performed to ver-
ify the effectiveness of the proposed method. 
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1. Introduction 
Discrete-time control has nice properties and is natural 

for real systems with respect to the implementation view-
point. This assertion is based on difficulty to realize an ar-
bitrary short sampling interval. That means a control law 
described in continuous-time systems basically cannot be 
implemented to real systems as it is, with the exception of 
analog devices use. Hence, digital control systems with a 
time-invariant and constant sampling interval are usually 
utilized to implement a desired control law by some digital 
devices including computers, DSPs and FPGAs[1]. 

Recently some interesting extensions on the digital con-
trol are discussed. Lebesgue sampling is one of such topics. 
In usual digital control, the update of the control input is 
performed every sampling interval, and the sampling inter-
val is given by chopping the time axis at some regular in-
tervals. On the other hand, in the Lebesgue sampling case, 
the update of the control input is performed whenever the 
output of the system exceeds the given levels which are 
decided by chopping the output range like chopping the 
time axis in the usual digital control case[2]. In other words, 
the control input is updated whenever some events on the 
output arise. In this sense, the digital control with Lebesgue 
sampling can be regarded as an event-based control[3,4]. As 
other related studies, a comparison between periodic and 
Lebesgue sampling for one-dimensional systems can be 
found in[5]. In the literature, it is shown that some impusive 
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control based on the Lebesgue sampling may reduce the 
average sampling frequency to achieve the almost same 
performance as the periodic sampling case. 

The concept of the Lebesgue sampling-based control is 
very natural for systems with many digital sensors such as 
encoders, and also for networked-systems. Typically we can 
say cheaper sensors are desired from the cost viewpoint for 
marketed products such as cars. Such cheaper sensors, 
however, don't provide good resolution in general, and a 
typical controller cannot achieve good performance. Hence, 
there are several studies on observer-based control which 
considers the quantization effect of low-resolution sensors 
to recover good control performance[6-9]. 

The systems via some networks are another example of 
Lebesgue sampling systems. The information via networks 
is not continuous but intermittent. The arrival intervals be-
tween previous and current information are also not fixed 
and varying. Hence, if a natural conception on the system 
via networks leads to the control law updated when the new 
information comes, i.e. event-based control. Montestruque 
and Antsaklis[10] addressed this issue and proposed an in-
teresting model-based control for networked systems. Their 
and our previous methods in[7] have many similar points. 

This paper is an extension of our previous method in[7]. 
Especially a cart-pendulum system, which is nonlinear, is 
used as a specific example. In order to see through a discre-
tization method with Lebesgue sampling, the discretization 
method for a simple nonlinear system is discussed first of 
all. Next the discretization method for the cart-pendulum 
type of nonlinear systems is discussed. The control purpose 
of the pendulum system is to keep the rotational speed of 
the pendulum. Once the discrete system is obtained, a con-
trol law based on the model is derived to realize the purpose. 
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The control law can be designed by the well-known linear 
servo control theory[11] because the pendulum system can 
be represented practically by a linear system by the pro-
posed discretization with Lebesgue sampling. However, 
applying this control method to some real systems, the im-
plementation of the controller becomes a crucial problem. 
To overcome the problem, according to the analogy of[7], 
an impulsive Luenberger observer is introduced. The im-
pulsive Luenberger observer requires the forward mapping 
from the current system state to the one-step ahead state. 
Hence we also describe a numerical forward mapping by 
well-known Runge-Kutta method. As the result, a cart- 
pendulum system with a quantizer, whose quantization in-
terval is relatively large amount, can be controlled effec-
tively. Numerical simulations are performed to verify the 
effectiveness of the proposed method. 

2. Definition of Quantizer 
A quantizer, , used in this study is defined as 

           (1) 
where  is an input value to be quantized, and  is the 
quantization interval, and the function  is the 
rounding function to the nearest integer. For example, Fig. 1 
illustrates the quantization of  by the quantizer, , 
with . Let us define a time when the quantizer output 
changes as . In this paper we call the time, , the inter-
rupt time. Hence  shows the nest interrupt time. Note 
that  for all  is NOT constant. Introduce the 
notation to distinguish a quantized value, , from an 
original value, , at  by . 

 
Figure 1.  Comparison of the linear relation, , with the quantizer 
output, , in this case of  

3. Discretization of Simple Nonlinear 
System by Lebesgue Sampling 

In this section, in order to see through the discretization 
method with Lebesgue sampling, a simple nonlinear system 

               (2) 
is discretized by the discretization method. The following 
rearrangement of  can hold in general by using the chain 
rule. 

