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Abstract  We introduced notions of perfect and proper refinements for prenucleolies of fuzzy games. The paper deals with 

the existence problem of the mentioned kind of refinements. It is shown that perfect and proper refinements exist for the 

games possessing with prenucleolies. Continuity for nucleoluses of classical cooperative games proved in Schmeidler (1969). 

We extend it to prenucleolies of fuzzy games and show that it remains true for prenucleolies of fuzzy games too when the 

latter ones exists.  
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1. Introduction 

For Nash equilibria of finite player games the notion of 

perfect equilibria has been invented by R. Selten (1975) and 

by R. Myerson (1978) it has been developed as proper 

equilibria. Game theorists started working with refinement 

problems still in 1960’s [Wu Wen-Tsun and Jian Jia-He 

(1962)]. But for many of them keeping busy with various 

kinds of refinement problems has become stylish only since 

1970’s. Then those have been relating to refinements of Nash 

equilibria. The important ones among refinements of Nash 

equilibrium concept are perfect equilibrium of Selten (1975), 

proper equilibrium of Myerson (1978), persistent equilibrium 

of Kalai and Samet (1984) and stable equilibrium of 

Kohlberg and Mertens (1986). 

As far as new is theory of prenucleolies itself, so it is   

the first attempt of refining them for fuzzy games. We 

conduct analysis in formulation that is similar to the one in 

Schmeidler (1973). 

The set of coalitions of fuzzy games that we deal with is 

atomless measure space. Each fuzzy coalition chooses a pure 

(classical) coalition from finite set of all pure coalitions. The 

payoff to a fuzzy coalition defines by excess of the chosen 

pure coalition and the average excess of the rest of coalitions. 

A game is a continuous mapping, which to fuzzy coalition 

associates a utility function. 

Section 2 devoted to definitions and preliminaries of 

notions, which used further. 

In Section 3 introduced ε-perfect (ε-proper) and as well 

perfect (proper) refiners. They accompanied with necessary  
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interpretations. 

That for fuzzy prenucleolies there are ε-, and full refiners 

we prove in Section 4. 

Section 5 contains the proof of continuity for game to 

prenucleolies mapping. 

2. Some Definitions and Notions 

The definitions of fuzzy prenucleolies of a game are 

contained in Y. Maroutian [2024a.b]. For refinement purposes 

we need to redefine the fuzzy games. In the formulation that 

follows, fuzzy game is a pair (T, v), where T=[0,1]𝑛  is the 

set of all fuzzy coalitions endowed with Lebesgue measure. 

N is the set of all players and σ = {∑/∑ ⊆ 𝑁} is the set of 

pure coalitions. The pair (𝑇𝑝 , 𝑋𝑝) refers to prenucleolies that 

obtained at some step p of minimization of fuzzy excesses. 

An excess profile is a continuous function f from 𝑇𝑝  to 

σ x 𝑋𝑝 , which to τϵ𝑇𝑝  maps a pair that consists of a pure 

coalition ∑ϵ σ and a payoff vector vector x� 𝑋𝑝 . By them 

one can figure out excess 𝑒𝑣(∑, x). By F we will denote the 

set of all excess profiles f. Magnitude of  𝑓(𝜏)
𝑇𝑝 dλ refers to 

the average excess of all coalitions from 𝑇𝑝 , where f(τ) 

replaces the excess of 𝑒𝑣(∑, x) that we mentioned above. For 

any fϵF s(f)=  𝑓(𝜏)
𝑇𝑝 dλ and S={s(f) / fϵF}. 

In the description below regarding to finding of the best 

payoffs we should stress that it is a process, which entirely 

based on pure coalitions.  

Mapping  

h τ :  𝑇𝑝 → σx𝑋𝑝 for what h(� ) =(ℎ1(� ),…, ℎ𝑛 (� )) is a 

vector function of payoff, chooses vectors x� 𝑋𝑝  for pure 

coalition ∑ϵ σ. Reasons that we use pure coalition from set 

to find best payoffs are following: σ is a finite set and also 

there are pure coalitions in set 𝑇𝑝  too. This is something that 

simplifies the assessment of payoffs. Farther a game maps 
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utility function to the pair of pure coalitions excess and 

average payoff of the rest of coalitions. Utility functions 

enable games to separate best payoffs for fuzzy coalitions. 

