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Abstract  Assembly line balancing problem (ALBP) is the allocating of assembly tasks to workstations with consideration 
of some criteria such as time and the number of workstations. Due to the complexity of ALB, finding the optimum solutions 
in terms of the number of workstations in the assembly line needs suitable meta-heuristic techniques. Genetic algorithms have 
been used to a large extent. Due to converging to the local optimal solutions to the most genetic algorithms, the balanced 
exploration of the new area of search space and exploitation of good solutions by this kind of algorithms as a good way can be 
sharpened with some meta-heuristic. In this paper, the modified cellular (grid) rearranging-population structure is developed. 
The individuals of the population are located on cells according to the hamming distance value among individuals as 
neighbours before regenerations and a family of cellular genetic algorithms (CGAs) is defined. By using the cellular structure 
and the rearrangements, some of the family members can find better solutions compared with others in the same iterations, 
and they behave much more reasonably in order to acquire the solution in terms of the number of workstations and the 
smoothly balanced task assignment on criteria conditions.       
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1. Introduction 
From ancient times to the modern day, assembly lines 

(ALs) have been modified as long as the long-term optimal 
design of the lines has surely been the most important mile-
stone in the manufacturing process. Whereas designer of 
ALs (mostly) deal with many assembly tasks (around 400 
tasks in a typical car ALs) and some critical limitations in 
design, the optimal solution can be achieved via a variety of 
heuristic ideas that must be massively computerized. Most of 
the work related to ALs concentrates on the assembly-line 
balancing (ALB) problem. The ALB problem deals with the 
assignment of the tasks (as duties) among workstations (or 
operators) so that the precedence relations are not violated, 
the total time for tasks in each workstation does not exceed 
the cycle time and a given objective function is considered to 
be optimized. The ALB problem falls into the NP-hard class 
of combinatorial optimization problems[1]. If there are n 
tasks and r preference constraints, then there are n!/2r pos-
sible task sequences[2]. Therefore, it can be time consuming 
for optimum-seeking methods to gain an optimal solution 
within this extremely large search space for some manufac-
turing operations, such as car assembly lines with more than 
100 workstations.  
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Despite the vast search space, many studies have tried to 
solve the ALB problem using optimum-seeking methods, 
such as linear programming[e.g. 3], integer 
programming[e.g. 4], dynamic programming[e.g. 5] and 
branch- and- bound approaches[e.g. 6]. However, none of 
these methods has proven to be of practical use for large 
assembly lines due to their computational inefficiency. 
Hence, the next research efforts have been directed towards 
the development of heuristics[e.g. 7, 8] and meta-heuristics 
such as simulated annealing[e.g. 9], tabu search[e.g. 10] and 
genetic algorithms[e.g. 11]. 

Due to the complexity of the ALB problem, a growing 
number of researchers have employed genetic algorithms 
(GAs), and most industrial engineers also use them to opti-
mize problems which are difficult to find an optimal solu-
tion for in a reasonable time. GAs provides an alternative to 
traditional optimization techniques by using directed ran-
dom searches to locate optimum solutions in complex 
search spaces. Hence, because of the popularity of GAs’ 
application to the ALB problem, some papers exist which 
review the subject, including Dimopoulos and Zalzala[12], 
Scholl and Becker[13] and Tasan and Tunali[14] have all 
tried to modify GA using modified selection techniques, 
individual representation, crossover techniques etc. in order 
to improve the algorithms. 

As having different priorities and objectives that GAs are 
trying to optimize as fitness functions, the ALB problem 
can be classified into some classes with different objectives. 
Additionally, the GAs’ setting in chromosomes representa-
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tions, initial population, and operation mechanisms were 
considered by GA designers to be like challenge and 
benchmarking. 

1.1. ALB Problem Classes and their Objectives 

Before making any decisions about assembly line design, 
the ALB problem must be classified according to the objec-
tives and what needs to be developed. Figure 1 illustrates 
the classification of ALBP based on the objective function 
and problem structure[2,13,15-16]. 

 
Figure 1.  Classification of assembly line balancing problems and our 
research boundaries. 

Scholl[16] has defined several versions of the ALB 
problem which have arisen by varying the objective func-
tion. Type-F is an objective-independent problem, which is 
to establish whether or not a feasible line balance exists for 
a given combination of n (number of workstations) and c 
(cycle time). Type-1 and Type-2 have a dual relationship; 
the first one tries to minimize the number of workstations 
for a given cycle time, and the second one tries to minimize 
the cycle time for a given number of workstations. Type-E 
is the most general problem version, which tries to maxi-
mize the line efficiency by simultaneously minimizing the 
cycle time and the number of workstations. Finally, Kim et 
al.[15] has explained that Type-3, 4 and 5 correspond to the 
maximization of workload smoothness, the maximization of 
work relatedness and multiple objectives with Type-3 and 
Type-4, respectively. 