            (3) 
Substituting (3) into (2) yields 

             (4) 
Suppose input of this system during the interval from  

and , , be constant. Integrating both term of (4) 

 (5) 

Rearranging (5), we have 

   (6) 

   (7) 

where 

 
Introducing a new input, , the present input to (7) 

can be rewritten by 

       (8) 

Hence (7) comes to 
         (9) 

Any controller will be designed for the above linear dis-
crete formulation (9). 

 
Figure 2.  The schematic figure of a cart-pendulum model. ,  
and  show the angle of the pendulum, the center of gravity (CoG) 
of the pendulum, and the CoG of the cart, respectively 
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4. Discretization of Simple Nonlinear 
System by Lebesgue Sampling 

A cart-pendulum system in Fig. 2 is used as a plant to be 
controlled in this paper. Its physical parameters and vari-
ables are shown in Table 1. The equations of motion of the 
cart-pendulum system are given by 

(10) 

The following equation of motion of only the pendulum 
can be extracted from (10). 

   (11) 

Table 1.  Physical parameters and variables of the cart-pendulum 

 

The acceleration of the cart, , is regarded as the input 
to the pendulum system (11). 

   (12) 
The following rearrangement of the angular acceleration, 
, can hold in general. 

         (13) 
Substituting (13) into (12) yields 

  (14) 

Suppose the acceleration of the cart during the interval 
from  and , , be constant. Integrating both 
term of (14), 

   (15) 

Rearranging (15), we have 

   (16) 

 (17) 

where 

 
Introducing a new input, , the present input to (17), 

the cart acceleration, , can be rewritten by 

      (18) 

Hence (17) comes to 
        (19) 

In (19), define the state as  and the system 
matrices as  and . A discrete system of the 
cart-pendulum system derived by Lebesgue sampling is 
finally given by 

          (20) 
We're interested in a class of nonlinear systems which 

can be shown by the discrete system representation (20) or a 
time-varying discrete system representation with the same 
structure with (20). Unfortunately, at the moment, we can-
not describe such class clearly yet. But a piston-crank 
model, which can present combustion engine dynamics, can 
be classified into this class. We also try to extend the dis-
cretization by Lebesgue sampling with multivariable case 
although this study just think the case only a single variable, 

, is quantized. Those issues are our ongoing works. 

5. Control System Design 
This paper considers a control task to realize con-

stant-speed rotational motion for the pendulum of a 
cart-pendulum system. This task can be formulated by a 
servo control design to keep the state  of (20) 
be a constant desired value. 

To derive the following control system, we assume that 
the angular velocity of the pendulum, , can be known 
at each Lebesgue sampling. This implies 

              (21) 
with . Of course, this assumption is not valid for the 
real system. Hence, this issue will be discussed later, and 
can be solved by combination of some numerical integra-
tion method and impulsive Luenberger observer, which is 
an extension of our previous method proposed by an author 
[7]. 

Basically the control input, , in (20) is designed by 
the well-known optimal type-1 servo design[11]. Consider-
ing a quadratic cost function under the discrete system (20); 

        (22) 

the optimal state feedback control law, , is given by 
  (23) 

where  is the positive symmetric matrix as the solution 
of the following discrete-time Riccati equation; 

  (24) 
Here, define a reference value as , and consider an 

augmented system as follows: 

 (25) 

A state feedback control law for (25) 

         (26) 
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leads to the optimal type-1 servo controller for the closed- 
loop system. The feedback gain is given by 

    (27) 

where  is the optimal feedback gain in (23). 

6. Implementation 
During an interval from  and ,  is constant 

and given by (26). The corresponding cart acceleration, 
, is calculated by (18). Note that  is given as 

a prior information, and is available for calculation of (18) 
because  is an output of the quantizer, (1), and the 
quantization interval of (1) is known preliminarily. 

From (10), the cart acceleration, , can be represented 
by 

(28) 

Therefore, once  is obtained from , the hori-
zontal force applied to the real cart, , is derived by 

 (29) 

Note that  in (29) is continuous with respect to time, 
and varying even though ,  and  are 
constant during the Lebesgue sampling interval, because 
(29) requires continuous values of  and . 

