
Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35
DOI: 10.5923/j.jmea.20120202.05

A Cellular-rearranging of Population in Genetic
Algorithms to Solve Assembly-Line Balancing Problem

Hossein Rajabalipour Cheshmehgaz1,*, Mohammd Ishak Desa1 , Farahnaz Kazemipour2

1Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
2Faculty of Management and Human Resources Development, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia

Abstract Assembly line balancing problem (ALBP) is the allocating of assembly tasks to workstations with consideration
of some criteria such as time and the number of workstations. Due to the complexity of ALB, finding the optimum solutions
in terms of the number of workstations in the assembly line needs suitable meta-heuristic techniques. Genetic algorithms have
been used to a large extent. Due to converging to the local optimal solutions to the most genetic algorithms, the balanced
exploration of the new area of search space and exploitation of good solutions by this kind of algorithms as a good way can be
sharpened with some meta-heuristic. In this paper, the modified cellular (grid) rearranging-population structure is developed.
The individuals of the population are located on cells according to the hamming distance value among individuals as
neighbours before regenerations and a family of cellular genetic algorithms (CGAs) is defined. By using the cellular structure
and the rearrangements, some of the family members can find better solutions compared with others in the same iterations,
and they behave much more reasonably in order to acquire the solution in terms of the number of workstations and the
smoothly balanced task assignment on criteria conditions.

Keywords Cellular Genetic Algorithms, Assembly-line Balancing, Hamming Distance

1. Introduction
From ancient times to the modern day, assembly lines

(ALs) have been modified as long as the long-term optimal
design of the lines has surely been the most important mile-
stone in the manufacturing process. Whereas designer of
ALs (mostly) deal with many assembly tasks (around 400
tasks in a typical car ALs) and some critical limitations in
design, the optimal solution can be achieved via a variety of
heuristic ideas that must be massively computerized. Most of
the work related to ALs concentrates on the assembly-line
balancing (ALB) problem. The ALB problem deals with the
assignment of the tasks (as duties) among workstations (or
operators) so that the precedence relations are not violated,
the total time for tasks in each workstation does not exceed
the cycle time and a given objective function is considered to
be optimized. The ALB problem falls into the NP-hard class
of combinatorial optimization problems[1]. If there are n
tasks and r preference constraints, then there are n!/2r pos-
sible task sequences[2]. Therefore, it can be time consuming
for optimum-seeking methods to gain an optimal solution
within this extremely large search space for some manufac-
turing operations, such as car assembly lines with more than
100 workstations.

* Corresponding author:
hrajabalipour@uk.ac.ir (Hossein Rajabalipour Cheshmehgaz)
Published online at http://journal.sapub.org/jmea
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

Despite the vast search space, many studies have tried to
solve the ALB problem using optimum-seeking methods,
such as linear programming[e.g. 3], integer
programming[e.g. 4], dynamic programming[e.g. 5] and
branch- and- bound approaches[e.g. 6]. However, none of
these methods has proven to be of practical use for large
assembly lines due to their computational inefficiency.
Hence, the next research efforts have been directed towards
the development of heuristics[e.g. 7, 8] and meta-heuristics
such as simulated annealing[e.g. 9], tabu search[e.g. 10] and
genetic algorithms[e.g. 11].

Due to the complexity of the ALB problem, a growing
number of researchers have employed genetic algorithms
(GAs), and most industrial engineers also use them to opti-
mize problems which are difficult to find an optimal solu-
tion for in a reasonable time. GAs provides an alternative to
traditional optimization techniques by using directed ran-
dom searches to locate optimum solutions in complex
search spaces. Hence, because of the popularity of GAs’
application to the ALB problem, some papers exist which
review the subject, including Dimopoulos and Zalzala[12],
Scholl and Becker[13] and Tasan and Tunali[14] have all
tried to modify GA using modified selection techniques,
individual representation, crossover techniques etc. in order
to improve the algorithms.

As having different priorities and objectives that GAs are
trying to optimize as fitness functions, the ALB problem
can be classified into some classes with different objectives.
Additionally, the GAs’ setting in chromosomes representa-

26 Hossein Rajabalipour Cheshmehgaz et al.: A Cellular-rearranging of Population in Genetic Algorithms
 to Solve Assembly-Line Balancing Problem

tions, initial population, and operation mechanisms were
considered by GA designers to be like challenge and
benchmarking.

1.1. ALB Problem Classes and their Objectives

Before making any decisions about assembly line design,
the ALB problem must be classified according to the objec-
tives and what needs to be developed. Figure 1 illustrates
the classification of ALBP based on the objective function
and problem structure[2,13,15-16].

Figure 1. Classification of assembly line balancing problems and our
research boundaries.

Scholl[16] has defined several versions of the ALB
problem which have arisen by varying the objective func-
tion. Type-F is an objective-independent problem, which is
to establish whether or not a feasible line balance exists for
a given combination of n (number of workstations) and c
(cycle time). Type-1 and Type-2 have a dual relationship;
the first one tries to minimize the number of workstations
for a given cycle time, and the second one tries to minimize
the cycle time for a given number of workstations. Type-E
is the most general problem version, which tries to maxi-
mize the line efficiency by simultaneously minimizing the
cycle time and the number of workstations. Finally, Kim et
al.[15] has explained that Type-3, 4 and 5 correspond to the
maximization of workload smoothness, the maximization of
work relatedness and multiple objectives with Type-3 and
Type-4, respectively.

