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Abstract  Spectrophotometric methods are both sensitive and suitable for studying acidity constants in solutions. These 
methods imply the direct determination of the mole ratio of acid-base conjugate pairs through absorbance (A) measurements 
in a series of solutions of known pH. The evaluation of acid dissociation constants is very simple, if the species involved in 
the equilibria may be obtained in pure form (i.e. the limit absorbances A2 and A0 of H2R and R species respectively, are 
known), and do not overlap (i.e. A1, the limit absorbance of the specie HR is also known). The situation is more complex 
when the two ionizing groups of a substance lie within three pKa units of one another; the absorbance of the intermediate 
specie HR cannot then be determined experimentally and calculations being necessarily involved. Based on the expression of 
the absorbance as a function of the concentration for a diprotic acid, it is possible to calculate the pH values for which the 
absorbances coincide with the mean of the limit values of the absorbances corresponding to the different species: 
A*=(A2+A1)/2 and A**=(A1+A0)/2. Then the limit values of pH* and pH**, and the parameters α = pKa1-pH* and β = pH**- 
pKa2 are calculated, checking in turn under what conditions a diprotic acid can be treated as a monoprotic one from a 
spectrophotometric point of view. Nevertheless, in order to apply the above expressions A1 must be known, which can be 
made by the Polster method, i.e. by measuring the absorbances of varying pH solutions at two wavelengths λ1 and λ2, using 
orthogonal regression method Aλ1 versus Aλ2 (similar errors are assumed in both axis). In this work, a method of evaluation of 
acidity constants based on the rearrangement of the A versus pH expression is applied which implies the use of a straight-line 
(y=a0+a1x method) in order to separate the variables Ka2 (=1/a0) and Ka1 (=a0 /a1). The method presupposes the prior 
knowledge of A1, which may be previously obtained by the Polster method. The theory developed in this paper has been 
successfully applied to the experimental data reported in the literature for the resorcinol system.  
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1. Introduction 
Among the physico-chemical properties of molecules, the 

acidity constants are of vital importance both in the analysis 
of drugs as well as in the interpretation of their mechanism of 
action [1-9]. The solution of many galenical problems 
requires the knowledge of the acidity constants of 
compounds [10] having pharmaceutical interest. Many 
compounds of biological interest have acidity constants, 
which lie close to each other. Their absorption, further 
transport and effect in the living organism are affected by the 
ratio of concentration of protonated and non-protonated 
forms in various media, the knowledge of acidity constants 
[11-15] being thus  of great worth.  Evaluation  of acidity  

 
* Corresponding author: 
jbueno@us.es (Julia Martín) 
Published online at http://journal.sapub.org/jlce 
Copyright © 2018 The Author(s). Published by Scientific & Academic Publishing 
This work is licensed under the Creative Commons Attribution International 
License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

constants of organic reagents is also of great value in 
planning analytical work [16, 17], e.g., the acidity constants 
can be employed in the design of titration procedures [18] 
and examining the possibility of separation of mixtures of 
compounds by extraction. The complexing properties of a 
molecule depends on the number and steric disposition of is 
donor centres as well as on its acid-base properties [19-21]. 

The ionization equilibrium of a monobasic acid 
HR H R+

                (1) 

is characterized by the acidity constant 
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β1 is the stability constant of HA, i.e. the constant 
corresponding to the formation equilibria H + R = HR. The 
ionic strength and temperature of the solution are assumed to 
be constant, so that mixed or conditional constants are used 
in the calculations. Charges are omitted for simplicity. 

If A is the measured absorbance (for 1-cm pathlength) of a 
solution containing a total concentration  
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[ ] [ ]RC R HR= +                  (3) 

of the acid, then assuming that Beer’s law holds, we have  
[22, 23] 
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where f0 and f1 are the molar fractions of R and HR 
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and A0 and A1 are the limit absorbances of the species R and 
HR, respectively, i.e. the absorbances of the pure forms of 
the reagent R and HR, respectively, which have molar 
absorptivities ε0 and ε1; A0=ε0CR and A1=ε1CR. Eqn. (5) on 
rearrangement gives 
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             (7) 

The slope of the A-pH curve (Figure 1) is given by 
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Differentiation of Eqn. (8) with respect to pH leads to 
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The condition d2A/d(pH)2 will locate the point of inflexion 
(Figure 1) in the graph of A against pH [23-25]. At this point 
[H] = Ka, and then by applying Eqn. (5) we have at this point 
(A’’, pH’’) 