As aforementioned, new measurement data, , is ob-
tained only at the interrupt time , i.e. only when the 
quantizer output changes. In this sense,  and  
are known a priori because  is the quantized value of 
the original . During the interrupt times, the original sig-
nals, and  cannot be measured. So (29) cannot be 
applied and implemented to the system directly. Hence in 
the following section, we propose a numerical method to 
solve the problem. 

Here we also give a remark to control the rotational di-
rection of the pendulum. The rotational direction depends 
on whether define  or 

 with the quantizer interval . 

6.1. Numerical Integration of Nonlinear System by 
Runge-Kutta Method in SDC form 

To overcome the addressed issue on the implementation, 
the key is to introduce an impulsive Luenberger observer. 
This scheme is a kind of analogy in [7] and [10]. Such im-
pulsive Luenberger observer, however, requires the map-
ping of the current system state to the one-step ahead state. 
That means a discrete system of the target nonlinear system 
is required. However, it is a difficult problem to obtain such 
discrete time system. We regard the difficulties is caused by 
the fact the input of the system affects to the system matri-
ces in the case of the discretization for nonlinear systems. 
That is, the input must be known a priori over the interval 
for discretization. This requirements causes a circular ref-

erence problem in control system design because the system 
matrices are required a prior to design the input. In our case, 
on the other hand, the discrete system of the target nonlin-
ear system is used only when the state estimation is updated 
posteriori, i.e, after each interrupt. The diagram of the pro-
posed controller is shown in Fig. 3. In the following part, 
the detail is derived by using the cart-pendulum system as 
the example. 

 
Figure 3.  The diagram of the impulsive Luenberger observer-based con-
troller for Lebesgue sampled systems 

6.2. Non-linear System Discretization by the Runge- 
Kutta Method 

Assume that input force  from  to  is constant. 
Let a state vector of the system be  

 
Motion equations of the system (10) can be changed the 

formula 
               (30) 

          (31) 
(30) is approximated by using the Runge-Kutta method as 
follows 

   (32) 
where 

 
Rearranging (31) into the approximated formula,  is 

obtained as follows 
 

For simplicity let  
           (33) 

In a similar way  is obtained as follows 

 
For simplicity let , 

 

      (34) 
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Rearranging (33) into (34),  is obtained as follows 

 (35) 

For simplicity let, , 
 

             (36) 
In a similar way  are obtained as follows 

        (37) 

        (38) 

Thus a discretized formula of (31) can be described as 
follows 

 (39) 

6.3. Impulsive Luenberger Observer 
In the system if the angular velocity  can not measure 

then  need to be estimated. Consequently  is esti-
mated by using ILO which consider the quantization of the 
pendulum angle. ILO is defined as follows 

  (40) 

where  is estimated state, and 

 
Assume that the pendulum angle  and the cart po-

sition  can be measured, coefficient matrix of the output 
equation is as follows 

 
The observer gain  can be obtained so that all eigen-

values of  are inside the 
unit disc. 

7. Numerical Simulation 
In the following simulation the control input and the es-

timated states can only be updated at the quantizer transi-
tion time. The quantization interval . Set-
ting the constant reference  in the system (25), 
the angular velocity of the system is controlled to the con-
stant velocity . 

At first simulation results with the measurement velocity 
 by using the servo control law are shown. It is shown 

that what the quantization interval  influence the simu-
lation results by comparing each result with 

,  and . 
Next simulation results with only the cart position  

and the quantized pendulum angle  are show. In these 
results the other states is estimated by using ILO (40) with 
the discrete system (39). The scheme of the presented con-
trol system is shown in Fig. 4. 

 

Figure 4.  Scheme of the presented control system. Observable states are 
the quantized pendulum angle  and continuous cart position 

 where  is a time when the quantizer output changes. From the 

observable states, we estimate  by Impulsive Luenberg-

er observer (ILO). From estimated state  and target value, control 
input  is determined by a conventional servo controller. 

7.1. Angular Velocity Control with the Measurement  

In this simulation integral calculation function is rkf45() 
with MaTX Windows9x/ME/NT/2000/XP(Visual C++ 2005) 
version 5.3.37. Step size for rkf45() is . Initial condi-
tion of the pendulum angle is , the pendulum 
velocity is , otherwise 0. Weight matrices 
are set to  and  for  and . 

