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Abstract  The fundamental concept of Nash equilibrium is that any player in a game cannot unilaterally change his/her 
behaviour(s) to obtain higher payoff. If players get an equal payoff in a game or repeated games, then Nash fails in those 
scenarios. This paper provides insights on transforming the computed payoffs to a robust shape (Pareto optimality) using 
PTFT (Probabilistic Tit-for-Tat) strategy. We have applied the derived results to Braess's paradox that could fetch an optimal 
network path by removing shortest path through the benefits of using PTFT strategy. Further, PTFT can be applied to 
industrial cases such as duopoly market analysis and legal battle of two firms. It is proved that Nash equilibrium does not 
yield an optimal solution for repeated games using various case studies. 
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1. Introduction 
In this paper, we have proved how PTFT strategy is more 

optimal than Nash equilibrium which is considered to be the 
optimal strategy for players involved in infinitely repeated 
games. The problem in Nash equilibrium is sometimes the 
game does not provide conclusive results when multiple 
solutions of Nash equilibria are found. The tit-for-tat 
strategy is not optimal when the noise (the players 
occasionally deviate from their behavioural rules, for 
instance, mistakes and misconception [4]) exists in the 
system. But PTFT strategy solves the noise problem of the 
original tit-for-tat strategy using the cost of an arbitrary 
small λ and δ values [7] (here λ is small positive number 
less than 1 and δ is the probability value chosen by the 
player). In the network traffic pattern, if each driver (player) 
decides to take the path that consumes minimum time then 
it results in congested traffic and slows the optimal 
commutes. By applying Nash equilibrium, there are no 
benefits for any driver to change their routes. Instead of 
Nash, PTFT strategy should be applied so that each driver 
could improve their strategies shown here. While engaging 
PTFT strategy in repeated games, we obtain various game 
scenarios given to players who may do a better decision 
analysis.  Hence one can predict a player getting maximum  
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payoff through this invention.  

2. Background 
Even though Nash equilibrium is simple in appearance but 

it is a complex method for the analysis of non-cooperative 
games. In a traffic network, each driver (player) always 
prefers to use Nash equilibrium when the strategy of 
selecting the route with minimum travel time proceeds into 
[1]. However, Nash equilibrium is not always robust and 
their fragility can cause the entire game to become 
ill-defined or lead to game failure [5]. To overcome these 
difficulties, PTFT strategy is applied in order to improve 
payoff of players involved in infinitely repeated games. For 
instance, let us have a game of matching pennies. Then, there 
is no pure equilibrium exists so that mixed strategies should 
be included in the game. In this paper, we have shown that 
PTFT strategy is applicable in an infinite game when 
non-existence of equilibria. From [7], we have a model of 
PTFT strategy of 2x2 game shown in the following table: 

Table 1.  Transition matrix t for 2x2 game 

Current\Next C D 

C 1-λδ λδ 

D δ 1-δ 

Let row vector π denote the probabilities of combinations 
(strategies that are available for players) and it is 
independent of δ. Then π satisfies π = πT, where T is a 
transition matrix. 
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The initial set of vectors for 2x2 game can be written as 

π =  � 1
1+λ

, λ
1+λ

�                    (1) 

Next, we have a model of PTFT strategy for 4x4 game 
shown in the following table: 

Table 2.  Transition matrix t for 4x4 game 

Current\ 
Next CC CD DC DD 

CC (1-λδ)2 λδ(1-λδ) λδ(1-λδ) (λδ)2 

CD δ(1 -λδ) λδ2 (1-λδ)(1-δ) λδ(1-λδ) 

DC δ(1 -λδ) (1-λδ) (1-δ) λδ2 λδ(1-λδ) 

DD δ2 δ(1-δ) δ(1-δ) (1-δ)2 

For 4x4 game, the initial set of vectors can be written as  

π =  � 1
(1+λ)2 , λ

(1+λ)2 , λ
(1+λ)2 , λ2

(1+λ)2�         (2) 

Let the first column of π denote the probability that players 
play CC [7]. In this paper, we have derived a generalized 
way for creating initial set of vectors for 2nx2n repeated 
games (n ≥ 1). Hence, players in a game can choose 
strategies with a high probability to gain an optimal outcome 
(Pareto optimality). 