Based on the problem structure, ALB problems can be
classified into two groups. While Becker and Scholl[16-17]
have categorized that the first group includes single-model
assembly-line balancing (SMALB), multi-model assem-
bly-line balancing (MuMALB), and mixed-model assem-
bly-line balancing (MMALB), the second group illustrated
by Baybars[2], includes simple assembly-line balancing
(SALB) and general assembly-line balancing (GALB). The
SMALB problem involves only one product. The Mu-
MALB problem involves more than one product produced
in batches. The MMALB problem refers to assembly lines
which are capable of producing a variety of similar product
models simultaneously and continuously (not in batches).
Additionally, the SALB problem, the simplest version of
the ALBP and the special version of the SMALB problem,
involves the production of only one product, where the as-

sembly line has features such as a paced line with a fixed
cycle time, deterministic independent processing times, no
assignment restrictions, serial layout, one-sided worksta-
tions, equally equipped workstations and fixed-rate launch-
ing[14]. The GALB problem includes all of the problems
that are not SALB, such as the balancing of mixed model,
parallel, U-shaped and two-sided lines with stochastic de-
pendent processing times; thereby, more realistic ALBPs
can be formulated and solved.

Due to setting up expenditure, minimizing the number of
workstations is frequently important than other criteria and,
on the other side, the utility improvement of each work-
station in terms of balancing the job among workstations in
order to reduce the total idle time in manufacturing, is con-
siderably more important. As a consequence, in this paper,
as shown by the tickets in Figure 1, a combination of
Type-1 and Type-3 based on objective, and; SMALB and
SALB based on problem structure is considered and used.

Figure 2. GAs Parameters and setting for ALBPs- sources:[14].

Depending on the problem to be solved by GAs, some
GA parameters and structures can be influenced. As Tasan
and Tunali[14] mentioned in their paper, they have re-
viewed the active literature based on specifications of prob-
lem, GA and performance. As seen in Figure 2, problem
specifications contain the main features of the problems
studied, GA specifications summarize information about the
GA methods developed, initialization of the population,
chromosome (individual) representation, fitness function,
genetic operators, selection and survival schemes (elitism
techniques), feasibility issues, and termination criteria (final
conditions that specify the end of iteration in GA)- and fi-
nally, performance specifications include information about
the data sets used to test GA, other solution methods to,
which the performance of GA was compared, the computa-
tion time and the implementation language.

In[14], the authors have surveyed a lot of researchers’
work that each has introduced and modified the GA for the
ALB problem. Some of them worked on chromosome rep-

 Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35 27

resentation[e.g. 18,19-20]; some of them have presented
modified GAs on fitness function as the basis of objective
function[e.g. 11, 21]. Some of the customized crossover
operators utilized include the modified bin-packing cross-
over (modified BPCX)[11], the modified partially mapped
crossover (modified PMX)[22], the heuristic structural cro-
ssover (HSX)[15], the informed order-based crossover[23],
and the order crossover[19].

Tasan and Tunali[14] have reviewed the published lit-
erature based on the experimental settings in which the
proposed GAs have been implemented, the other solution
methods to which the GAs performance has been compared,
the computation time required and, finally, the implementa-
tion language employed. However their paper has not tried
to compare the performances of the reviewed GAs; it only
presents the findings of the comparative studies reported in
each work.

Genetic selection operation is a vital aim to find suitable
parents to reproduce offspring and make a new population.
The initial step always starts with a simple question “How
important and influential is it that the selection of parent
mechanism depends on similarities and diversities between
parents”. Based the literature, maintaining the population
diverted on a cellular structure called cellular automaton
(CA), was first introduced by Manderick and Spiessen[24].
They presented a cellular automata genetic algorithm
(CAGA) as a kind of decentralized GA in which the popu-
lation is arranged in a grid (usually two dimensions). CA-
GAs have been successfully implemented on a parallel
platform used as a computational machine[25] and have
also been used for optimization and simulation prob-
lems[26]. then Cao and Wu[27] firstly brought the ham-
ming distance idea to CAGA in order to make desirable
neighborhoods in CAGA. The individuals in the population
were mapped onto a CA to make the locality and neighbor-
hood. The mapping was based on the individuals' fitness
and the hamming distances between individuals. The selec-
tion of individuals was control based on the structure of the
CA, to avoid the fast population diversity loss and improve
the convergence performance during the genetic search. The
effectiveness of the CAGA was illustrated with two typical
mechanical design optimization problems (Cao and Wu,
1998). Cheshmehgaz et al.[28] have employed the proposed
CAGA to solve multi-model optimization problem, channel
assignment problem in cellular mobile networks, the
graph-coloring problem. The work has shown the effec-
tiveness of CAGA.

In this paper, the grid (cellular) structure for the GA’s
population is used that makes the GA’s selection operation
restricted to find a mat for each individual. The structure
can define a local selection for individuals of the population,
so that individuals must be arranged on nodes of the grid
(and sometimes rearranged in fixed iterations) and each
arranged individual in the node can only match (do a
crossover) with its neighbor’s individuals (in neighbor
nodes). The arrangement can be done on minimum ham-
ming distance and maximum hamming distance value based

upon its neighbors; and with regards to combination of it.
Different kinds of neighbor definition are compared for an
assembly line balancing case study with 83 tasks. Also, new
mechanisms for mutation technique, objective function as
fitness function, feasibility and survival type are modified
and used.