1 0

2
A A

A
+

′′ =                (10) 

Note that the value of dA/d(pH) at this point [26] is given 
by 
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where ∆A= A1-A0. 
The pKa value of a monoprotic acid can thus be 

determined by plotting absorbances as a function of pH for a 
series of solutions having a constant concentration CR of 
reagent. The inflexion point of the curve A versus pH, i.e. the 
value of pH (equal to pH’’) that satisfies the condition (10) 
coincides exactly with the pKa value. Although this is strictly 
true for monoprotic acids, one can wonder if this simple 
procedure is applicable to diprotic acids. In other words: can 
a diprotic acid be treated as a monoprotic one? An answer to 
this question is given in that follows. 

 

 
Figure 1.  Absorbance-pH curve corresponding to a monoprotic acis HR 
(blue), and first derivative A-pH curve (red) and second derivative A-pH 
curve (black) 
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2. The Diprotic Acid System 
For the dissociation of a diprotic acid H2R we have the 

equilibria 

2H R HR H+



  HR R H+



   (12a,b) 

described by the equations 
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where we are specifically neglecting charges for the sake of 
the generality. The absorbance and the composition of any 
given solution of a diprotic acid having concentration CR 
(Figure 2) is given by [22, 27-30] 

2 2 1 1 0 0A A f A f A f= + +           (14) 

 

Figure 2.  Top: A2= 0.2; A1=0.4; A0=0.8; pKa1=5.5 and varying ∆pKa. 
Middle: A2=0.4; A1=0.8; A0=0.2; pKa1=5.5 and varying ∆pKa. Bottom: 
A2=0.8; A1=0.2; A0=0.4; pKa1=5.5 and ∆pKa (∆pKa: 1; 2; 2,5; 3, 4; and 5) 
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where A0, A1, and A2 are the limit absorbances of R, HR and 
H2R, respectively, and f2, f1 and f0 the molarity fractions 
(fj=[HjR]/CR and Aj=εjCR). Let A* and A** be the absorbance 
values of two samples which have pH values pH* and pH**, 
respectively, which satisfies the following conditions 
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Substituting condition (16a) into Eqn. (15), upon 
rearrangement and collecting the terms containing identical 
powers of [H*] one obtains 
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Solving this quadratic equation for the concentration of 
hydrogen ions gives 
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In this case the negative root has no physical significance. 
A more compact version of Eqn. (18) can be obtained by 
using 
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and thus 
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From Eqn. (20) it is seen that [H*]=Ka1 only if – a 10-x is 
negligible compared with the unity. Effectively when x is 
large to unite there is a wide range of concentration of [H] 
over which f1=[HR]/CR is very close to 1, as well as the 
square root included in the expression (20), and then 

*
1limx aH K→∞   =           (21) 

A not unexpected result. The value of the ratio 
Ka1/Ka2=10x is an important property of a diprotic acid, 
because this relation can be regarded as the equilibrium 
constant of the following reaction [31] 
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On the other hand, Eqns. (16b) and (15) can be combined 
to give, once upon rearrangement and collecting the terms in 
powers of [H] 
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The meaningful solution of this quadratic equation is 
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(25) 
The form in which Eqn. (25) is presented is important. In 

effect, although it is evident from Eqn. (20) that [H*] tends to 
Ka1 when x is large, it is not clear from Eqn. (25) that [H**] 
tends to Ka2 when x is large. In order to place the limiting 
process on a sounder basis we will demonstrate that the limit 
of the ratio is actually the desired quantity. Taking into 
account expression (19a) we get for [H**] 
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which can conveniently be re-written as follows 
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where for the sake of brevity 

1 0 0 1 2

0 1 2 1 0

21 4
2 2

A A A A A
b c

A A A A A
   − + −

= =   + − −   
 (28a,b) 

The limit of the term in parenthesis, f(x), in Eqn. (27) 
when x is very large to the unity is the unity. Effectively, by 
applying L’Hôpital’s rule [32, 33] we get 
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Rewriting Eqns. (20) and (27) in logarithmic form gives 

( )*
1 log 1 1 10 log 2x
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The values of α and β as a function of x for a few systems 
taken as examples are shown in Table 1, where it is seen that 
the situation of pKa values in the pH scale with respect to pH* 
and pH** is dependent on the relative values of the limit 
absorbances A0, A1 and A2, as well as on the value of x=∆pKa. 
However, except for very close pKa values the acidity 
constants are easily experimentally obtained making use of 
expressions (16a,b). 
 