Based on the problem structure, ALB problems can be 
classified into two groups. While Becker and Scholl[16-17] 
have categorized that the first group includes single-model 
assembly-line balancing (SMALB), multi-model assem-
bly-line balancing (MuMALB), and mixed-model assem-
bly-line balancing (MMALB), the second group illustrated 
by Baybars[2], includes simple assembly-line balancing 
(SALB) and general assembly-line balancing (GALB). The 
SMALB problem involves only one product. The Mu-
MALB problem involves more than one product produced 
in batches. The MMALB problem refers to assembly lines 
which are capable of producing a variety of similar product 
models simultaneously and continuously (not in batches). 
Additionally, the SALB problem, the simplest version of 
the ALBP and the special version of the SMALB problem, 
involves the production of only one product, where the as-

sembly line has features such as a paced line with a fixed 
cycle time, deterministic independent processing times, no 
assignment restrictions, serial layout, one-sided worksta-
tions, equally equipped workstations and fixed-rate launch-
ing[14]. The GALB problem includes all of the problems 
that are not SALB, such as the balancing of mixed model, 
parallel, U-shaped and two-sided lines with stochastic de-
pendent processing times; thereby, more realistic ALBPs 
can be formulated and solved. 

Due to setting up expenditure, minimizing the number of 
workstations is frequently important than other criteria and, 
on the other side, the utility improvement of each work-
station in terms of balancing the job among workstations in 
order to reduce the total idle time in manufacturing, is con-
siderably more important. As a consequence, in this paper, 
as shown by the tickets in Figure 1, a combination of 
Type-1 and Type-3 based on objective, and; SMALB and 
SALB based on problem structure is considered and used.  

 
Figure 2.  GAs Parameters and setting for ALBPs- sources:[14]. 

Depending on the problem to be solved by GAs, some 
GA parameters and structures can be influenced. As Tasan 
and Tunali[14] mentioned in their paper, they have re-
viewed the active literature based on specifications of prob-
lem, GA and performance. As seen in Figure 2, problem 
specifications contain the main features of the problems 
studied, GA specifications summarize information about the 
GA methods developed, initialization of the population, 
chromosome (individual) representation, fitness function, 
genetic operators, selection and survival schemes (elitism 
techniques), feasibility issues, and termination criteria (final 
conditions that specify the end of iteration in GA)- and fi-
nally, performance specifications include information about 
the data sets used to test GA, other solution methods to, 
which the performance of GA was compared, the computa-
tion time and the implementation language. 

In[14], the authors have surveyed a lot of researchers’ 
work that each has introduced and modified the GA for the 
ALB problem. Some of them worked on chromosome rep-
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resentation[e.g. 18,19-20]; some of them have presented 
modified GAs on fitness function as the basis of objective 
function[e.g. 11, 21]. Some of the customized crossover 
operators utilized include the modified bin-packing cross-
over (modified BPCX)[11], the modified partially mapped 
crossover (modified PMX)[22], the heuristic structural cro- 
ssover (HSX)[15], the informed order-based crossover[23], 
and the order crossover[19]. 

Tasan and Tunali[14] have reviewed the published lit-
erature based on the experimental settings in which the 
proposed GAs have been implemented, the other solution 
methods to which the GAs performance has been compared, 
the computation time required and, finally, the implementa-
tion language employed. However their paper has not tried 
to compare the performances of the reviewed GAs; it only 
presents the findings of the comparative studies reported in 
each work. 

Genetic selection operation is a vital aim to find suitable 
parents to reproduce offspring and make a new population. 
The initial step always starts with a simple question “How 
important and influential is it that the selection of parent 
mechanism depends on similarities and diversities between 
parents”. Based the literature, maintaining the population 
diverted on a cellular structure called cellular automaton 
(CA), was first introduced by Manderick and Spiessen[24]. 
They presented a cellular automata genetic algorithm 
(CAGA) as a kind of decentralized GA in which the popu-
lation is arranged in a grid (usually two dimensions). CA-
GAs have been successfully implemented on a parallel 
platform used as a computational machine[25] and have 
also been used for optimization and simulation prob-
lems[26]. then Cao and Wu[27] firstly brought the ham-
ming distance idea to CAGA in order to make desirable 
neighborhoods in CAGA. The individuals in the population 
were mapped onto a CA to make the locality and neighbor-
hood. The mapping was based on the individuals' fitness 
and the hamming distances between individuals. The selec-
tion of individuals was control based on the structure of the 
CA, to avoid the fast population diversity loss and improve 
the convergence performance during the genetic search. The 
effectiveness of the CAGA was illustrated with two typical 
mechanical design optimization problems (Cao and Wu, 
1998). Cheshmehgaz et al.[28] have employed the proposed 
CAGA to solve multi-model optimization problem, channel 
assignment problem in cellular mobile networks, the 
graph-coloring problem. The work has shown the effec-
tiveness of CAGA. 