The paper is organized as follows. In section 2, the typi-
cal GA and some structural frameworks used are presented
and the grid structure applied for making the GA’s popula-
tion structure and for defining neighborhoods is explained
and the cellular genetic algorithm (CGA) family is pre-
sented. Some individuals’ arrangement and rearrangement
techniques on the hamming distance basis are performed on
a grid structure in order to make the hamming distance cel-
lular GA family in section 3. In section 4, all kinds of ar-
rangement mechanisms are tested and compared with the
typical (conventional) genetic algorithm by using one
large-size benchmark data set from Scholl[29]: data of as-
sembly-line balancing problems.

2. Typical Genetic Algorithms for ALB
The structure of typical GA (TGA) is explained below as

it performs one generation initial population, crossover and
mutation operation in iteration.
Generate initial population

Repeat
Choose two individuals as parents for re-

combination
Apply crossover with Rc probability
Apply mutation with Rm probability
Replace parents with offspring

Until stopping condition is reached
Take the best chromosome of the population as the solution

GA specification is an initial step. Following subsections
introduce task-based representation, initial population and
crossover operation as long as new fitness function and
mutation technique are introduced.

2.1. Representation
Sabuncuoglu et al.[19] has introduced task-based repre-

sentation (TBR) where each task is represented by a number
that is placed on a string (i.e. individual) with the string size
equal to the number of tasks. The tasks are ordered by the
individual relative to their order of processing. The tasks are
allocated to workstations so that the sum of the task times in
each station does not exceed the cycle time. This coding
scheme is demonstrated in Figure 3 through a 7-task prob-
lem example as follows.

Example: we have seven tasks with own times shown in
Figure 3.a, the precedence graph (matrix) are presented in
Figure 3.b and the cycle time is equal to 20. Figure 3.c il-
lustrates a string with an order of tasks that means tasks 1,
task3 and task 2 are assigned to workstation 1, tasks 4, 5
and 6 are assigned to workstation 2 and finally task 7 is
allocated to workstation 3. Figure 3.d shows another con-

28 Hossein Rajabalipour Cheshmehgaz et al.: A Cellular-rearranging of Population in Genetic Algorithms
 to Solve Assembly-Line Balancing Problem

figuration for the task balancing equaled with the string
representation that is illustrated in Figure 3.e.

Figure 3. An example shows Task-Base Representation for two different
optimum solutions.

2.2. Objectives and Fitness Function Definition

There are many solutions for ALB but a few of them are
better than others based on some objectives. However, the
important objective of the ALB problem is to minimize the
number of workstations but, in practical view, the balancing
algorithm should also balance the total idle times among
workstations too and provide a smooth balanced solution. In
the previous example, the first configuration of task bal-
ancing, Figure 3.b, needs 3 workstations. The first work-
station has tasks with total time: 5+5+9=19. The second
workstation with total task time: 4+6+9, needs 19 units of
time, and the third workstation needs 20 units of time. In
the second configuration, Figure 3.d, the first workstation
needs 18 units of time, the second one needs 20 and the
third one needs 20 units of time. Although the total idle
times for both cases is the same and equal to 2 units of time,
the first configuration is more smoothly balanced based on
idle time than the second.

Hence, we have defined a utility function for fitness
function that consists of two objectives, i.e. minimizing the
number of workstations and maximizing smoothness among
workstations. The given and decision variables are intro-
duced as follows.
Parameters:
 m : Number of tasks in AL (a given variable)

 n : Number of needed workstations (a decision va-
riable)
 iT : Task identity 0 i m< ≤
 jW : Workstation identity 0 j n< ≤
 nmA , : A binary matrix where its rows indicate the

tasks and its columns indicate the workstations:),(jiA ’s
value is 1 or 0. The value of 1 means that task i is as-
signed to workstation number j and 0 means not (a decision
variable)
 ()iTime T : iT time (units of time) (a given variable)
 CT : Cycle time in AL(a given variable)
 ()jTotalTime W : Total time the workstation thj is

busy, ()jTotalTime W CT≤ (a decision variable)

(), (),.., ()1 2

(), (),.. ()1 2 ,

TotalTime W TotalTime W TotalTime Wn

Time T Time T Time T Am m n

 
 

 = × 

 (1)

 ()jIdleTime W : Idle time in workstation j th, (a deci-
sion variable)

() ()IdleTime W CT TotalTime Wj j= − (2)

 Root Sum Square (RSS): the most important parame-
ter to specify smoothness in task assignment

RSS (individual) = ()
1

22
()

1

n
IdleTime Wkk

 
 ∑ = 

 (3)

 Fitness function for each individual:
Fitness (individual) = () 1()n RSS Individual −× (4)

Equation (1) calculates the total time for each work-
station that it needs according to nmA , . Equation (2) speci-
fies the idle time left in each workstation. Equation (3) il-
lustrates a measure of balance and smoothness in the line by
a solution and Equation (4) specifies the fitness value of a
solution (used in this research).

2.3. Initial Population

The initial population is generated randomly assuring
feasibility according to precedence relations. So, all indi-
viduals in the population in all generational steps will be
feasible.

Figure 4. The crossover operation (gained from Sabuncuoglu et al., 2000).

2.4. Crossover Technique
The two parents that are selected are cut at two random

cut-points. The offspring takes the same genes outside the
cut-points at the same location as its parent and the genes in
between the cut-points are scrambled according to the order
that they have in the other parent. Sabuncuoglu et al.[19]
presented the applicable crossover technique that we follow.

 Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35 29

It is demonstrated in Figure 4. The major reason that makes
the crossover operator important is that it assures feasibility
of the offspring. Since both parents are feasible, both chil-
dren must also be feasible. Keeping a feasible population is
a key to the ALB problem since preserving feasibility dras-
tically reduces computational effort.

2.5. Mutation Technique

In the mutation operation, a cut-point is randomly se-
lected and the gene (bit) in this point is replaced with next
gene (right-side) if it is possible (according to precedence
limitations) and then all following genes will be exchanged
to right-side gen as the same till there is no possibility to
exchange. Figure 5 shows one mutation in the individual
shown in Figure 3.e. As it is obvious, due to feasibility,
gene 4 can be replaced with gene 2 and then with 5 till it
cannot be exchanged.

Figure 5. The mutation operation.

Figure 6. A 2-dimensional grid (cellular) structure with 3 nodes (cells)
with different radius (1 and 2) and their neighbours.

3. Cellular-Rearranging of Population
3.1. Cellular (grid) Structure

The cellular structure (CS) used in this paper is a simpli-
fied version of cellular automaton (CA). CA is a collection of
cells (nodes) on a grid of a specified shape that evolves
through a number of discrete time steps according to a set of
rules based on the states of neighboring cells. The rules are
then applied iteratively for as many time steps as desired.
Von Neumann is one of the first people to consider such a
model, and incorporated a cellular model into his ‘universal
constructor’ Cellular automata were studied in the early
1950s as a possible model for biological systems[30]. In this
paper terminology, a CS comprises three components:

),,(ORNCS which is explained below.
• N : size of CS (for instance, N =10 means a grid

with 10*10 nodes – Figure 6 shows a 10*10 CS).
• R : radius of neighborhoods (figure 6 shows the

two different radiuses with 1 and 2 – but in one CS, a
unique radius amount must be used).

• O : a set of rules in each node and can be done si-
multaneously and separately.

The rules specify the states of nodes in the next time step.
The state of node can be Boolean as active or inactive, or be
a digit number, or even be binary strings. Let (,)tValue i j
show the state of a node with location in thi row and thj
column in CS at time t and (,)Rf i j is a rule function that
depends on the values of all nodes around node (,)i j and
the neighbourhood with radius R and one can calculate the
value of the node in the next time step. Equation (5) illus-
trates that (,)Rf i j is calculated by function g which de-
pends on all values of neighbors in the previous time step.

1

0 ,0

(,) ((,))t
R i R a i R

j R b j R
i N j N

f i j g Value a b−

− ≤ ≤ +
− ≤ ≤ +

=

   

 (5)

The rules for GA used with CS include genetic selection,
crossover and mutation operations that can be done concur-
rently in all nodes. One extra operation in nodes is ‘re-
placement’ that makes a new population by replacing new
ones with olds and they must be done only after finishing
one run of all genetic operations in all nodes. In the next
subsection, the proposed genetic rule is going to be defined
and presented.

3.2. Cellular Genetic Algorithms (CGA)
Sivanandam and Deepa[31] have classified GAs into five

groups: simple GA, parallel & distributed GA, master-slave
GA, coarse grained GA, and cellular GA. In the last group,
the grid or fine-grained model individuals are placed on a
large doughnut-shaped (the ends wrap around) one- or
two-dimensional grid, one individual per grid location. The
model is also called cellular because of its similarity with
cellular automata with stochastic transition rules. Fitness
evaluation is done simultaneously for all individuals and
selection, reproduction and mating takes place locally
within a small neighborhood. In time, semi-isolated niches
of genetically homogeneous individuals emerge across the
grid as a result of slow individual diffusion. This phe-
nomenon is called isolation by distance and is due to the
fact that the probability of interaction of two individuals is a
fast decaying function of their distance. Recently Alba and
Dorronsoro[32] have surveyed all conditions in CGA as a
completed survey.

The following is a conventional the cellular genetic algo-
rithmic (CrossoverP and MutationP are the parameters which
show the probability of performing crossover and mutation
operations set by a GA designer)[31-32]:
For each cell (node) j in the grid do in parallel

Generate a random individual j (feasible solution)
End parallel for
While not termination condition do

For each cell j do in parallel

30 Hossein Rajabalipour Cheshmehgaz et al.: A Cellular-rearranging of Population in Genetic Algorithms
 to Solve Assembly-Line Balancing Problem

Evaluate individual j (fitness function
calculation)

Select a neighboring individual k
Produce offspring from j and k with

probability CrossoverP
Mutate j with probability MutationP
Assign one of the best offspring to j

End parallel for
End while

In a more sophisticated view of CGAs, the new capsu-
lated definition is presented. The capsulated definition helps
to understand GAs in CS. First, the nodes must comprise
two parts of information saved in the nodes in two succes-
sive time steps: (,)tString i j and 1(,)tString i j+ illustrate the
genetic individuals (string/chromosome) at time steps t and

1t + ; and (,)tValue i j and 1(,)tValue i j+ are as previously
defined in Section 3.1, but in two successive time steps.
Secondly, the rule that calculating the values of the nodes
comprises all genetic operation- selection, crossover and
mutation - at once. The following pseudo codes show the
modified rule function components and their order accord-
ing to the genetic algorithms steps.