3. Innovative Results 
Assume that Nash equilibrium or pure equilibrium fails in 

infinitely repeated games. When we apply PTFT strategy to 
the game, it provides an optimal outcome shown for each 
game with the probability of choosing the best strategy for 
each player involved in the game. In this paper consider 
PTFT strategy is applied to 8x8, 16x16 repeated games and 
so on. Here the following table represents possible strategies 
available for players and the output will be one of 8 
combinations of CCC, CCD, CDC, DCC, DCD, DDC, CCD 
and DDD for 8x8 repeated games. 

Table 3.  Transition matrix t for 8x8 game 

Current\ 
Next CCC CCD CDC DCC DCD DDC CDD DDD 

CCC a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 

CCD a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 

CDC a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 

DCC a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 

DCD a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 

DDC a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 

CDD a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 

DDD a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 

 
a1,1 = (1- λδ)3

               a1,2 = λδ(1- λδ)2 

a1,3 = λδ(1- λδ)2              a1,4 = λδ(1- λδ)2
 

a1,5 = (λδ)2(1- λδ)             a1,6 = (λδ)2(1- λδ) 
a1,7 = (λδ)2(1- λδ)        a1,8 = (λδ)3

 
a2,1 = δ(1- λδ)2                 a2,2 = (1-δ)(1- λδ)2

 
a2,3 = λδ2(1- λδ)               a2,4 = λδ2(1- λδ) 

a2,5 = (1- λδ)(λδ- λδ2)       a2,6 = (λδ)2δ 
a2,7 = (1- λδ)(λδ- λδ2)     a2,8 = (λδ)2(1- δ) 
a3,1 = δ(1- λδ)2 

                a3,2 = λδ2(1- λδ) 
a3,3 = (1-δ)(1- λδ)2 

            a3,4 = λδ2(1- λδ) 
a3,5 = (λδ)2δ              a3,6 = (1- λδ)(λδ- λδ2) 
a3,7 = (1- λδ)( λδ- λδ2)    a3,8 = (λδ)2(1- δ) 
a4,1 = δ(1- λδ)2               a4,2 = λδ2(1- λδ 
a4,3 = λδ2(1- λδ)         a4,4 = (1-δ)(1- λδ)2 

a4,5 = (1- λδ)( λδ- λδ2)    a4,6 = (1- λδ)( λδ- λδ2) 
a4,7 = (λδ)2δ               a4,8 = (λδ)2(1-δ) 
a5,1 = δ2(1- λδ)         a5,2 = (1- λδ)( δ- δ2) 
a5,3 = λδ3                a5,4 = (1- λδ)( δ- δ2) 
a5,5 = (1- λδ)(1- δ)2         a5,6 = λδ( δ- δ2) 
a5,7 = λδ( δ- δ2)            a5,8 = λδ(1-δ)2

 
a6,1 = δ2(1- λδ)   a6,2 = λδ3

 
a6,3 = (1- λδ)( δ- δ2)      a6,4 = (1- λδ)(δ- δ2) 
a6,5 = λδ(δ- δ2)           a6,6 = (1-λδ)(1-δ)2

 
a6,7 = λδ(δ- δ2)           a6,8 = λδ(1-δ)2

 
a7,1 = δ2(1- λδ)               a7,2 = (1- λδ)(δ- δ2) 
a7,3 = (1- λδ)( δ- δ2)        a7,4 = λδ3

 
a7,5 = λδ( δ- δ2)          a7,6 = λδ(δ-δ2) 
a7,7 = (1-δ)2(1- λδ)         a7,8 = (1-δ)2λδ) 
a8,1 = δ3         

            a8,2 =δ2(1-δ) 
a8,3 = δ2(1-δ)           a8,4 = δ2(1-δ) 
a8,5 = δ(1-δ)2            a8,6 = δ(1-δ)2 
a8,7 = δ(1-δ)2

             a8,8 = (1-δ)3 

 
The initial set of vectors for 8x8 game will be 
𝜋𝜋 =
� 1

(1+λ)3 , λ
(1+λ)3 , λ

(1+λ)3 , λ
(1+λ)3 , λ2

(1+λ)3 , λ2

(1+λ)3 , λ2

(1+λ)3 , λ3

(1+λ)3�   

(3) 
Next, PTFT strategy is applied to 16x16 repeated games 

whose payoff matrix is represented in table 4. 
From table 4, a1 - CCCC   a2 - CCCD  a3 - CCDC  a4 - 