In this paper, the grid (cellular) structure for the GA’s 
population is used that makes the GA’s selection operation 
restricted to find a mat for each individual. The structure 
can define a local selection for individuals of the population, 
so that individuals must be arranged on nodes of the grid 
(and sometimes rearranged in fixed iterations) and each 
arranged individual in the node can only match (do a 
crossover) with its neighbor’s individuals (in neighbor 
nodes). The arrangement can be done on minimum ham-
ming distance and maximum hamming distance value based 

upon its neighbors; and with regards to combination of it. 
Different kinds of neighbor definition are compared for an 
assembly line balancing case study with 83 tasks. Also, new 
mechanisms for mutation technique, objective function as 
fitness function, feasibility and survival type are modified 
and used. 

The paper is organized as follows. In section 2, the typi-
cal GA and some structural frameworks used are presented 
and the grid structure applied for making the GA’s popula-
tion structure and for defining neighborhoods is explained 
and the cellular genetic algorithm (CGA) family is pre-
sented. Some individuals’ arrangement and rearrangement 
techniques on the hamming distance basis are performed on 
a grid structure in order to make the hamming distance cel-
lular GA family in section 3. In section 4, all kinds of ar-
rangement mechanisms are tested and compared with the 
typical (conventional) genetic algorithm by using one 
large-size benchmark data set from Scholl[29]: data of as-
sembly-line balancing problems.  

2. Typical Genetic Algorithms for ALB 
The structure of typical GA (TGA) is explained below as 

it performs one generation initial population, crossover and 
mutation operation in iteration.  
Generate initial population  

Repeat 
Choose two individuals as parents for re-

combination 
Apply crossover with Rc  probability  
Apply mutation with Rm  probability  
Replace parents with offspring 

Until stopping condition is reached 
Take the best chromosome of the population as the solution 

GA specification is an initial step. Following subsections 
introduce task-based representation, initial population and 
crossover operation as long as new fitness function and 
mutation technique are introduced. 

2.1. Representation 
Sabuncuoglu et al.[19] has introduced task-based repre-

sentation (TBR) where each task is represented by a number 
that is placed on a string (i.e. individual) with the string size 
equal to the number of tasks. The tasks are ordered by the 
individual relative to their order of processing. The tasks are 
allocated to workstations so that the sum of the task times in 
each station does not exceed the cycle time. This coding 
scheme is demonstrated in Figure 3 through a 7-task prob-
lem example as follows. 

Example: we have seven tasks with own times shown in 
Figure 3.a, the precedence graph (matrix) are presented in 
Figure 3.b and the cycle time is equal to 20. Figure 3.c il-
lustrates a string with an order of tasks that means tasks 1, 
task3 and task 2 are assigned to workstation 1, tasks 4, 5 
and 6 are assigned to workstation 2 and finally task 7 is 
allocated to workstation 3. Figure 3.d shows another con-
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figuration for the task balancing equaled with the string 
representation that is illustrated in Figure 3.e. 

 
Figure 3.  An example shows Task-Base Representation for two different 
optimum solutions. 

2.2. Objectives and Fitness Function Definition 

There are many solutions for ALB but a few of them are 
better than others based on some objectives. However, the 
important objective of the ALB problem is to minimize the 
number of workstations but, in practical view, the balancing 
algorithm should also balance the total idle times among 
workstations too and provide a smooth balanced solution. In 
the previous example, the first configuration of task bal-
ancing, Figure 3.b, needs 3 workstations. The first work-
station has tasks with total time: 5+5+9=19. The second 
workstation with total task time: 4+6+9, needs 19 units of 
time, and the third workstation needs 20 units of time. In 
the second configuration, Figure 3.d, the first workstation 
needs 18 units of time, the second one needs 20 and the 
third one needs 20 units of time. Although the total idle 
times for both cases is the same and equal to 2 units of time, 
the first configuration is more smoothly balanced based on 
idle time than the second.  