 
Figure 5.  The pendulum angular velocity of the cart pendulum 

 
Figure 6.  The pendulum angular velocity error from constant reference 
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Figure 7.  The input to the cart 

 
Figure 8.  The pendulum angle of the cart pendulum 

 
Figure 9.  The cart position of the cart pendulum 

 
Figure 10.  The cart velocity of the cart pendulum 

From Fig. 5 and Fig. 6, the pendulum velocity  
achieve the constant reference  rad/sec. From Fig. 8, the 
pendulum angle monotonic increase by the pendulum ve-
locity which achieve the constant reference. From Fig. 7, 
the input force to the cart updates at the quantizer transition 
time. From Fig. 9 and Fig. 10, the cart position and speed 
change with the input force which designed the above. 

Next, it is shown that what the quantization interval  
influence the simulation results by comparing each result 
with ,  and 

. In these results, simulation conditions 

are the same as the above simulation without the quantiza-
tion interval . Some simulation results are shown as fol-
lows. 

 
Figure 11.  The pendulum angular velocity steady error from constant 
reference  rad/sec with the quantization interval . 
In this result, simulation conditions are the same as the above simulation 
without  

 
Figure 12.  The pendulum angular velocity steady error from constant 

reference  rad/sec with the quantization interval . In 
this result, simulation conditions are the same as the above simulation 

 
Figure 13.  The pendulum angular velocity steady error from constant 
reference  rad/sec with the quantization interval . 
In this result, simulation conditions are the same as the above simulation 
without  

Table 2.  The influence of  with , 

 and  

 

From Fig. 11 to Fig. 13 and Table 2, the steady error 
from the constant reference with shorter quantization inter-
val is less than the steady error with larger quantization 
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interval. In these results, square mean input of the system 
increase by denominator of (29). The denominator has 

. This term take a small value with shorter 
quantization interval . 

7.2. Angular Velocity Control with ILO 
In this simulation integral calculation function is rkf45() 

with MaTX Windows9x/ME/NT/2000/XP(Visual C++ 2005) 
version 5.3.37. Step size for rkf45() is . Initial condi-
tion of the pendulum angle is , the pendulum 
velocity is , otherwise 0. Weight matrices 
are set to  and  for  and . The 
observer gain  is designed discrete-time linear quadratic 
regulator with controllable pair  

. Weight matrices are set 
to  and  for 

 and the correction term. 

 
Figure 14.  The pendulum angular velocity of the cart pendulum with ILO. 
Red dashed line is the pendulum angular velocity . Blue solid line is the 
estimated pendulum angular velocity by ILO 

 
Figure 15.  The pendulum angular velocity error from constant reference 

 rad/sec with ILO 

 
Figure 16.  The input to the cart 

 
Figure 17.  The pendulum angle of the cart pendulum with ILO 

 
Figure 18.  The cart position of the cart pendulum with ILO. Red dashed 
line is the cart position. Blue solid line is the estimated the cart position by 
ILO 

 
Figure 19.  The cart velocity of the cart pendulum with ILO. Red dashed 

line is the cart speed. Blue solid line is the estimated cart speed by ILO 

From Fig. 14 and Fig. 15, the pendulum velocity  
achieve the constant reference  rad/sec. From Fig. 14 to 
Fig. 19, the input force and estimated states are updated at 
the quantizer transition time. The estimated states achieve 
the real states. 

8. Conclusions 
In this paper, first of all, a discretization with Lebesgue 

sampling has been considered for a type of nonlinear sys-
tem such as a cart-pendulum system. For example the 
cart-pendulum system is converted into the corresponding 
discrete system (20), which is a time-invariant linear system, 
by the proposed method. Hence many current control de-
sign schemes can be applied to the discrete system. On the 
other hand, the implementation of the controller is a crucial 
problem, and to overcome this problem, in this paper, an 
impulsive Luenberger observer has been introduced. This 
observer requires basically the mapping the current state to 
the one-step ahead state of the nonlinear system, and then a 
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numerical integration method based on Runge-Kutta has 
been also derived to give such mapping. Hence the imple-
mented controller is given by the combination of the impul-
sive Luenberger observer and the numerical integration 
method. With the controller, the output of the closed-loop 
system is controlled to be a desired value even though the 
controller works only when the quantization occurrs. The 
numerical simulation shows the effectiveness of the pro-
posed system. As future works, we're now interested in the 
class of nonlinear systems to which the proposed system 
can be applied. A combustion engine piston-crank model 
might be an example. 
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