CDCC  a5 - DCCC  a6 - CCDD   a7 - CDDC     a8 – CDCD  
a9 - DCDC   a10 - DDCC  a11 - DCCD   a12 – CDDD  a13 - 
DDCD  a14 - DCDD   a15 - DDDC    a16 – DDDD 

 
a1,1 = (1- λδ)4

                    a1,2 = (1- λδ)3 λδ 
a1,3 = (1- λδ)3 λδ          a1,4 = (1- λδ)3 λδ 
a1,5 = (1- λδ)3 λδ              a1,6= (1- λδ)2( λδ)2 
a1,7 = (1- λδ)2( λδ)2            a1,8 = (1- λδ)2( λδ)2 

a1,9 =(1- λδ)2( λδ)2            a1,10 = (1- λδ)2( λδ)2 

a1,11 = (1- λδ)2( λδ)2          a1,12 = (1- λδ)( λδ)3 
a1,13 = (1- λδ)( λδ)3          a1,14 = (1- λδ)( λδ)3 

a1,15 = (1- λδ)( λδ)3         a1,16 = ( λδ)4 
a2,1 = (1- λδ)3δ           a2,2 = (1- λδ)3(1-δ) 
a2,3 = (1- λδ)2λδ2     

           a2,4 = (1- λδ)2λδ2 

a2,5 = (1- λδ)2λδ2        a2,6 = (1- λδ)2(λδ-λδ2) 

a2,7 =(1-λδ) λ2δ3
         a2,8 =(1- λδ)2(λδ-λδ2) 

a2,9 = (1-λδ) λ2δ3
           a2,10 = (1-λδ) λ2δ3 

a2,11 = (1- λδ)2(λδ-λδ2)    a2,12 = (1- λδ)(λ2δ2-λ2δ3) 
a2,13 =(1- λδ)(λ2δ2-λ2δ3)  a2,14 = (1- λδ)(λ2δ2-λ2δ3) 
a2,15 =λ3δ4

            a2,16 =(λ3δ3-λ3δ4) 
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Table 4.  Transition matrix t for 16x16 game 

 
 
 
a3,1 = (1- λδ)3 δ          a3,2 = (1- λδ)2λδ2 

a3,3 = (1- λδ)2(1-δ)      a3,4 = (1- λδ)2(1-δ) 

a3,6 = (1- λδ)2λδ(1- δ)    a3,5 = (1- λδ)2(1-δ) 
a3,7 =(1- λδ)2λδ(1- δ)    a3,8 = (1- λδ)(λ2δ3) 
a3,9 =(1- λδ)2(1-δ)      a3,10 = (λδ)2(1-λδ)δ 
a3,11 = ( λδ)2(1-λδ)δ     a3,12 =( λδ)2(1-λδ)δ 
a3,13 = λ3δ4

               a3,14 = (λδ)2(1-λδ)(1-δ) 
a3,15 =( λδ)2(1-λδ)(1-δ)   a3,16 = ( λδ)3(1-δ) 
a4,1 = ( λδ)3(1-δ)       a4,2 = λδ2(1-λδ)2 
a4,3 = ( λδ)2(1-λδ)2

      a4,4 = ( λδ)2(1-λδ)2
 

a4,5 = ( 1-δ)(1-λδ)3       a4,6 = (1-λδ) λ2δ3
 

a4,7 = (1-λδ) λ2δ3
    a4,8 = (1-λδ)λ2δ3 

a4,9 = (1- λδ)2(λδ-λδ2)   a4,10 = (1-λδ)2(λδ-λδ2) 
a4,11=(1-λδ)2(λδ-λδ2)    a4,12=λ3δ4 

a4,13=(1-λδ)(λ2δ2-λ2δ3)    a4,14 = (1-λδ)(λ2δ2-λ2δ3) 
a4,15 = λ2δ2(1-λδ)(1-δ)     a4,16 = (1-δ) λ3δ3 