Table 1.  Dependence of the α and β values with ∆pKa 

A2 A1 A0 4.00 3.00 2.50 2.00 1.00 ← ΔpKa 

0.2 0.4 0.8 
0.000 0.002 0.007 0.020 0.135 ← α 
0.000 0.001 0.003 0.080 0.068 ← β 

0.4 0.8 0.2 
0.000 -0.001 -0.008 -0.009 -0.140 ← α 
0.000 0.000 0.000 -0.001 -0.015 ← β 

0.8 0.2 0.4 
0.000 0.000 0.000 0.001 0.014 ← α 

0.000 -0.001 -0.007 -0.024 ª ← β 

ª Imaginary result 

 
Nevertheless, Eqns. (16a,b) though instructive are not 

very useful since A1 must be known. In cases in which 
equilibria overlap A1 is usually evaluated together with Ka1 
or Ka2 by applying graphical methods of evaluation [34], 
although in some numerical and graphical method of 
evaluation Ka1 and Ka2 are simultaneously evaluated whereas 
A1 is not. Thus, at first glance the calculations given above 
are not only somewhat a waste of time, but are also 
philosophically unattractive. How can be avoided this logical 
absurdity? Are the expression derived above merely an 
academic exercise?. A new method reported by Polster 
[35-39] and based on the measurements of absorbances at 
two wavelengths (λ and λ*) allows to evaluate graphically 
the limit absorbances A1 and A1

* for the intermediate specie 
HR, thus making the matter presented in this work useful 
both in research as in the teaching of chemical equilibria 
methods at all levels. 

3. Evaluation of the Limit Absorbance 
A1 from Absorbance Measurements  
at Two Wavelengths 

In the evaluation of acidity constants of overlapping 
equilibria approximations of various sorts are frequently 
made in order to carry out calculations. Working at low pH 
values where it is only assumed the presence of the species 
H2R and HR, i.e. f0 is close to zero, and from Eqn. (14), we 
have for measurements at two wavelengths λ and λ* 

( ) ( )1 1 2 2 1 1 2 1 1 2 1 21A A f A f A f A f A A f A= + = + − = − + (32) 

( )* * * *
1 2 1 2A A A f A= − +            (33) 

since in this specific case f2 + f1 = 1. Whence it follows that 
(rearrangement f1 from Eqns. (32) and (33) and equating the 
result in both cases) 
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From which 
* *

2 2A kA A kA= + −  (35) 

and thus plotting A against A* for a series of solutions we 
obtain a straight line having a slope equal to k and an 
intercept on the ordinate axis equal to A2 – k A2

*. In much the 
same fashion one can obtain in the pH range in which the 
species HR and R are present that the absorbance at any 
particular wavelength is given by  

( )1 0 1 0A A A f A= − +    (36) 

since in this case f2 0, and then from measurements at two 
wavelengths λ and λ* we have 
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from which 
* *

0 0´ ´A k A A k A= + −  (38) 

A plot of A against A* for a series of solutions will be a 
straight line. Its slope will be equal to k’ and the point at 
which A*=0 is equal to A0 – k’ A0

*. It should be noted that 
Eqns. (32) and (36) are strictly true only when two species 
are present in solution. However, when equilibria overlaps 
there is a range of pH in the neighbourhood of ½ (pKa1+pKa2) 
where the three species R, HR and H2R are present in 
solution, a curvature being obtained in both representations 
with these points.  

Equations. (34) and (37) are really particular examples of 
the more general case, easily derivable from Eqns. (33) and 
(36)  

* * constantj

j

A A

A A

−
=

−
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previously used by Coleman et al. [40] in the determination 
of the number of species, n, in solution. When n=2 the plot of 
the absorbance minus the absorbance of a solution j taken as 
reference, at λ, against the absorbance minus the absorbance 
of the reference solution, at λ*, for a series of solutions, gives 
a straight line passing through the origin. Working with 
different pairs of wavelengths a family of straight lines 
intersecting in the origin of coordinates is obtained.  

It can be easily demonstrated that the point of intersection 
of the two straight lines is given by  

( ) ( ) ( )* * * *
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On the other hand the required unknowns A1 and A1
* can 

be obtained by solving pairs of simultaneous equations 
derived from Eqns. (35) and (38) 
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which lead to 

( ) ( )* *
2 2 0 0

1

´ ´

´

k A kA k A k A
A

k k

− − −
=

−
  (43) 

( )* *
0 0 2 2*

1

´

´

A k A A kA
A

k k
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Comparing Eqns. (43) and (44) and Eqn. (40) we see that 
the coordinates of the point of intersection of both straight 
lines defined by Eqns. (35) and (38) are given by (A1

*, A1). 
By substituting the expression for k and k’ given by Eqns. 
(34) and (37), respectively, into Eqn. (40) we also get the 
coordinates of the intersecting point, but much algebra 
would be needed to achieve the same results. 