Hence, we have defined a utility function for fitness 
function that consists of two objectives, i.e. minimizing the 
number of workstations and maximizing smoothness among 
workstations. The given and decision variables are intro-
duced as follows. 
Parameters: 
 m : Number of tasks in AL (a given variable) 

 n :  Number of needed workstations (a decision va-
riable) 
 iT : Task identity 0 i m< ≤  
 jW : Workstation identity 0 j n< ≤  
 nmA , : A binary matrix where its rows indicate the 

tasks and its columns indicate the workstations: ),( jiA ’s 
value is 1 or 0. The value of 1 means that task i  is as-
signed to workstation number j and 0 means not (a decision 
variable) 
 ( )iTime T : iT time (units of time) (a given variable) 
 CT : Cycle time in AL(a given variable) 
 ( )jTotalTime W : Total time the workstation thj  is 

busy, ( )jTotalTime W CT≤  (a decision variable) 

( ), ( ),.., ( )1 2

( ), ( ),.. ( )1 2 ,

TotalTime W TotalTime W TotalTime Wn

Time T Time T Time T Am m n

 
 

 = × 

 (1) 

 ( )jIdleTime W : Idle time in workstation j th, (a deci-
sion variable) 

( ) ( )IdleTime W CT TotalTime Wj j= −        (2) 

 Root Sum Square (RSS): the most important parame-
ter to specify smoothness in task assignment 

RSS (individual) = ( )
1

22
( )

1

n
IdleTime Wkk

 
 ∑ = 

  (3) 

 Fitness function for each individual: 
Fitness (individual) = ( ) 1( )n RSS Individual −×    (4) 

Equation (1) calculates the total time for each work-
station that it needs according to nmA , . Equation (2) speci-
fies the idle time left in each workstation. Equation (3) il-
lustrates a measure of balance and smoothness in the line by 
a solution and Equation (4) specifies the fitness value of a 
solution (used in this research). 

2.3. Initial Population 

The initial population is generated randomly assuring 
feasibility according to precedence relations. So, all indi-
viduals in the population in all generational steps will be 
feasible. 

 
Figure 4.  The crossover operation (gained from Sabuncuoglu et al., 2000). 

2.4. Crossover Technique 
The two parents that are selected are cut at two random 

cut-points. The offspring takes the same genes outside the 
cut-points at the same location as its parent and the genes in 
between the cut-points are scrambled according to the order 
that they have in the other parent. Sabuncuoglu et al.[19] 
presented the applicable crossover technique that we follow. 
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It is demonstrated in Figure 4. The major reason that makes 
the crossover operator important is that it assures feasibility 
of the offspring. Since both parents are feasible, both chil-
dren must also be feasible. Keeping a feasible population is 
a key to the ALB problem since preserving feasibility dras-
tically reduces computational effort. 

2.5. Mutation Technique 

In the mutation operation, a cut-point is randomly se-
lected and the gene (bit) in this point is replaced with next 
gene (right-side) if it is possible (according to precedence 
limitations) and then all following genes will be exchanged 
to right-side gen as the same till there is no possibility to 
exchange. Figure 5 shows one mutation in the individual 
shown in Figure 3.e. As it is obvious, due to feasibility, 
gene 4 can be replaced with gene 2 and then with 5 till it 
cannot be exchanged.  

 
Figure 5.  The mutation operation. 

 
Figure 6.  A 2-dimensional grid (cellular) structure with 3 nodes (cells) 
with different radius (1 and 2) and their neighbours. 

3. Cellular-Rearranging of Population 
3.1. Cellular (grid) Structure 

The cellular structure (CS) used in this paper is a simpli-
fied version of cellular automaton (CA). CA is a collection of 
cells (nodes) on a grid of a specified shape that evolves 
through a number of discrete time steps according to a set of 
rules based on the states of neighboring cells. The rules are 
then applied iteratively for as many time steps as desired. 
Von Neumann is one of the first people to consider such a 
model, and incorporated a cellular model into his ‘universal 
constructor’ Cellular automata were studied in the early 
1950s as a possible model for biological systems[30]. In this 
paper terminology, a CS comprises three components: 

),,( ORNCS which is explained below. 
• N : size of CS (for instance, N =10 means a grid 

with 10*10 nodes – Figure 6 shows a 10*10 CS). 
• R : radius of neighborhoods (figure 6 shows the 

two different radiuses with 1 and 2 – but in one CS, a 
unique radius amount must be used). 

• O : a set of rules in each node and can be done si-
multaneously and separately. 

The rules specify the states of nodes in the next time step. 
The state of node can be Boolean as active or inactive, or be 
a digit number, or even be binary strings. Let ( , )tValue i j
show the state of a node with location in thi row and thj
column in CS at time t  and ( , )Rf i j is a rule function that 
depends on the values of all nodes around node ( , )i j and 
the neighbourhood with radius R and one can calculate the 
value of the node in the next time step. Equation (5) illus-
trates that ( , )Rf i j  is calculated by function g which de-
pends on all values of neighbors in the previous time step. 