(,)

(0,1)

((,));

(0,1)

(,);
Re (,);

f i jR
if RandomNumber PCrossover

Crossover Selection i jR
if RandomNumber PMutation

Mutation i j
placement i j

<


 < 

 
 
 
  

(,)

(,) ;
0
0
(0,);

0;
(; ;)

(; ;)

(,);
0 & 0

()
(

Selected Neighbour Selection i jR

j R ti RSum Value a ba i R b j R
i N
j N

R RandomNumber Sum
Sum
for a i R a i R a

for b j R b j R b
tSum Sum Value a b

if i N j N
if Sum R
return a

 −

++= ∑ ∑= − = −
< ≤
< ≤

=
=

= − ≤ + + +

= − ≤ + + +

= +
< ≤ < ≤

>
,);

()
(,);

b
if Sum R

return a b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

   
                   >      

(,)RandomNumber a b function generates a random num-

ber between a and b, and (,)RSelection i j works by a local
selection mechanism and neighborhood; radius R reveals
a location of the neighbor which has already been selected
for crossover operation in node (,)i j . Fitness proportionate
selection, also known as the roulette-wheel selection
method, is employed by Selection operation[33]. The

crossover and mutation operations that are mentioned in the
pseudo code work as they are designed in TGA locally (see
Section 2).

An issue in CGA is elitism strategy which means the best
individuals in the old population should survive to the next
population. Due to local selection in CGA, it cannot apply
the strategy directly. In the final steps of CGA, replacement
is considered and the best string (individual) among off-
spring based on fitness value would be a substitute for the
old individual in node. The (,)replacment i j function re-
places the old value in the node with the best value gained
from the last two time steps (see pseudo code following).
And the value of individual fitness that is saved as

(,)tValue i j in the node must be calculated again by
()Calculation .

(,)
1((,) (,))

1(,) (,);

((,));

replacment i j
t tif Value i j Value i j

t tString i j String i j
tCalculation Value i j

− < 
 −= 
 
  

In this paper, there are also some modifications in CGA
as follows.

Figure 7. Transfer process to binary form and hamming distance calcula-
tion.

3.3. Hamming distance (HD)

Making the selection operation restricted is well-known
strategy to prevent genetic drifting[34]. The grid structure
can be usefully used to make the restriction[32]. In order to
have a variety mates to be selected by individuals, in this
research, the hamming distance parameter is considered
specifying the similarity value among individuals. Each
individual might be transferred to binary form as the as-
signment matrix (see Figure 7 – the columns specify the
workstations number and the rows specify the tasks number
in the assignment matrix, and the ‘1’ or ‘0’ symbol in each
element illustrates which task is or is not assigned to which
workstation) and then the value of the hamming distance
can be calculated by counting the different 0s and 1s in
genotype of individuals. Figure 7 illustrates the transfer
process from phenotype (digital) form (task-based repre-
sentation) to genotype (binary) form (assignment matrix)
and the concept of similarity between individuals by using
the hamming distance value. The example (in Figure 7)
shows the value of HD between individual #1 and #2 is 4

 Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35 31

or, in another definition, 4)2#,1(# =HD .
It is assumed that if mates are similar (or dissimilar) to

each other they would be better parents to make offspring.
To put this idea to the test, some steps in CGA need to be
modified. The next subsection shows a new change in CGA
in the new step, ‘cellular rearrangement’ and it seems to
work like pre-processing before doing any genetic operation
in each generation or frequently.

3.4. Rearrangements and CGA family

Some kinds of arrangement are selected to locate the in-
dividual on a grid’s nodes. By the arrangements we try to
test the effectiveness of making the neighborhood. For in-
stance, what if one individual could have a greater chance
to have crossover with another individual that is so similar
to or different to it.

In this research, three kinds of arrangements techniques
are used: max-hamming distance, min-hamming distance
and max-min-hamming distance, and then all are mixed
with CGA as an added step and make the CGA family
(Figure 8 shows the new framework of the CGA family).

Figure 8. Flowchart Abstract of CGA Family.

Max-Hamming distance cellular genetic algorithm
(MaxHCGA): it makes a variety of dissimilarities between
the neighboring nodes. Actually, in the max-hamming dis-
tance rearrangement, the objective in individual arrange-
ments can be formulated by (6).

1 1
0 0

((,), (,))
j RN N i R

t t

i j a i R b j R
a N b N

Maximizing HD String i j String a b
++

= = = − = −
≤ ≤

 
 
  
 
∑∑ ∑ ∑

 

(6)

To make the simplest and most heuristic way to follow
the objective, all steps in MaxHCGA are the same as CGA
steps but only one step must be added: cellular rearrange-
ment. After making the initial population, according to Sec-
tion 2.3, one individual from the population is randomly
chosen. The chosen individual is allocated into the node
called pivot and then for all empty neighbors of the pivot,
the rearrangement method continues to find individuals
from the rest of the population that have the maximum
hamming distance value with the individual in the pivot.
The rearrangement method would work for all nodes that
have an individual in and at least one empty neighbor. The
rearrangement can be repeated each generation or different
frequently. In this paper, the rearrangement is performed
before each genetic generation to realize the effectiveness
of the arrangement.

Min-Hamming distance cellular genetic algorithm
(MinHCGA): as it is compared with MaxHCGA, only the
rearrangement method’s objective should be changed. In
spite of using maximum hamming distance value,
MinHCGA uses minimum hamming distance value for the
rearrangement method. As a consequence, all individuals
have more chance to meet individual who are more similar
to. The objective considered in the rearrangement is formu-
lated by (7).