They assess the utilities of pairs (𝑒𝑣(∑, x),  ℎ(𝜏)dλ
𝑇𝑝 ). This 

process results to finding of the best payoff for a fuzzy 

coalition. 

The process that we mentioned right now consists of two 

components by what one can model how the excess profile 

works. The first one of them is the rejection by coalitions of 

those vectors x� 𝑋𝑝  that do not provide maximum payoff for, 

and the second component is the refinement of set 𝑋𝑝  of 

vectors with insufficient payoffs.  

Let U denote the set of real valued continuous functions 

called utility functions that defined on 𝐸𝑣𝑥𝑆 where 𝐸𝑣  is 

the set of excesses of pure coalitions ∑. We assume that   

U endowed with supnorm topology. Game defines as a 

continuous function v:T→U. Based on what’s above a fuzzy 

coalition’s payoff is continuous function of the pure 

coalition’s excess and average excess of the rest of coalitions 

from the set 𝑇𝑝 . 

The expression v(𝜏)(𝑒𝑣 (∑, x),  𝑓(𝜏)dλ
𝑇𝑝 ) calls normal 

form of fuzzy game (T, v). 

Through it defines the magnitude of payoff for coalition 𝜏. 

“For non-cooperative games in many real, game like 

situations a mixed strategy has no meaning” (D. Schmeidler 

(1973)). We cannot share this point of view when it comes  

to fuzzy coalitions and from there as well to fuzzy 

prenucleolies in cooperative games. That is the reason 

because of what proving existence of a pure refinement in 

fuzzy cooperative game is not as important as it is doing the 

same for pure T-strategy equilibrium in non-cooperative 

games. From there we will just get along with proving    

the existence of arbitrary (pure or fuzzy) refiners of 

prenucleolies. At the same time though proving existence of 

pure refinement still can be counted as a problem, however 

here we do not keep busy with it. 

3. Perfect and Proper Refiners 

In this section we define perfect and proper refiners for 

fuzzy prenucleolies as well make some interpretations. Let F 

again is the set of a all continuous functions f such that 

f: 𝑇𝑝→ σ x 𝑋 𝑝 , and by  ℎ(𝜏)dλ
𝑇𝑝  we denote the average 

excess of all coalitions 𝑇𝑝 . λ is Lebesgue measure defined 

on T. 

Definition 3.1. An ε-perfect refiner of v is a function h� F 

such that for almost all 𝑇𝑝  

ℎ 𝜏 > 0 and for arbitrary i,j if 

𝑣(𝜏)(𝑒𝑣(∑𝑖 , x),  ℎ(𝜏)dλ
𝑇𝑝 )< 𝑣(𝜏)(𝑒𝑣(∑𝑗 , x),  ℎ(𝜏)dλ)

𝑇𝑝  

then ℎ𝑙(𝜏) ≤ ε for all l� ∑𝑖 . 
Definition 3.2. A perfect refiner of v is a function f� F if 

there exists a sequence {ℎ𝑘}, 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ ℎ𝑘  is a 𝜀𝑘-perfect 

refiner, 𝜀𝑘 →0, 𝑙𝑖𝑚𝑘→∞   ℎ𝑘(𝜏)dλ
𝑇𝑝 →  𝑓(𝜏)dλ

𝑇𝑝  and for 

almost all 𝑇𝑝  𝑓(𝜏) limsup {ℎ𝑘(𝜏)}. 

Definition 3.3. An ε-proper refiner of v is a function h� f 

such that for almost all 𝑇𝑝  

ℎ 𝜏 > 0 and for i,j if 

𝑣(𝜏)(𝑒𝑣(∑𝑖 , x),  ℎ(𝜏)dλ
𝑇𝑝 )< 𝑣(𝜏)(𝑒𝑣(∑𝑗 , x),  ℎ(𝜏)dλ)

𝑇𝑝  

then ℎ𝑙(𝜏) <  𝜀ℎ𝑚 (𝜏) for each l� ∑𝑖  and m� ∑𝑗 . 