a5,1 = (λδ)3(1-δ)        a5,2 = λδ2(1-λδ)2 
a5,3 = λδ2(1-λδ)2         a5,4 = (1-δ)(1-λδ)3 

a5,5 = λδ2(1-λδ)2
             a5,6 = λ2δ3(1-λδ) 

a5,7 = (1-λδ)2(λδ-λδ2)    a5,8 = (1-λδ)2(λδ-λδ2) 
a5,9 = λ2δ3(1-λδ)         a5,10=( λδ)(1-λδ)2(1-δ) 
a5,11=λ2δ3(1-λδ)       a5,12=λ2δ2(1-λδ)(1-δ) 
a5,13=λ2δ2(1-λδ)(1-δ)     a5,14=λ3δ4 
a5,15 = λ2δ2(1-λδ)(1-δ)    a5,16 = (1-δ)λ3δ3

 
a6,1 =δ2(1-λδ)2

           a6,2 = (δ-δ2)(1-λδ)2 

a6,3 = (δ-δ2)(1-λδ)2
       a6,4 =λδ3 (1-λδ) 

a6,5 = λδ3 (1-λδ)           a6,6 = (1-δ)2(1-λδ)2
 

a6,7 = λδ2(1-λδ)(1-δ)        a6,8 = λδ2(1-λδ)(1-δ) 
a6,9 = λδ2(1-λδ)(1-δ)       a6,10 =  λ2δ4 
a6,11 = λδ2(1-λδ)(1-δ)       a6,12 = λδ(1-λδ)(1-δ)2 
a6,13 = λ2δ3(1-δ)           a6,14 = λδ(1-λδ)(1-δ)2

 
a6,15 = λ2δ3(1-δ)            a6,16 = λ2δ2(1-δ)2 
a7,1 = δ2(1-λδ)2                  a7,2 = λδ3(1-λδ) 
a7,3 = (1- λδ)2(δ-δ2)         a7,4=λδ2(1-λδ)(1-δ) 
a7,5 = λδ3(1-λδ)            a7,6 = λδ2(1-λδ)(1-δ) 
a7,7 =(1-λδ)2(1-δ)2

               a7,8 = λδ2(1-λδ)(1-δ) 

a7,9 = λδ2(1-λδ)(1-δ)        a7,10 = λδ2(1-λδ)(1-δ) 
a7,11 = λ2δ4

                   a7,12 = λδ(1-λδ)(1-δ)2 

a7,13 = (1-δ)λ2δ3
                  a7,14 = (1-δ) λ2δ3 

a7,15 = λδ(1-λδ)(1-δ)2
        a7,16 = (λδ)2(1-δ)2 

a8,1 = δ2(1-λδ)2                    a8,2 = (1- λδ)2(δ-δ2) 
a8,3 = λδ3(1-λδ)                   a8,4 = (1- λδ)2(δ-δ2) 
a8,5 = λδ3(1-λδ)             a8,6 = λδ2(1-λδ)(1-δ) 
a8,7 = λδ2(1-λδ)(1-δ)       a8,8 = (1-λδ)2(1-δ)2 
a8,9 = λ2δ4

                    a8,10 = λδ2(1-λδ)(1-δ) 
a8,11 = λδ2(1-λδ)(1-δ)     a8,12 = λδ(1-λδ)(1-δ)2 

a8,13 =λδ(1-λδ)(1-δ)2
          a8,14 = λδ3(1-δ) 

a8,15 = λδ(1-λδ)(1-δ)2        a8,16 = (λδ)2(1-δ)2 
a9,1 = δ2(1-λδ)2

                 a9,2 = λδ3(1-λδ) 
a9,3 = (1- λδ)2(δ-δ2)          a9,4 = λδ3(1-λδ) 
a9,5 = (1- λδ)2(δ-δ2)         a9,6 = λδ2(1-λδ)(1-δ) 
a9,7 = λδ2(1-λδ)(1-δ)       a9,8 = λ2δ4 

a9,9 = (1-λδ)2(1-δ)2             a9,10 = λδ2(1-λδ)(1-δ) 
a9,11 = λδ2(1-λδ)(1-δ)       a9,12 = (1-δ) λ2δ3 