1 1
0 0

((,), (,))
j RN N i R

t t

i j a i R b j R
a N b N

Minimizing HD String i j String a b
++

= = = − = −
≤ ≤

 
 
  
 
∑∑ ∑ ∑

 

(7)

Max-Min-Hamming distance cellular genetic algorithm
(MMHCGA): a combination of rearrangements of
Max-HCGA and Min-HCGA makes MMHCGA which
means that, alternately, Max-HCGA rearrangement and
Min-HCGA rearrangement can be used. Let

(,)MaxNeighbours i j represent a set of all the neighbors
around node),(ji that are supposed to have maximum
hamming distance valued with the individual allocated in
node),(ji , and),(jirsMinNeighbo embody a set of the
neighbors who are supposed to have minimum hamming
distance value with the individual in node),(ji . The objec-
tive of rearrangement in MMHCGA can be presented by
two formulations (8) and (8).

((), (,))
1 1 (,)

N N t tMaximizing HD String S String a b
i j S MaxNeighbours i j

 
 ∑ ∑ ∑
 = = ∈ 

(8)

1 1 (,)
((), (,))

N N
t t

i j S MinNeighbors i j
Minimizing HD String S String a b

= = ∈

 
 
 
∑∑ ∑ (9)

For example, Figure 9 illustrates four stages of such a
simple rearrangement method in MMHCGA explained by
formulas (8) and (9). First, one node in CA as a pivot cell
and one individual as a pivot individual randomly are cho-
sen and the individual will be assigned to the cell. The ar-
rangements will be continued for the pivot’s empty
neighbors as following. For the pivot cell’s neighbors- the

32 Hossein Rajabalipour Cheshmehgaz et al.: A Cellular-rearranging of Population in Genetic Algorithms
 to Solve Assembly-Line Balancing Problem

nodes in black in Figure 9.a- the maximum hamming dis-
tance value is considered, and for the others –the nodes in
white –the minimum hamming distance value is used. To
continue, in Figure 9.b, one of the grid’s none-empty nodes
is randomly chosen, and the rearrangement is repeated until
all nodes have one individual.

Figure 9. Initial four steps of MMHCGA Rearrangement.

4. Simulation and Results
To analyse the CGA algorithms family, a case with 83

assembly tasks were selected[from 29]. The given cycle
time for all workstations is 5000 units of time. To make the
results quite clear and also finding the differences between
the CGA family and typical (ordinary non-cellular) GA, the
following parameters values were fixed, but the values
could be changed to different values also.

The time of each task has been shown in Table 1. Each
algorithm executed from the initial population created ran-
domly, by 100 executions with 300 iterations in each. The
best individual and the worst individual (based on fitness

value) in new populations generated by the algorithms,
were recorded at the end of iterations of 10, 20, 30… and
300. And the average fitness value at the end of the itera-
tions for all CGA family algorithms were also calculated
and recorded.

An individual that has used the minimum number of
workstations and has minimal RSS (root sum square) of idle
times was identified as a relative best task balancing solu-
tion here. We compared the all member of CGA family
with each other and the typical GA (TGA) on these circum-
stances.

As the GA parameters part involved, to set the parame-
ters for GA, the selection rule that is used is the roulette
selection technique, and other parameters are fixed as fol-
lows.
Genetic parameters setting:

• Population size: 100
• Selection rule: roulette wheel selection
• Crossover rate: 0.9
• Mutation rate: 0.2
• Elitism rate: 0.05 (only for TGA)
• Iteration (reproduction of population) number: 300
• Number of Executions (for sampling): 100
As mentioned before, the best solution would be the one

(set of) individual(s) that has(have) minimum number of
workstation (that it needs) and minimum RSS of idle times
(maximum smoothness of tasks) by giving CT=5000.

Table 1. Precedence table of the case study.

Tasks Ti Time Precedent
Tasks Tasks Ti Time Precedent

Tasks Tasks Ti Time Precedent
Tasks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1673
985

1836
973

1700
2881
2231
1040
1793
1250
700
464
500

1133
577
483
880
667
600
233
408
849
767
850
780
912
748

1863

2
3, 4, 5

6
6, 7
8

9, 10
11

77, 78
10, 12

11, 13, 14, 25
12, 15
13, 16

14, 17, 18, 20
15, 19

16, 20, 39,
17, 77, 78

18, 21, 22, 28
19, 23

24
26
27
27
74

28,29
32
74
69
32

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

714
1004
713
642
629

1234
1143
1266
792

1251
1310
663
494

1288
792
578
594
578
622
578
564
578
578
578
578
578
578
578

30
31
39

33, 34, 35,36
37

77, 78
77, 78
38, 39

40
41

42, 43, 44, 75
77, 78

45
77, 78
77, 78

46
47
48
49
50
69
51
52
53
54
55
56
57

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

578
578
578
578
578
578
578
578
578
578
578
578
467
887
396
1296
1100
2543
764
357
701
1164
286
2100
450
1300
3691

58
59
60
61
62
63
64
65
66
67
68

74, 75
70, 71

72
73
73
74
76
76
76

77, 78
79

80, 81
82
83
83
-

 Pivot cell

 Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35 33

Figure 10, illustrates behaviors of five considered genetic
algorithms including TGA (conventional non-cellular GA)
and CGA family employed for the case study. As Figure 10.a
shows, MaxHCGA has best behavior in decreasing RSS of
idle time average as long as the number of iterations is going
up. In contrast to MaxHCGA, MinHCGA behaves in worst
manner which means that there is no decline in the average
of RSS that is expected as the number of iterations is in-
creasing.