Definition 3.4. A proper refiner of v is a function f� F if 

there exists a sequence {ℎ𝑘}, where {ℎ𝑘}′𝑠 are 𝜀𝑘 -proper 

refiners, 𝜀𝑘→0, 𝑙𝑖𝑚𝑘→∞  ℎ𝑘(𝜏)dλ
𝑇𝑝 →  𝑓(𝜏)dλ

𝑇𝑝  and for 

almost all 𝑇𝑝  𝑓(𝜏) limsup {ℎ𝑘(𝜏)}. 

Let farther describe the way refiners of the set of 

prenucleolies work. In definitions above to an ε-perfect 

(proper) refiner given infinitesimal weight if it does not 

provide coalition 𝜏 with the best payoff in condition that the 

average payoff to the rest of coalitions remains the same. 

That results to refining 𝑋𝑝  from the vector x� 𝑋𝑝 , which 

ascribed to pure coalition Σ by the excess profile of 𝜏. So, the 

written right now as well explains the essence of refiners. 

The refinements we consider based on the concepts of 

perfectness and mistake for perturbed games. According to 

the concept of perfectness players with small probability 

make mistakes which results to forming of coalitions with 

pure participation of some players. This idea mathematically 

modeled via perturbed game, i.e a game in which players 

only allowed to participate in completely fuzzy coalitions. 

Let (T,v) is a game and 𝑋𝑝  is its prenucleoli. If coalition 

𝑇𝑝  and for another coalition ′� T 𝜏𝑗 ′ = 𝜏𝑗  when j≠k, 

l=𝜏𝑘 ′>𝜏𝑘 >0 also v(𝜏′) has a value s.t for x� 𝑋𝑝𝑒𝑣 (� ′,x)> 

𝑒𝑣(� ,x), then x, which is a best payoff for is not so for ′. From 

there, this is a case when full participation by a player in a 

coalition is not preferred. At the same time in a game (T,v) 

its prenucleoli 𝑋𝑝  not stable against the mentioned kind of 

perturbation in the data of the game. 

4. The Existence of Refiners of 
Prenucleolies 

We base the proof on a result of Abian S and Brown A.B 

(1961). That makes it much more direct and simple compared 

with the use of Kakutani’s theorem. 

Definition. Let F: X→Y be a multifunction on X into Y. A 

selection for F is a single valued function f: X→Y such that 

f(x)� F(x) for each x� X. An isotone (continuous, etc.) 

selection is a selection, which is isotone (continuous, etc.) 

Theorem 1.7. (Smithson R.E. (1971)). Let X be a 

partially ordered set and F:X→X be a multifunction on    

X satisfying the following monotonicity condition: If, 

 𝑥1, 𝑥2 ϵ X, 𝑥1 ≤ 𝑥2  and 𝑦1 � F(𝑥1) then there is 𝑦2 � F(𝑥2) 

such that 𝑦1≦𝑦2. If lubF(x)� F(x) for all x� X then there is 

isotone selection for F. 

Another result to be used is Theorem 3 from Abian S. and 

Brown A.B (1961). 

Theorem 3. Let X be a partially ordered set in which 

every nonempty well ordered set has a lub in X. F: X→X is a 

multifunction on X such that for each x� X there exists a 

y� F(x) satisfying to x≤y. Then F has a fixed point. 

Farther we will prove the existence of proper refiners. 

Theorem 4.1 Exists a proper refiner in every fuzzy game 

that possesses with prenucleolies. 
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Proof. In Lemma 4.1 below we show that there is an 

ε-proper refiner for any 0<ε<1. Then we prove existence of 

proper refiners. 

Lets recall again that F is the set of all continuous 

functions. F: 𝑇𝑝→ σ x 𝑋𝑝 , and S= { ℎ𝑘(𝜏)dλ
𝑇𝑝 /ℎ𝑘 �  F} is 

a nonempty set. 

Define correspondence  

B: 𝑇𝑝 x S→S, by B(� ,q)={x� S/v(� )( 𝑒𝑣 ( ∑𝑖 ,h),q)< 

v(� )(𝑒𝑣(∑𝑗 , h), q) →𝑥𝑙≤ ε𝑥𝑘 , 

for arbitrary 𝑙� ∑𝑖  and k� ∑𝑗 } 

Let Γ be a correspondence such that Γ:S→S and Γ(q)= 

 𝐵(𝜏, 𝑞)dλ
𝑇𝑝  

Lemma 4.1 For any τ and q sets B τ, q  and Γ q  are 

nonemtpy. 