a9,13 = (1-δ) λ2δ3             a9,14 = λδ(1-λδ)(1-δ)2 

a9,15 = λδ(1-λδ)(1-δ)2        a9,16 = λδ(1-λδ)(1-δ)2
 

a10,1  = δ2(1-λδ)2
                 a10,2 = λδ3(1-λδ) 

a10,3 = λδ3(1-λδ)           a10,4 = (1- λδ)2(δ-δ2) 
a10,5 = (1- λδ)2(δ-δ2)        a10,6 = λ2δ4

 
a10,7 = λδ2(1-λδ)(1-δ)       a10,8 = λδ2(1-λδ)(1-δ) 
a10,9 = λδ2(1-λδ)(1-δ)       a10,10 = (1-λδ)2(1-δ)2 
a10,11 = λδ2(1-λδ)(1-δ)      a10,12 = λ2δ2(δ-δ2) 
a10,13 = λδ(1-λδ)(1-δ)2

         a10,14 = (1-δ) λ2δ3 
a10,15 = λδ(1-λδ)(1-δ)2

         a10,16 = λ2δ2(1-δ)2 

a11,1 = δ2(1-λδ)2
                 a11,2 = (1- λδ)2(δ-δ2) 

a11,3 = λδ3(1-λδ)            a11,4 = λδ3(1-λδ) 
a11,5 = (1- λδ)2(δ-δ2)            a11,6 = λδ2(1-λδ)(1-δ) 
a11,7 = λ2δ4                       a11,8 = λδ2(1-λδ)(1-δ) 
a11,9 = λδ2(1-λδ)(1-δ)       a11,10 = λδ2(1-λδ)(1-δ) 
a11,11 =(1-λδ)2(1-δ)2            a11,12 =(1-δ) λ2δ3

 
a11,13=λδ(1-λδ)(1-δ)2           a11,14 = λδ(1-λδ)(1-δ) 
a11,15 = (1-δ)λ2δ3                a11,16 = λ2δ2(1-δ)2 
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a12,1 = δ3(1-λδ)            a12,2 = δ2(1-λδ)(1-δ) 
a12,3 = δ2(1-λδ)(1-δ)        a12,4 = δ2(1-λδ)(1-δ) 
a12,5 = λδ4                        a12,6 = δ(1-λδ)(1-δ)2 

a12,7 = δ(1-λδ)(1-δ)2            a12,8 = δ(1-λδ)(1-δ)2 

a12,9 = λδ3(1-δ)            a12,10 = λδ3(1-δ) 
a12,11 = λδ3(1-δ)           a12,12 = (1-λδ)(1-δ)3 
a12,13 = λδ2(1-δ)2                a12,14 = λδ2(1-δ)2 
a12,15 = λδ2(1-δ)2

           a12,16 = λδ(1-δ)3
 

a13,1 = δ3(1-λδ)            a13,2 = δ2(1-λδ)(1-δ) 
a13,3 = δ3(1-λδ)                 a13,4 = (1- λδ)(δ2-δ3) 
a13,5 = (1- λδ)(δ2-δ3)        a13,6 = λδ3(1-δ) 
a13,7 = λδ3(1-δ)            a13,8 = δ(1-λδ)(1-δ)2 

a13,9 = λδ3(1-δ)                 a13,10 = δ(1-λδ)(1-δ)2 
a13,11 = δ(1-λδ)(1-δ)2           a13,12 = λδ2(1-δ)2 

a13,13 = (1-λδ)(1-δ)3            a13,14 = λδ2(1-δ)2 

a13,15 = λδ2(1-δ)2
                a13,16 = λδ(1-δ)3 

a14,1 = δ3(1-λδ)            a14,2 = δ2(1-λδ)(1-δ) 
a14,3 = δ2(1-λδ)(1-δ)        a14,4 = λδ4 
a14,5 = δ2(1-λδ)(1-δ)        a14,6 = δ(1-λδ)(1-δ)2 
a14,7 = λδ3(1-δ)            a14,8 = λδ3(1-δ) 
a14,9 = δ(1-λδ)(1-δ)2            a14,10 = λδ3(1-δ) 
a14,11 = δ(1-λδ)(1-δ)2