1

0 ,0

( , ) ( ( , ) )t
R i R a i R

j R b j R
i N j N

f i j g Value a b−

− ≤ ≤ +
− ≤ ≤ +

=

   

         (5) 

The rules for GA used with CS include genetic selection, 
crossover and mutation operations that can be done concur-
rently in all nodes. One extra operation in nodes is ‘re-
placement’ that makes a new population by replacing new 
ones with olds and they must be done only after finishing 
one run of all genetic operations in all nodes. In the next 
subsection, the proposed genetic rule is going to be defined 
and presented. 

3.2. Cellular Genetic Algorithms (CGA) 
Sivanandam and Deepa[31] have classified GAs into five 

groups: simple GA, parallel & distributed GA, master-slave 
GA, coarse grained GA, and cellular GA. In the last group, 
the grid or fine-grained model individuals are placed on a 
large doughnut-shaped (the ends wrap around) one- or 
two-dimensional grid, one individual per grid location. The 
model is also called cellular because of its similarity with 
cellular automata with stochastic transition rules. Fitness 
evaluation is done simultaneously for all individuals and 
selection, reproduction and mating takes place locally 
within a small neighborhood. In time, semi-isolated niches 
of genetically homogeneous individuals emerge across the 
grid as a result of slow individual diffusion. This phe-
nomenon is called isolation by distance and is due to the 
fact that the probability of interaction of two individuals is a 
fast decaying function of their distance. Recently Alba and 
Dorronsoro[32] have surveyed all conditions in CGA as a 
completed survey. 

The following is a conventional the cellular genetic algo-
rithmic ( CrossoverP and MutationP  are the parameters which 
show the probability of performing crossover and mutation 
operations set by a GA designer)[31-32]: 
For each cell (node) j in the grid do in parallel 

Generate a random individual j (feasible solution) 
End parallel for 
While not termination condition do 

For each cell j do in parallel 
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Evaluate individual j (fitness function 
calculation) 

Select a neighboring individual k 
Produce offspring from j and k with 

probability CrossoverP  
Mutate j with probability MutationP  
Assign one of the best offspring to j 

End parallel for 
End while 

In a more sophisticated view of CGAs, the new capsu-
lated definition is presented. The capsulated definition helps 
to understand GAs in CS. First, the nodes must comprise 
two parts of information saved in the nodes in two succes-
sive time steps: ( , )tString i j and 1( , )tString i j+ illustrate the 
genetic individuals (string/chromosome) at time steps t and

1t + ; and ( , )tValue i j and 1( , )tValue i j+  are as previously 
defined in Section 3.1, but in two successive time steps. 
Secondly, the rule that calculating the values of the nodes 
comprises all genetic operation- selection, crossover and 
mutation - at once. The following pseudo codes show the 
modified rule function components and their order accord-
ing to the genetic algorithms steps.  

( , )

(0,1)

( ( , ));

(0,1)

( , );
Re ( , );

f i jR
if RandomNumber PCrossover

Crossover Selection i jR
if RandomNumber PMutation

Mutation i j
placement i j

<


 < 

 
 
 
  

( , )

( , ) ;
0
0
(0, );

0;
( ; ; )

( ; ; )

( , );
0 & 0

( )
(

Selected Neighbour Selection i jR

j R ti RSum Value a ba i R b j R
i N
j N

R RandomNumber Sum
Sum
for a i R a i R a

for b j R b j R b
tSum Sum Value a b

if i N j N
if Sum R
return a

     −

++= ∑ ∑= − = −
< ≤
< ≤

=
=

= − ≤ + + +

= − ≤ + + +

= +
< ≤ < ≤

>
, );

( )
( , );

b
if Sum R

return a b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

   
                   >      

 
( , )RandomNumber a b  function generates a random num-

ber between a and b, and ( , )RSelection i j  works by a local 
selection mechanism and neighborhood; radius R  reveals 
a location of the neighbor which has already been selected 
for crossover operation in node ( , )i j . Fitness proportionate 
selection, also known as the roulette-wheel selection 
method, is employed by Selection  operation[33]. The 

crossover and mutation operations that are mentioned in the 
pseudo code work as they are designed in TGA locally (see 
Section 2).  

An issue in CGA is elitism strategy which means the best 
individuals in the old population should survive to the next 
population. Due to local selection in CGA, it cannot apply 
the strategy directly. In the final steps of CGA, replacement 
is considered and the best string (individual) among off-
spring based on fitness value would be a substitute for the 
old individual in node. The ( , )replacment i j function re-
places the old value in the node with the best value gained 
from the last two time steps (see pseudo code following). 
And the value of individual fitness that is saved as 

( , )tValue i j in the node must be calculated again by
()Calculation . 