Let τ and q are some fixed values and ∑i  is a pure 

coalition. Assume 

D(∑i) = {∑j/ v(τ)(ev(∑i, h), q) < v(τ)(ev(∑j, h), q)} and 

ρ(∑i) is the cardinality of D(∑i) denote 

xi=ερ(∑i ) / ∑ ερ(∑j ) n
j=1 . 

From v(τ)(ev(∑i, h), q) < v(τ)(ev(∑j, h), q)} follows that 

ρ(∑i)≥ ρ(∑j)+1, of what obtains 𝑥𝑙≤ε𝑥𝑘
 𝑓𝑜𝑟 𝑙ϵ∑𝑖  and kϵ∑𝑗 . 

Let vector x=(𝑥1,…, 𝑥𝑛 ) with coordinates that satisfy to 

inequalities we just obtained is value of some function f(τ) 

at fixed coalition τ. So, this way the function f: 𝑇𝑝→S. 

The continuity of function f follows from continuity of 

h(𝜏) 𝑖𝑛  ℎ(𝜏)dλ
𝑇𝑝 , in the expression of excess 𝑒𝑣(∑, h(� )), 

joint continuity of utility function u (. ,.) from its arguments. 

From there really there is a continuous f: 𝑇𝑝 → S such that 

f(� ) �  B(� , q) for 𝑇𝑝 , or nonemptiness of B(� , q) has been 

proved. 

The nonemptiness of mapping Γ(q) for every q follows 

from integrability of functions f. 

To apply Abian S. and Brown A.B (1961) fixed point 

theorem we will need that set S has been partially ordered 

(POS). So will be assumed that there is some relation of 

ordering, for example >(𝑣.𝑜) vector ordering on S. 

Lemma 4.2. Let for 𝑞1 , 𝑞2 � S, 𝑞1 <(𝑣.𝑜) 𝑞2  and 

𝑦1� Γ(𝑞1). Then there is 𝑦2� Γ(𝑞2) such that 𝑦1 <(𝑣.𝑜) 𝑦2. 

Proof. By definition if 𝑦1 � Γ( 𝑞1 ) then there is 

𝑓1� B(𝜏 , 𝑞1) such that 𝑦1= 𝑓1(𝜏)dλ
𝑇𝑝 . To prove that for 

𝑞2 >(𝑣.𝑜) 𝑞1 there is 𝑦2� Γ(𝑞2) for what 𝑓1(𝜏) <(𝑣.𝑜) 𝑓2(𝜏) 

for almost each 𝜏� 𝑇𝑝  one can construct function 𝑓2(𝜏) by 

taking 𝑓2(𝜏)= 𝑓1(𝜏)+ ε for a.e. 𝜏, where ε > o is a vector 

s.t. 

 (𝑓1 𝜏 + ε)dλ
𝑇𝑝 = 𝑦2 . Constructed this way vector 

𝑓2� B(𝜏, 𝑞2) and 𝑦2 >(𝑣.𝑜) 𝑦1. 

The property we just proved will be called condition of 

monotonicity of multifunction Γ(q). 

Lemma 4.3. For every nonempty well ordered subset 

Y⊂Γ(q) lub Y⊂Γ(q). 

Proof. Lets recall that Γ(q)=  B(𝜏, 𝑞) dλ
𝑇𝑝 . For subset 

Y⊂Γ(q) one can represent lubY as limit of some sequence 

{zk}⊂Y where each  

𝑧𝑘= ℎ𝑘(𝜏)dλ
𝑇𝑝  and ℎ𝑘(𝜏) � B(𝜏, 𝑞). 

From there lubY= 𝑙𝑖𝑚𝑘  ℎ𝑘(𝜏)dλ
𝑇𝑝 =  

{ fdλ/f ϵ limsup B(
𝑇𝑝 𝜏, 𝑞)}, where  

limsup B(𝜏, 𝑞) ⊂ B(𝜏, 𝑞). Hence, lubY⊂Γ(q) for arbitrary 

Y⊂Γ(q) and from there also for well ordered subsets of Γ(q). 

Lemma 4.4 For multifunction Γ: S→S if h �  S then there 

is f �  Γ such that h<f. 