           a14,12 =  λδ2(1-δ)2 

a14,13 =λδ2(1-δ)2                 a14,14 = (1-λδ)(1-δ)3 

a14,15 = λδ2(1-δ)2                a14,16 = λδ(1-δ)3
 

a15,1 = δ3(1-λδ)                  a15,2 = λδ4 
a15,3 = δ2(1-λδ)(1-δ)        a15,4 = δ2(1-λδ)(1-δ) 
a15,5 = δ2(1-λδ)(1-δ)       a15,6 = δ(1-λδ)(1-δ)2 

a15,7 = δ(1-λδ)(1-δ)2
            a15,8 = λδ3(1-δ) 

a15,9 = δ(1-λδ)(1-δ)2            a15,10 = δ(1-λδ)(1-δ)2
 

a15,11 = λδ3(1-δ)           a15,12 = λδ2(1-δ)2 

a15,13 = λδ2(1-δ)2
                a15,14 = λδ2(1-δ)2 

a15,15 = (1-λδ)(1-δ)3             a15,16 = (1-λδ)(1-δ)3
 

a16,1 = δ4                          a16,2 = δ3(1-δ) 
a16,3 = δ3(1-δ)              a16,4 = δ3(1-δ) 
a16,5 = δ3(1-δ)             a16,6 =  δ2(1-δ)2

 
a16,7 = δ2(1-δ)2                a16,8 = δ2(1-δ)2 

a16,9 = δ2(1-δ)2                a16,10 = δ2(1-δ)2 
a16,11 = δ2(1-δ)2

                a16,12 = δ(1-δ)3
 

a16,13 = δ(1-δ)3                a16,14 = δ(1-δ)3
 

a16,15 = δ(1-δ)3
            a16,16 = δ(1-δ)3 

 
The initial set of vectors for 16×16 games will be 

 Π = 1
(1+λ)4 , λ

(1+λ)4 , λ
(1+λ)4 , λ

(1+λ)4 , λ
(1+λ)4, 

              λ2

(1+λ)4 , λ2

(1+λ)4 , λ2

(1+λ)4 , λ2

(1+λ)4 , λ2

(1+λ)4,  

λ2

(1+λ)4 , λ3

(1+λ)4 , λ3

(1+λ)4 , λ3

(1+λ)4 , λ3

(1+λ)4 , λ4

(1+λ)4        (4) 

The generalization way of initial set of vectors for 2nx2n 
repeated games will be 

π = � 1
(1+λ)n , nλ

1!(1+λ)n , n(n−1)λ2

2!(1+λ)n , n(n−1)(n−2)λ3

3!(1+λ)n , … , λn

(1+λ)n� (5) 

From Equation (5), the set of elements can be multiplied 
by the factors π =  � 1

1+λ
, λ

1+λ
� then we have 2n+1 elements of 

π as follows: 

� 1
(1+λ)(n +1) , (n+1)λ

1!(1+λ)(n +1) , (n+1)((n+1)−1)λ2

2!(1+λ)(n +1) , … , λ(n +1)

(1+λ)(n +1)�  (6) 

By mathematical induction method, we have proved that 
PTFT strategy is true for any n. 

4. Generalization of PTFT over Nash 
Equilibrium 

When Nash equilibrium is applied, players do not get any 
incentives to deviate from their equilibrium strategies [2]. 
Inducible games of 2x2 can be stabilized via PTFT [8]. In our 
research work, PTFT strategy is applied to 2nx2n repeated 
games, players get benefited with an improved payoff. For 
instance, the general payoff matrix for 2x2 game is given in 
the following table: 

Table 5.  Payoff matrix for 2x2 game 

Current \ Next 1 2 

1 a, a b, c 

2 c, b d, d 

Here 1 and 2 are the strategies available to players. From 
[7], PTFT strategy for 2x2 game is shown in below table. 

Table 6.  Transition matrix t for 2x2 game 

Current\Next C D 

C 1-λδ λδ 

D δ 1-δ 

Here, δ is a small positive number and λ is a non-negative 
number less than 1. By matrix multiplication of initial set of 
vectors of 2x2 game with PTFT transition matrix of 2x2 
game from table 6, we prove that PTFT is optimal by adding 
the initial set of vectors to be 1 (the probability value always 
lies in the range of 0 to 1). 