( , )
1( ( , ) ( , ))

1( , ) ( , );

( ( , ));

replacment i j
t tif Value i j Value i j

t tString i j String i j
tCalculation Value i j

   

− < 
 −= 
 
  

 

In this paper, there are also some modifications in CGA 
as follows. 

 
Figure 7.  Transfer process to binary form and hamming distance calcula-
tion. 

3.3. Hamming distance (HD) 

Making the selection operation restricted is well-known 
strategy to prevent genetic drifting[34]. The grid structure 
can be usefully used to make the restriction[32]. In order to 
have a variety mates to be selected by individuals, in this 
research, the hamming distance parameter is considered 
specifying the similarity value among individuals. Each 
individual might be transferred to binary form as the as-
signment matrix (see Figure 7 – the columns specify the 
workstations number and the rows specify the tasks number 
in the assignment matrix, and the ‘1’ or ‘0’ symbol in each 
element illustrates which task is or is not assigned to which 
workstation) and then the value of the hamming distance 
can be calculated by counting the different 0s and 1s in 
genotype of individuals. Figure 7 illustrates the transfer 
process from phenotype (digital) form (task-based repre-
sentation) to genotype (binary) form (assignment matrix) 
and the concept of similarity between individuals by using 
the hamming distance value. The example (in Figure 7) 
shows the value of HD  between individual #1 and #2 is 4 
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or, in another definition, 4)2#,1(# =HD . 
It is assumed that if mates are similar (or dissimilar) to 

each other they would be better parents to make offspring. 
To put this idea to the test, some steps in CGA need to be 
modified. The next subsection shows a new change in CGA 
in the new step, ‘cellular rearrangement’ and it seems to 
work like pre-processing before doing any genetic operation 
in each generation or frequently. 

3.4. Rearrangements and CGA family 

Some kinds of arrangement are selected to locate the in-
dividual on a grid’s nodes. By the arrangements we try to 
test the effectiveness of making the neighborhood. For in-
stance, what if one individual could have a greater chance 
to have crossover with another individual that is so similar 
to or different to it. 

In this research, three kinds of arrangements techniques 
are used: max-hamming distance, min-hamming distance 
and max-min-hamming distance, and then all are mixed 
with CGA as an added step and make the CGA family 
(Figure 8 shows the new framework of the CGA family). 

 
Figure 8.  Flowchart Abstract of CGA Family. 

Max-Hamming distance cellular genetic algorithm 
(MaxHCGA): it makes a variety of dissimilarities between 
the neighboring nodes. Actually, in the max-hamming dis-
tance rearrangement, the objective in individual arrange-
ments can be formulated by (6). 

1 1
0 0

( ( , ), ( , ))
j RN N i R

t t

i j a i R b j R
a N b N

Maximizing HD String i j String a b
++

= = = − = −
≤ ≤

 
 
  
 
∑∑ ∑ ∑

 

(6) 

To make the simplest and most heuristic way to follow 
the objective, all steps in MaxHCGA are the same as CGA 
steps but only one step must be added: cellular rearrange-
ment. After making the initial population, according to Sec-
tion 2.3, one individual from the population is randomly 
chosen. The chosen individual is allocated into the node 
called pivot and then for all empty neighbors of the pivot, 
the rearrangement method continues to find individuals 
from the rest of the population that have the maximum 
hamming distance value with the individual in the pivot. 
The rearrangement method would work for all nodes that 
have an individual in and at least one empty neighbor. The 
rearrangement can be repeated each generation or different 
frequently. In this paper, the rearrangement is performed 
before each genetic generation to realize the effectiveness 
of the arrangement.  

Min-Hamming distance cellular genetic algorithm 
(MinHCGA): as it is compared with MaxHCGA, only the 
rearrangement method’s objective should be changed. In 
spite of using maximum hamming distance value, 
MinHCGA uses minimum hamming distance value for the 
rearrangement method. As a consequence, all individuals 
have more chance to meet individual who are more similar 
to. The objective considered in the rearrangement is formu-
lated by (7). 