Proof. For arbitrary 𝑇𝑝  h(� ) > 0. From there, if to take 

h(� )� B(𝜏, 𝑞) the vector f =  ℎ(𝜏)dλ
𝑇𝑝  will satisfy to h ≤ f 

inequality, which requires. 

Now remains concluding the proof of theorem. In 

Lemmata 4.2-4.4 we have proved conditions that are in 

hypothesis of Theorem 3 from Abian S. and Brown A.B. 

(1961). Based on that mapping Γ possesses with a fixed 

point, which means the existence of 𝑞 � S such that 

𝑞= ℎ(𝜏)dλ
𝑇𝑝 � Γ(𝑞), and ℎ(𝜏) is an ε-proper refiner. 

Let {ε𝑘} be a sequence such that 0<ε𝑘 <1 and ε𝑘 →0. 

Based on Lemma 4.1 for every ε𝑘  there exists ℎ𝑘 �  F such 

that ℎ𝑘  is an ε-proper refiner. Due to continuity of 

functions ℎ𝑘  that defined on close sets they are bounded and 

from there, so are  ℎ𝑘(𝜏)dλ
𝑇𝑝 ’s, and hence the sequence 

{ ℎ𝑘dλ
𝑇𝑝 } contains a converging subsequence.  

So, we can assume that converges  ℎ𝑘dλ
𝑇𝑝 . That means 

exists 

𝑙𝑖𝑚𝑘  ℎ𝑘dλ
𝑇𝑝   𝑙𝑖𝑚𝑠𝑢𝑝{ℎ𝑘(𝜏)} = { 𝑓dλ 

𝑇𝑝𝑇𝑝 /for a.e. 

 𝜏 𝑖𝑛 𝑇𝑝 , f(𝜏) is a limit point of {ℎ𝑘(𝜏)}}. 

By Lemma 4.1 each limit point of {ℎ𝑘(𝜏)} belongs to 

B(𝜏, 𝑞). 

The latter one proves existence of a function f� F, which  

is a perfect refiner for prenucleolies of game (T,v). We 

concluded the proof of our theorem. 

Corollary. It is obvious that existence of perfect refiners 

follows from the existence or proper refiners. 

5. The Continuity of Game to 
Prenucoleolies Mappings 

In this part for concave fuzzy games we prove the 

continuity of game to prenucleolies mappings. Let v , 

{vt}⊂ CFG and νu: v→ νu (v) is a mapping that to each 

game vϵCFG corresponds the set of its prenucleolies, i.e. set 

νu (v) =Xv
p
. 

Definition 5.1. A map ν u: v→  ν u (v)= Xv
p

 is lower 

hemicontinuous (l.h.c.) at vϵCFG if for every xϵν (v), if 

sequences {vt }⊂ CFG, {xt }⊂ X are such that for each 

t xtϵνu(vt), when t→ ∞, vt → v, xt → x. νu(. ) is l.h.c. if it 

is so at every vϵCFG. 

Definition 5.2. A map νu: v →  νu(v)= Xv
p

 is upper 

hemicontinuous (u.h.c.) at vϵCFG, if for arbitrary ϵ>o exists 

δ>0 such that when at vϵCFG, xϵvu(v), ρ
𝐶𝐹𝐺

(v, v) <  𝛿 

then for all yϵνu(v), ρ
𝐶𝐹𝐺

( x, y )< ϵ. Map νu(. ) is upper 

hemicontinuous if it is so at every vϵCFG. The ρ
𝐶𝐹𝐺

 and ρ
𝑥
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are metrics on CFG and X. 

Before moving ahead to ensure the continuity of map νu(. ) 

we need max norm on CFG. For vϵCFG, 

│v│
max

 = maxτ │ν (τ)│. 

Proposition 5.1. Let for vϵCFG ν u: v→ ν u(v) is a 

mapping, and νu(v)= XV
p

 is game v’s set of prenucleolies. 

Then mapping νu (. ) is continuous. 

Proof. Proving of mapping νu(. )’s continuity we start 

with it’s lower hemicontinuity. Let for a game vtϵCFG νu(. ) 

is following map, i.e. νu: vt → νu( vt) = X
vt
pt . Here X

vt
pt  is 

the set of prenucleolies xt for game vt, which means it is 

the solution of MP at last step pt. 

     min αt  

 vt τ − < xt, τ > - e0  ≤∝tρ (τ, T
vt
pt ) where τ ∉ T

vt
pt  (5.1) 

Assume that {vt }, v ϵ CFG, vt → v when t → ∞, and 

{xt} ⊂ X is a sequence such that for every t xtϵνu(vt). Let 

for an ϵ >0 exists M>0 a way that when t > M │vt-v │< ϵ /2. 