Plots of A against A* are easy to construct, especially with 
the aid of a spreadsheet. It is a simple matter to evaluate A1 
and A1

* from such a plot; the extended tangents or limiting 
slopes of straight lines should intersect at the point (A1

*, A1). 
From an experimental point of view the conditions more 
favourable for obtain A-pH data is spectrophotometric 
titration, but fairly precise results can be obtained and good 
accuracy can be achieved obtaining a number of data closely 
spaced. However, arithmetic calculation in this method is 
reduced at a minimum, which undoubtedly constitutes an 
attractive feature with purposes of teaching in the 
undergraduate analytical laboratory if comparing with other 
graphical or numerical methods of evaluation.  

Nevertheless, although it is true that at the pH values 
corresponding to the absorbances A* and A** we have 
(∆pKa>2) 

* **
1 2a apH pK pH pK= =  (45) 

there seems little point in measuring the whole absorbance 
versus pH graphs merely to determine three points. So, the 
constants obtained are little efficient in terms of return for 
effort used [41]. Another way, which is more complicated 
but which uses the data more efficiently and provides a much 
more reliable value A1 and A1

* is described in the following. 
An orthogonal regression method should be applied to A 
versus A* data because the two axes are affected by errors of 
similar magnitude. 

4. Orthogonal Regression
We can apply a least squares method to the experimental 

data (A*, A), but single linear regression is not strictly 
applicable to fitting the best straight line through data points 
because both variables A and A* contain analogous random 
error of measurement [42-45].  

The perpendicular distance from the point (xi, yi) to the 
line whose algebraic representation is  

0 1ŷ a a x= +  (46) 

is given by 
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We will minimize the sum of the squares of the distance 
perpendicular to the least squares line  
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Note that there is only to unknown quantities in Q: a0 and 
a1. If Q is to be a minimum the first partial derivatives of Q 
with respect to a0 and a1 must be zero. Then  
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On the other hand by combing Eqns. (48) and (50b) we 
have 
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where SXX, SYY are sums of squares about the mean for two 
variables (x and y), and SXY is the corresponding sum of 
cross-products  
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and thus 
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( )( ) ( )2 2
1 1 1 1 11 2 2 2 2 0XY XX YY XY XXa S a S a S a S a S+ − + − − + = (56) 

( )2
1 1 0XY XX YY XYS a a S S S+ − − =         (57) 

( )2 2

1
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YY XX XX YY XY

XY

S S S S S
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S
− ± − +
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The meaningful solution of the quadratic Eqn. (57) gives 

the value of a1. The sign of a1 is the same as the sign of SXY. 
Once the value of a1 is known, the value of a0 is calculated 
from Eqn. (50b). The (A1

*, A1) point is defined by the 
intersection of the extrapolated linear portion of the two 
branches obtained (by the least squares method above 
described) plotting A against A*, y=a0+a1x and y = b0+b1x, 
and then we have 

( )*0 0 1 0 1 0
1 1

1 1 1 0
, ,

b a a b b a
A A

a b a b
 − −

= − − 
      (59) 

In those cases in which measurement errors affect both 
axes in an unequal way, Boccio et al. [46], and McCartin  
[47, 48] should be consulted, in addition to the references 
cited at the beginning of this section. Once the limit 
absorbance, A1, of the intermediate specie HR, is known the 
acidity constants can be evaluated as follows. 

5. Spectrophotometric Evaluation of 
Acidity Constants  

From Eqn. (15) we get 

( ) ( ) [ ] ( ) [ ]2

0 1 2
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0
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K K K
− + − + − =    (60) 

which on rearrangement gives 
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   (61) 

A plot of the left hand against [H] (A-A2)/(A-A1) gives a 
straight line of slope 1/(Ka2Ka1) and intercept 1/Ka2 from 
which 

2
0

1
aK

a
=                 (62) 

0
1

1
a

a
K

a
=                 (63) 

6. Error Analysis 
All analytical measurements are random variables and the 

information they provide is subject to uncertainty. Changes 
of interest are usually based on a set of observations and we 
want to know if the mean and variance of these functions are 
related to the mean, variance and covariance of the original 
measurements. The relationship for calculating the variance 