1 1
0 0

( ( , ), ( , ))
j RN N i R

t t

i j a i R b j R
a N b N

Minimizing HD String i j String a b
++

= = = − = −
≤ ≤

 
 
  
 
∑∑ ∑ ∑

 

(7) 

Max-Min-Hamming distance cellular genetic algorithm 
(MMHCGA): a combination of rearrangements of 
Max-HCGA and Min-HCGA makes MMHCGA which 
means that, alternately, Max-HCGA rearrangement and 
Min-HCGA rearrangement can be used. Let 

( , )MaxNeighbours i j  represent a set of all the neighbors 
around node ),( ji that are supposed to have maximum 
hamming distance valued with the individual allocated in 
node ),( ji , and ),( jirsMinNeighbo embody a set of the 
neighbors who are supposed to have minimum hamming 
distance value with the individual in node ),( ji . The objec-
tive of rearrangement in MMHCGA can be presented by 
two formulations (8) and (8). 

( ( ), ( , ))
1 1 ( , )

N N t tMaximizing HD String S String a b
i j S MaxNeighbours i j

 
 ∑ ∑ ∑
 = = ∈ 

(8) 

1 1 ( , )
( ( ), ( , ))

N N
t t

i j S MinNeighbors i j
Minimizing HD String S String a b

= = ∈

 
 
 
∑∑ ∑ (9) 

For example, Figure 9 illustrates four stages of such a 
simple rearrangement method in MMHCGA explained by 
formulas (8) and (9). First, one node in CA as a pivot cell 
and one individual as a pivot individual randomly are cho-
sen and the individual will be assigned to the cell. The ar-
rangements will be continued for the pivot’s empty 
neighbors as following. For the pivot cell’s neighbors- the 
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nodes in black in Figure 9.a- the maximum hamming dis-
tance value is considered, and for the others –the nodes in 
white –the minimum hamming distance value is used. To 
continue, in Figure 9.b, one of the grid’s none-empty nodes 
is randomly chosen, and the rearrangement is repeated until 
all nodes have one individual. 

 

Figure 9.  Initial four steps of MMHCGA Rearrangement. 

4. Simulation and Results 
To analyse the CGA algorithms family, a case with 83 

assembly tasks were selected[from 29]. The given cycle 
time for all workstations is 5000 units of time. To make the 
results quite clear and also finding the differences between 
the CGA family and typical (ordinary non-cellular) GA, the 
following parameters values were fixed, but the values 
could be changed to different values also. 

The time of each task has been shown in Table 1. Each 
algorithm executed from the initial population created ran-
domly, by 100 executions with 300 iterations in each. The 
best individual and the worst individual (based on fitness 

value) in new populations generated by the algorithms, 
were recorded at the end of iterations of 10, 20, 30… and 
300. And the average fitness value at the end of the itera-
tions for all CGA family algorithms were also calculated 
and recorded.  

An individual that has used the minimum number of 
workstations and has minimal RSS (root sum square) of idle 
times was identified as a relative best task balancing solu-
tion here. We compared the all member of CGA family 
with each other and the typical GA (TGA) on these circum-
stances. 

As the GA parameters part involved, to set the parame-
ters for GA, the selection rule that is used is the roulette 
selection technique, and other parameters are fixed as fol-
lows. 
Genetic parameters setting: 

• Population size: 100 
• Selection rule: roulette wheel selection 
• Crossover rate: 0.9 
• Mutation rate: 0.2 
• Elitism rate: 0.05 (only for TGA) 
• Iteration (reproduction of population) number: 300 
• Number of Executions (for sampling): 100 
As mentioned before, the best solution would be the one 

(set of) individual(s) that has(have) minimum number of 
workstation (that it needs) and minimum RSS of idle times 
(maximum smoothness of tasks) by giving CT=5000.

Table 1.  Precedence table of the case study. 

Tasks Ti Time Precedent  
Tasks Tasks Ti Time Precedent  

Tasks Tasks Ti Time Precedent  
Tasks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1673 
985 

1836 
973 

1700 
2881 
2231 
1040 
1793 
1250 
700 
464 
500 

1133 
577 
483 
880 
667 
600 
233 
408 
849 
767 
850 
780 
912 
748 

1863 

2 
3, 4, 5 

6 
6, 7 
8 

9, 10 
11 

77, 78 
10, 12 

11, 13, 14, 25 
12, 15 
13, 16 

14, 17, 18, 20 
15, 19 

16, 20, 39, 
17, 77, 78 

18, 21, 22, 28 
19, 23 

24 
26 
27 
27 
74 

28,29 
32 
74 
69 
32 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

714 
1004 
713 
642 
629 

1234 
1143 
1266 
792 

1251 
1310 
663 
494 

1288 
792 
578 
594 
578 
622 
578 
564 
578 
578 
578 
578 
578 
578 
578 

30 
31 
39 

33, 34, 35,36 
37 

77, 78 
77, 78 
38, 39 

40 
41 

42, 43, 44, 75 
77, 78 

45 
77, 78 
77, 78 

46 
47 
48 
49 
50 
69 
51 
52 
53 
54 
55 
56 
57 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