Below we modify the utility function of MP(5.1) 

vt τ − < xt, τ > - e0 + (v (τ) − < x, τ > - e0)-( v(τ)- 

< x, τ >-e0) = 

v  (τ)- < x , τ > -e0  - ( v(τ)- vt τ  - < x , xt , τ >)≤
xtρ(τ, T

vt
pt ), 

Due to xtϵνu(vt). 

From there it follows that 

∑i  τi(xi - xi
t) ≤  

│ ∝tρ (T
vt
pt , τ)- (v τ −< x, τ >-e0) │ +│ vt-v │max  

When t is big enough ρ (τ, T
vt
pt ) → ρ (τ, T

v

pv ). 

Based on what we have that for an ϵ>0, expression, which 

is in first module sign at right hand side of the above 

inequality in limit becomes: 

│ α ρ (τ, T
v

pv ) –(v (τ) − < x, τ > - e0) │ < ϵ /2 

in case if vector x ϵνu(v). As a result we obtain that 

xt → x. The latter means the required lower hemicontinuity 

of mapping νu (. ). To prove the upper hemicontinuity of 

mapping νu (. ) at vϵCFG lets assume that vector xϵvu(v) = 

Tv
p
. We need to show that if for ε>0 there is δ>0 such that 

when for some characteristic function vϵCFG takes place 

│v − v │< δ, then for all xϵvu(v), │x-x │< ε. 

Vector x is a solution for following MP: 

      min ϵ 

(v (τ) − < x, τ > - e0)< ε ρ(τ, Tv
k−1) where τ ∉ Tv

k−1 and 

xϵXk−1 

Let assume that also for some game vϵCFG {x}’s are 

solutions of corresponding to v MP. In the following for 

games v and v we assess difference of utility functions that 

take part in their MP’s, i.e.  

│ (v (τ) − < x, τ > - e0)-(v τ −< 𝑥, 𝜏 > − e0) │. From 

there,  

│ v  (τ)- v(τ)-< τ,x-x> │≥  │∑i  τi(xi  - xi ) │- │  v(τ) 

-v(τ)│
max

. 

For δ >0 small enough if │ 
1

v(τ)
 – v(τ) │< δ, then we 

obtain that  

 │ v (τ)- v(τ)-< τ,x-x> │≥ ∑i  τi(xi -xi)  (5.2) 

For the left hand side of inequality (5.2) we need to show 

that if for small enough δ >0 if 

│ v(τ)-v(τ)│
max

.< δ, then │v (τ)- v(τ)- < τ,x-x> │< ε. 

As far as for every xϵXp  it also true that xϵXv , where Xv  

is the set of all preimputations of (T, v), hence when δ →0, │ 

v-v│
max

→0 and x(N)→v(N). 

From there, (v(τ)-<x, τ > )→(v (τ)- <x,τ> ) For δ >0 small 

enough, i.e. in the limit case MP for game v from Xv  

transforms to MP that is for Xv . It means that 

│ v (τ)-<x- τ > - (v(τ) - <x, τ> )│→0. The latter together 

with inequality (5.2) results to  

│ xi -xi │→0 for all ieN. 

This is what we needed to prove. 

For games vϵCFG possessing with single prenucleoluses 

the continuity of mapping ν:v→ ν (v) remains true as well. 

Proposition 5.2. For possessing with prenucleoluses 

games v ϵCFG mapping ν:v → ν(v) is continuous. 

Proof. Let {v}⊂ CFG are games such that for δ >0 small 

enough │v -v│
max

 <  δ and both of the games v  and v 

possess with single prenucleoluses. Prenucleoluses for both 

kinds of games: {v}’s and v are solutions of finite number 

of MP’s. Solutions of MP’s for {v}’s when δ >0 is small 

enough because of weak inequalities that satisfy as well to v 

(τ) -< τ,x> - e0 ≤ ε ρ (τ, Tv
k−1). By the other side, │ν(v)- 

ν(v) │< ε , because ν(v) ϵX(v) and for δ >0 small enough 

│v -v│< δ as well due to fact that │ν (v)│=1. 