2
Rs  of a continuous arbitrary function of multiple variables, 

x1, x2 ... xN, which are normally distributed with variances 
2
ixs , is known as the law of random error propagation    

[49, 50], which is expressed as  

( )1 2, ,... NR f x x x=             (64) 
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 Journal of Laboratory Chemical Education 2018, 6(4): 107-117 113 
 

 

The law of error propagation applied to the function R = f 
(a0, a1) leads to  

( )0 1
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0 1 0 1

2 cov ,R a a
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sa0
2, sa1

2, and cov(a0, a1), are the variance of the intercept, 
the variance of the slope and the covariance between the 
intercept and the slope of the regression line using the 
conventional least squares method in this case 

1
XY

XX

Sa
S

=                  (67) 

0 1a y a x= −                 (68) 

1

2
/2 y x

a
XX

s
s

S
=                  (69) 

0

2
2 2

/
1

a y x
XX

xs s
n S

 
= +  

 
           (70) 

( )
2

/
0 1cov , y x

XX

s
a a x

S
= −            (71) 

where sy/x
2 is the variance of the regression line, given by  
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Note that the sy/x value can be easily get using linear 
regression (method of the least squares), in EXCEL, with the 
function LINEST (but no the covariance between the 
intercept and the slope). 

Since Ka2 is a function of the intercept 
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the variance of Ka2 is equal to  
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and as pKa2, is a function of Ka2 

( )2 2a apK f K=             (75) 

we can calculate the variance of pKa2 as 

( )

2 2 2

2 2

0

2
2 2 22 2

2 2
2

2 2
2

2 2
2

2
2
0

log

1 1
1 10 1 10

log

a a a

a a

a a
pK K K

a a

K K
a a

a

pK K
s s s

K K

s s
n K n k

s
e

a

   ∂ −
= =   

   

 −
         = = 

 

         =

   (76) 

and its standard deviation as 
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            (77) 

The first acidity constant is function of the intercept and 
the slope, so the corresponding expressions are more 
complicated 
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Thus applying the law of random error propagation 
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and then, the variance of pKa1 is equal to 
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and as pKa1, is a function of Ka1, we can calculate the 
variance of pKa1 as 
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the covariance of measurements can be as important as the 
variances and both contribute significantly to the total 
analytical error [51, 52].  

7. Evaluation of Acidity Constants in 
Experimental System: Resorcinol 

Resorcinol or 1,3-benzenediol is used in the determination 
of ascorbic acid in pharmaceuticals and in the synthesis of 
several organic compounds [53]. However, there are few 
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studies dealing with the molecular structure [54] or the 
acid–base properties of this compound in solution [10]. 
Considering that knowledge of the acid dissociation 
constants (pKa) becomes essential for the development of 
new compounds with biological activity [55, 56], in this 
paper we determine the overlapping pKa values of resorcinol 
in water.  

In this section, we apply the developed theory to the 
experimental A-pH data (see Table 2) described in the 
literature for resorcinol published by Blanco et al. [57]. The 
A-pH curves corresponding to a resorcinol at 368.3 and 
293.5 nm are plotted in Figure 3.  

Table 2.  A-pH data for the resorcinol system published by Blanco et al. 
[57] 