Considering the average of number of workstations, Fig-
ure 10.b illustrates that MaxHCGA notably attain a better
solution compared with others (16.02 as workstations aver-
age needed).

a) The changes of the RSS average values along the iterations in TGA and
CGA family (after 100 runs for each).

b) The changes of the average numbers of workstations needed along the
iterations in TGA and CGA family (after 100 runs for each).

Figure 10. CGS family behaviors in different iterations (on average values
of RSS and needed workstations number basis).

In addition, Figure 11 shows the minimal RSS and
maximal RSS of idle times, for all executions, in different
iterations (for each algorithm). The values of both the pa-
rameters show that MaxHCGA works as well as it has been
expected. The minimum RSS of idle times reached by
MaxHCGA is about 1148.5 in the last iteration, 300 itera-
tions (Figure11.a) and also the maximum RSS for
MaxHCGA is better than others (Figure 11.b – about 2409).

Figure 12 presents the two examples of the best solutions
attained by MaxHCGA and TGA at the final iteration. Each
colored-row in Figure 12 is nominated as one workstation,
ordered from number 1 to 16, and tasks have been marked by
colored bars and the task times underneath. The idle time
bars of workstations are specified in thick dash-rectangles

and their values are in front.

(a)

(b)

Figure 11. CGS Family behaviors in different iterations (on minimum and
maximum value of RSS basis).

a) Best solution gained at iteration while running TGA by 100 runs

b) Best solution gained at final iteration while running MaxHCGA by 100
runs
Note: None Colored rectangles inside the dash-rectangle show the idle time
for each workstation

Figure 12. Two best solutions of MaxHCGA and TGA by iteration 100.

34 Hossein Rajabalipour Cheshmehgaz et al.: A Cellular-rearranging of Population in Genetic Algorithms
 to Solve Assembly-Line Balancing Problem

In spite of TGA, MaxHCGA has found the solution with
the greater smoothness level. However both solutions pre-
sent the same number of workstations (equal to 16 worksta-
tions) and total idle times (= 4293), but they have reached a
different RSS of idle times as smoothness (RSS for
MaxHCGA is 1149.49 and for TGA is 11.54.04). It means
that MaxHCGA has found a solution which is more
smoothed.

In this research, a modified cellular GA was developed to
solve the single-model ALB problem comprised of Type-1,
Type-3, SALB and SMALB. Some heuristic rearrangement
techniques based on hamming distance values were utilized
and then the CGA family was defined. We showed that each
member of the CGA family initiates a chance to individuals
put on cells to find a particular mate from their neighbors (by
a local selection mechanism), and then tries to do all genetic
operations: crossover, mutation and replacement, locally and
individually. With the aim of the rearrangements techniques,
the concept of exploration/exploitation has been sharpened
and examined for the ALB problem case. In the ALB case,
the similarity between individuals calculated by hamming
distance value illustrates how much similarity exists between
task assignments to the workstations proposed by individuals.
The main point of this paper showed how much the similarity
and dissimilarity between parents is useful for making off-
spring for the next generation. TGA as conventional
non-cellular GA, CGA, MinHCGA, MaxHCGA, MaxMin-
HCGA were all put on a test given by a test case, and then the
comparison results show how much the similarity and dis-
similarity in selection operations have been influenced. We
concluded that MaxHCGA mostly achieves the solutions
that have the minimal root sum square of idle times with
comparing to other CGA family members and TGA.

5. Conclusions
Although two conventional criteria; minimum worksta-

tions and idle times, were considered here, other pragmatic
criteria such as material handling constraints, resource
limitations, human factors and multiple or mixed-model
assembly manufacturing issues can be considered as further
research directions.

REFERENCES
[1] R. M. Karp, "Reducibility among combinational problems.

Complexity of computer applications," R. E. Miller and J. W.
Thatcher., Eds., ed New York: Plenim Press, 1972, pp.
85-104

[2] I. Baybars, "A survey of exact algorithms for the simple
assembly line balancing problem," International Journal of
Management Science, vol. 32, pp. 909–932, 1986

[3] M. Peeters and Z. Degraeve, "An linear programming based
lower bound for the simple assembly line balancing

problem," European Journal of Operational Research, vol.
168, pp. 716-731, Feb 1 2006

[4] V. V. Shkurba and S. A. Beletskii, "Numerical methods for
assembly-line balancing (survey) " Cybernetics and Systems
Analysis, vol. 1, pp. 96–108, 1977

[5] J. Bautista and J. Pereira, "A dynamic programming based
heuristic for the assembly line balancing problem," European
Journal of Operational Research, vol. 194, pp. 787-794, May
1 2009

[6] A. Sprecher, "A competitive branch-and-bound algorithm for
the simple assembly line balancing problem," International
Journal of Production Research, vol. 37, pp. 1787-1816, May
20 1999

[7] K. Fleszar and K. S. Hindi, "An enumerative heuristic and
reduction methods for the assembly line balancing problem,"
European Journal of Operational Research, vol. 145, pp.
606-620, Mar 16 2003

[8] R. Gamberini, et al., "A new multi-objective heuristic
algorithm for solving the stochastic assembly line re-
balancing problem," International Journal of Production
Economics, vol. 102, pp. 226-243, Aug 2006

[9] P. R. McMullen and G. V. Frazier, "Using simulated
annealing to solve a multiobjective assembly line balancing
problem with parallel workstations," International Journal of
Production Research, vol. 36, pp. 2717-2741, Oct 1998