578 
578 
578 
578 
578 
578 
578 
578 
578 
578 
578 
578 
467 
887 
396 
1296 
1100 
2543 
764 
357 
701 
1164 
286 
2100 
450 
1300 
3691 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

74, 75 
70, 71 

72 
73 
73 
74 
76 
76 
76 

77, 78 
79 

80, 81 
82 
83 
83 
- 

 

 Pivot cell  
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Figure 10, illustrates behaviors of five considered genetic 
algorithms including TGA (conventional non-cellular GA) 
and CGA family employed for the case study. As Figure 10.a 
shows, MaxHCGA has best behavior in decreasing RSS of 
idle time average as long as the number of iterations is going 
up. In contrast to MaxHCGA, MinHCGA behaves in worst 
manner which means that there is no decline in the average 
of RSS that is expected as the number of iterations is in-
creasing.  

Considering the average of number of workstations, Fig-
ure 10.b illustrates that MaxHCGA notably attain a better 
solution compared with others (16.02 as workstations aver-
age needed).  

 
a) The changes of the RSS average values along the iterations in TGA and 
CGA family (after 100 runs for each). 

 
b) The changes of the average numbers of workstations needed along the 
iterations in TGA and CGA family (after 100 runs for each). 

Figure 10.  CGS family behaviors in different iterations (on average values 
of RSS and needed workstations number basis). 

In addition, Figure 11 shows the minimal RSS and 
maximal RSS of idle times, for all executions, in different 
iterations (for each algorithm). The values of both the pa-
rameters show that MaxHCGA works as well as it has been 
expected. The minimum RSS of idle times reached by 
MaxHCGA is about 1148.5 in the last iteration, 300 itera-
tions (Figure11.a) and also the maximum RSS for 
MaxHCGA is better than others (Figure 11.b – about 2409). 

Figure 12 presents the two examples of the best solutions 
attained by MaxHCGA and TGA at the final iteration. Each 
colored-row in Figure 12 is nominated as one workstation, 
ordered from number 1 to 16, and tasks have been marked by 
colored bars and the task times underneath. The idle time 
bars of workstations are specified in thick dash-rectangles 

and their values are in front. 

 
(a) 

 
(b) 

Figure 11.  CGS Family behaviors in different iterations (on minimum and 
maximum value of RSS basis). 

 
a) Best solution gained at iteration while running TGA by 100 runs 

 
b) Best solution gained at final iteration while running MaxHCGA by 100 
runs 
Note:  None Colored rectangles inside the dash-rectangle show the idle time 
for each workstation 

Figure 12.  Two best solutions of MaxHCGA and TGA by iteration 100. 
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In spite of TGA, MaxHCGA has found the solution with 
the greater smoothness level. However both solutions pre-
sent the same number of workstations (equal to 16 worksta-
tions) and total idle times ( = 4293), but they have reached a 
different RSS of idle times as smoothness (RSS for 
MaxHCGA is 1149.49 and for TGA is 11.54.04). It means 
that MaxHCGA has found a solution which is more 
smoothed. 

In this research, a modified cellular GA was developed to 
solve the single-model ALB problem comprised of Type-1, 
Type-3, SALB and SMALB. Some heuristic rearrangement 
techniques based on hamming distance values were utilized 
and then the CGA family was defined. We showed that each 
member of the CGA family initiates a chance to individuals 
put on cells to find a particular mate from their neighbors (by 
a local selection mechanism), and then tries to do all genetic 
operations: crossover, mutation and replacement, locally and 
individually. With the aim of the rearrangements techniques, 
the concept of exploration/exploitation has been sharpened 
and examined for the ALB problem case. In the ALB case, 
the similarity between individuals calculated by hamming 
distance value illustrates how much similarity exists between 
task assignments to the workstations proposed by individuals. 
The main point of this paper showed how much the similarity 
and dissimilarity between parents is useful for making off-
spring for the next generation. TGA as conventional 
non-cellular GA, CGA, MinHCGA, MaxHCGA, MaxMin- 
HCGA were all put on a test given by a test case, and then the 
comparison results show how much the similarity and dis-
similarity in selection operations have been influenced. We 
concluded that MaxHCGA mostly achieves the solutions 
that have the minimal root sum square of idle times with 
comparing to other CGA family members and TGA. 

5. Conclusions 
Although two conventional criteria; minimum worksta-

tions and idle times, were considered here, other pragmatic 
criteria such as material handling constraints, resource 
limitations, human factors and multiple or mixed-model 
assembly manufacturing issues can be considered as further 
research directions.  
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