pH 268.3 nm 293.5 nm pH 268.3 nm 293.5 nm 

0.0 0.6990 0.0480 10.5 0.5213 0.9879 
2.0 0.6990 0.0480 10.6 0.5155 1.0331 
4.0 0.6990 0.0480 10.7 0.5099 1.0795 
5.0 0.6990 0.0480 10.8 0.5043 1.1266 
6.0 0.6989 0.0484 10.9 0.4988 1.1736 
7.0 0.6981 0.0522 11.0 0.4935 1.2196 
7.5 0.6962 0.0611 11.1 0.4885 1.2638 
7.6 0.6955 0.0644 11.2 0.4839 1.3051 
7.7 0.6947 0.0686 11.3 0.4796 1.3431 
7.8 0.6936 0.0737 11.4 0.4758 1.3772 
7.9 0.6922 0.0801 11.5 0.4725 1.4073 
8.0 0.6905 0.0881 11.6 0.4696 1.4334 
8.1 0.6885 0.0978 11.7 0.4672 1.4557 
8.2 0.6860 0.1097 11.8 0.4651 1.4745 
8.3 0.6829 0.1241 11.9 0.4634 1.4902 
8.4 0.6793 0.1416 12.0 0.4620 1.5031 
8.5 0.6749 0.1624 12.1 0.4608 1.5138 
8.6 0.6697 0.1869 12.2 0.4599 1.5225 
8.7 0.6637 0.2155 12.3 0.4591 1.5295 
8.8 0.6569 0.2482 12.4 0.4585 1.5352 
8.9 0.6492 0.2849 12.5 0.4580 1.5398 
9.0 0.6407 0.3255 12.6 0.4576 1.5435 
9.1 0.6316 0.3693 12.7 0.4573 1.5464 
9.2 0.6220 0.4157 12.8 0.4570 1.5488 
9.3 0.6122 0.4635 12.9 0.4568 1.5506 
9.4 0.6024 0.5120 13.0 0.4566 1.5521 
9.5 0.5927 0.5601 13.1 0.4565 1.5533 
9.6 0.5834 0.6071 13.2 0.4564 1.5543 
9.7 0.5747 0.6526 13.3 0.4563 1.5551 
9.8 0.5665 0.6964 13.4 0.4563 1.5557 
9.9 0.5588 0.7387 13.5 0.4562 1.5561 
10.0 0.5517 0.7798 13.6 0.4562 1.5565 
10.1 0.5451 0.8203 13.7 0.4561 1.5568 
10.2 0.5389 0.8608 13.8 0.4561 1.5571 
10.3 0.5328 0.9019 13.9 0.4561 1.5573 
10.4 0.5270 0.9442 14.0 0.4561 1.5574 

 
Figure 3.  A-pH data at 268.3 and 193.5 nm, I=0.1, T=25°C, CR=4.76·10-4 
M for the resorcinol system 

Figure 4 shows the application of the Polster method. The 
orthogonal regression leads to A1 values of [0.5353; 0.8271]. 
After the application of Eqn. (61) the pKa values were 
obtained from the slope 1/(Ka2Ka1) and the intercept 1/Ka2. 
The best value of the limit absorbance for the intermediate 
specie HR (A1) was obtained by a trial and error method, i.e. 
the best value of A1 is taken as that which minimizes the 
standard deviation of the corresponding regression line. The 
value assumed for A1 was 0.814 (Figure 6).  

 
Figure 4.  Evaluation of the limit absorbance of the intermediate specie, 
HR 

 

Figure 5.  Evaluation of the acidity constants of resorcinol by Eqn. 61 
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Figure 6.  s(y/x) as a function of the A1 value assumed 

The pKa values obtained are: pKa1 = 9.251 ± 0.066 and 
pKa2 = 10.879 ± 0.014. These values are of the same order of 
magnitude as those published in the original work of Blanco 
et al. [57], or those described in the literature for resorcinol. 
Values of estimated pKa are reported with three digits in all 
cases, even if they are not significant. In addition, the 
experimental data considered are of high quality as can be 
seen from the low standard deviation of the regression lines. 

8. Conclusions 
It can finally be argued that a diprotic acid with 

overlapping (simultaneous equilibria) acidity constants may 
be treated as a monoprotic acid provided that some 
approximation is made. The simplifying assumption is that 
the concentrations of the species R or H2R are small 
compared with the total concentration CR at enough low and 
pH values, respectively. Such approximations are often 
necessary to have an accurate knowledge of the composition 
of the solution at a certain pH interval. 

A new method reported by Polster and based on the 
measurements of absorbances at two wavelengths (λ and λ*) 
allows to evaluate graphically the limit absorbances A1 and 
A1

* for the intermediate species HR of a diprotic acid H2R, 
dealing with overlapping (simultaneous) equilibria. Least 
squares treatment, which takes into account similar errors in 
both x and y variables, i.e. orthogonal regression, is also 
included in this work. Few attempts to deal with this problem 
in the evaluation of equilibrium constants have been made. 

Except for very close pKa values the acidity constants are 
easily experimentally obtained making use of expressions 
A(pKa1)=(A2+A1)/2 and A(pKa2)=(A1+A0)/2. However, there 
seems little point in measuring a whole A-pH curve to 
determine one point. The constants so obtained are much less 
efficient in terms of return for effort used.  

The theory developed in this work has been successfully 
applied to the experimental systems described in the 
bibliography (resorcinol, with ∆pKa of about 1.7). A detailed 
analysis of the errors implied is also made, taking into 
account the strong correlation existing between the slope and 
intercept of a straight line obtained by the least squares 

method. The covariance between two variables is so 
important as the variances and both contribute significantly 
to the total analytical error. 
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