This proves our propostion 

Glossary and List of Notations 

G=(T,v)- fuzzy game with set of coalitions T and 

characteristic function v. Briefly we say also game G or 

game v. Partially T=[0.1]𝑛 . 

𝜏- fuzzy coalition: �  �  T 

v(𝜏) (𝑒𝑣(∑, x),  𝑓dλ
𝑇𝑝 )- normal form of a fuzzy game. 

X(v)- set of preimputations of game v, which is a set of 

vectors that satisfy to condition of efficiency: 

X(v)= {x� 𝑅𝑛 /∑𝑖ϵN  𝑥𝑖 = 𝑣 1 } 

𝑋𝑘+1- inductively defined sets where k=0,1,…,p (p<∞). 

Each one of sets 𝑋𝑘  corresponds to k-th step of 

prenucleolus’s construction: 

𝑋0 = 𝑋, 𝑋𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋ϵ𝑋𝑘𝑚𝑎𝑥𝜏ϵ𝑇𝑘 [ 𝑒𝑣 ( 𝜏 ,x)-  𝑒𝑣)/ 

𝜌(𝜏, 𝑇𝑘−1)]  𝜏ϵ𝑇𝑘−1 

𝜌    – metrics on set T 

𝑇𝑘 - set of coalitions corresponding to constructing of 

prenucleolies at it’s k’th step: 𝑇0 = ∅. 

σ -set of all pure coalitions: σ ={∑/ ∑ ⊂ N } 

𝑒𝑣(𝜏,x)=v(𝜏) - <x, 𝜏> excess of fuzzy coalition 𝜏 from 

division vector x, where <x, 𝜏>=∑𝑖ϵN𝑥𝑖𝜏1 is inner product 

of vectors x and 𝜏. 

𝑒𝑣 ( ∑, 𝑥) =v( ∑) − ∑𝑖ϵN𝑥𝑖  excess of pure coalition ∑ 

from division vector x. 

Function f: 𝑇𝑝 → σ x 𝑋𝑝  continuous function called 

excess profile. Mapps to each fuzzy coalition 𝜏  a pair 

consiting of pure coalition ∑ and division vector x. 
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 𝑓(𝜏)dλ
𝑇𝑝 - average payoff of all coalitions from set 𝑇𝑝 , 

λ  is Lebesgue measure. 

F- set of all excess profiles 

s(f)=  ℎ(𝜏)dλ
𝑇𝑝 - for any f� F and S={s(f) / f� F}. 

U- the set of all real valued jointly continuous functions u 

(. ,. ), defined on 𝐸𝑣𝑥 𝑆. 𝐸𝑣 is the set of excesses of pure 

coalitions ∑ ϵ σ. 

v: T→U- continuous function. Redefinition of game for 

refinement purposes. 

Refinement- process of separating for each coalition 𝜏 

it’s best payoffs from the set of all prenucleolies 𝑋𝑝 . 

Refiner- excess profile that from a coalition 𝜏 receives 

the maximum veight based on providing with the best payoff. 

Prenucleolus- unique vector to which results process of 

constructing of sets 𝑋𝑘  after finite number of steps. Possess 

with prenucleolus piece-vice affine games. 

Prenucleoli- set of vectors that obtain as result of 

stabilization of sets 𝑋𝑘  started from some number 𝑘0. i.e 

for 𝑘 ′ > 𝑘0, 𝑋𝑘′ = 𝑋𝑘′ + 1. 
MP- a minimization problem that discussed at some step 

m for finding of prenucleolies: 

Min ε 

υ(𝜏) −<x,𝜏 > −𝑒𝑜≤ερ(𝜏, 𝑇𝑚−1), where 𝜏 ∉ 𝑇𝑚−1, 

x �  𝑋𝑚−1 

CFG- the set of fuzzy concave characteristic function 

games. 

FC- set of fuzzy coalitions. 

υ(v)- the prenucleolus of game (T,v). 

υu(v)- the prenucleoli of game (T,v). 

lubY- least upper bound of set Y 

The author appreciates the reviewer and the editorial 

assistant for helpful comments. 
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