[10] S. D. Lapierre, et al., "Balancing assembly lines with tabu
search," European Journal of Operational Research, vol. 168,
pp. 826-837, Feb 1 2006

[11] E. Falkenauer and A. Delchambre, "A Genetic Algorithm for
Bin Packing and Line Balancing," presented at the the 1992
IEEE International Conference on Robotics and Automation,
Nice, France, 1992

[12] C. Dimopoulos and A. M. S. Zalzala, "Recent developments
in evolutionary computation for manufacturing optimization:
Problems, solutions, and comparisons," Ieee Transactions on
Evolutionary Computation, vol. 4, pp. 93-113, Jul 2000

[13] A. Scholl and C. Becker, "State-of-the-art exact and heuristic
solution procedures for simple assembly line balancing,"
European Journal of Operational Research, vol. 168, pp.
666-693, Feb 1 2006

[14] S. O. Tasan and S. Tunali, "A review of the current
applications of genetic algorithms in assembly line
balancing," Journal of Intelligent Manufacturing, vol. 19, pp.
49-69, Feb 2008

[15] Y. J. Kim, et al., "A heuristic-based genetic algorithm for
workload smoothing in assembly lines," Computers &
Operations Research, vol. 25, pp. 99-111, Feb 1998

[16] A. Scholl, Balancing and Sequencing of Assembly Lines
Physica-Verlag HD; 2nd edition, 1999

[17] C. Becker and A. Scholl, "A survey on problems and methods
in generalized assembly line balancing," European Journal of
Operational Research, vol. 168, pp. 694-715, Feb 1 2006

[18] D. A. Ajenblit and R. L. Wainwright, "Applying genetic
algorithms to the U-shaped assembly line balancing
problem," presented at the the 1998 IEEE international
conference on evolutionary computation, Anchorage, Alaska,

 Journal of Mechanical Engineering and Automation 2012, 2(2): 25-35 35

USA, 1998

[19] I. Sabuncuoglu, et al., "Assembly line balancing using genetic
algorithms," Journal of Intelligent Manufacturing, vol. 11, pp.
295-310, May 2000

[20] D. J. Stockton, et al., "Use of genetic algorithms in operations
management - Part 1: applications," Proceedings of the
Institution of Mechanical Engineers Part B-Journal of
Engineering Manufacture, vol. 218, pp. 315-327, Mar 2004

[21] E. C. Brown and R. T. Sumichrast, "Evaluating performance
advantages of grouping genetic algorithms," Engineering
Applications of Artificial Intelligence, vol. 18, pp. 1-12, Feb
2005

[22] Y. Tsujimura, et al., "Solving Fuzzy Assembly-Line
Balancing Problem with Genetic Algorithms," Computers &
Industrial Engineering, vol. 29, pp. 543-547, Sep 1995

[23] K. C. C. Chan, et al., "Handling the assembly line balancing
problem in the clothing industry using a genetic algorithm,"
International Journal of Clothing Science and Technology,
vol. 10, pp. 21 - 37, 1998

[24] B. Manderick and P. Spiessen, "Fine-Grained Parallel
Genetic Algorithms," presented at the Proceedings of the 3rd
International Conference on Genetic Algorithms, Fairfax,
Virginia, USA, 1989

[25] E. Alba and B. Dorronsoro, "The exploration/exploitation
tradeoff in dynamic cellular genetic algorithms," Ieee
Transactions on Evolutionary Computation, vol. 9, pp.
126-142, Apr 2005

[26] S. Janson and M. Middendorf, "A hierarchical particle swarm
optimizer and its adaptive variant," Ieee Transactions on
Systems Man and Cybernetics Part B-Cybernetics, vol. 35, pp.
1272-1282, Dec 2005

[27] Y. J. Cao and Q. H. Wu, "A cellular automata based genetic
algorithm and its application in mechanical design
optimization," presented at the UKACC International
Conference, Swansea, UK, 1998

[28] H. R. Cheshmehgaz, et al., "The Improved Genetic Algorithm
for Assignment Problems," Proceedings of the 2009
International Conference on Signal Processing Systems, pp.
187-191, 1016, 2009

[29] A. Scholl, "Data of assembly line balancing problems,"
Schriften zur Quantitativen Betriebswirtschaftslehre 16/93,
TU Darmstadt, 1993

[30] S. Wolfram, A New Kind of Science, 1 ed. USA: Wolfram
Media, 2002

[31] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic
Algorithms, 1 ed.: Springer, 2007

[32] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms.
USA: New York: Springer Science+Business Media, LLC,
2008

[33] T. Bäck, Evolutionary Algorithms in Theory and Practice
Evolution Strategies, Evolutionary Programming, Genetic
Algorithms New York: Oxford University Press, 1998

[34] C. A. C. Coello, et al., Evolutionary Algorithms for Solving
Multi-Objective Problems. New York, USA: Springer, 2007

	1. Introduction
	1.1. ALB Problem Classes and their Objectives

	2. Typical Genetic Algorithms for ALB
	2.1. Representation
	2.2. Objectives and Fitness Function Definition
	2.3. Initial Population
	2.4. Crossover Technique
	2.5. Mutation Technique

	3. Cellular-Rearranging of Population
	3.1. Cellular (grid) Structure
	3.2. Cellular Genetic Algorithms (CGA)
	3.3. Hamming distance (HD)
	3.4. Rearrangements and CGA family

	4. Simulation and Results
	5. Conclusions