1
1+λ

(1 − λδ) + λ
1+λ

(δ) = 1
1+λ

             (7) 
1

1+λ
(λδ) + λ

1+λ
(1 − δ) = λ

1+λ
             (8) 

Thus, by matrix multiplication we get the initial set of 
vectors 

π =  � 1
1+λ

, λ
1+λ

�              (9) 

By summing Equation (9), we get the probability value. 
1

1+λ
+ λ

1+λ
= 1                 (10) 

Similarly, we can prove for repeated games of 4x4 by 
performing matrix multiplication of initial set of vectors with 
PTFT payoff matrix as follows: 

(1 − λδ)2 � 1
(1+λ)2� + δ(1 − λδ) � λ

(1+λ)2�  

+ δ(1 − λδ) � λ
(1+λ)2� + δ2 � λ2

(1+λ)2� = 1
(1+λ)2         (11) 
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λδ(1 − λδ) � 1
(1+λ)2� + λδ2 � λ

(1+λ)2�   

+(1 − λδ)(1 − δ) � λ
(1+λ)2� + δ(1 − δ) � λ2

(1+λ)2� = λ
(1+λ)2  

(12) 

λδ(1 − λδ) � 1
(1+λ)2� + (1 − λδ)(1 − δ) � λ

(1+λ)2�  

+λδ2 � λ
(1+λ)2� + δ(1 − δ) � λ2

(1+λ)2� = λ
(1+λ)2        (13) 

λ2δ2 � 1
(1+λ)2� + λδ(1 − λδ) � λ

(1+λ)2�  

+λδ(1 − λδ) � λ
(1+λ)2� + (1 − δ)2 � λ2

(1+λ)2� = λ2

(1+λ)2   (14) 

By summing Equations (11) to (14) we get, 
1

(1+λ)2 + λ
(1+λ)2 + λ

(1+λ)2 + λ2

(1+λ)2 = 1     (15) 

For any n (where n ≥ 1), we conclude for repeated games 
of 2nx2n, PTFT strategy gives the optimal solution. Hence, 
by generalization of PTFT we have, 

1
(1+λ)n + nλ

1!(1+λ)n + n(n−1)λ2

2!(1+λ)n + ⋯+ λn

(1+λ)n = 1  (16) 

5. Implementation Results 
To compute the expected payoff of a game using PTFT 

strategy, we derive ε–optimal strategy for 8x8 game as 
follows. 

Let P, S, T, R be the scalar values of initial set of vectors 
belonging to 8x8 game. The expected payoff of a PTFT 
player against another for 8x8 game is 

λ3P+λ2S+λT+R
(1+λ)3        (17) 

To find the discriminant of (λ3P + λ2S + λT + R) we use, 

Δ =  �Δ1
2−4Δ0

3

−27P2 �                  (18) 

Where Δ0 = S2 + 3PT and Δ1 = 2S3 − 9PST + 27P2R 
We need three real solutions of λ for which (Δ1

2 < 4Δ0
3 ). 

For 8x8 game, we have conditions to obtain optimal 
strategy which is given by 

λ < 𝑚𝑚𝑚𝑚𝑚𝑚 � ε
k1R−k2(S1+S2)

,�
ε

(k3R−k4P)
�        (19) 

where k1, k2, k3, k4 > 0. 
For 16x16 game, the expected payoff of PTFT is given by 

λ4P+λ3S+λ2T+λQ+R
(1+λ)4             (20) 

where P, S, Q, T, R are the scalar values of initial set of 
vectors belonging to 16x16 game.  

To find the real roots of λ4P + λ3S + λ2T + λQ + R, we 
have 

p1 = 2T3 − 9STQ + 27PQ2 + 27S2R − 72PTR   (21) 

p2 = p1 + �−4(T2 − 3SQ + 12PR)3 + p1
2       (22) 

p3 = T2−3SQ +12PR

3P �p 2
2

3
+

�p 2
2

3

3P
                (23) 

p4 =  � S2

4P2 −
2T
3P

+ p3              (24) 

p5 =  S2

2P2 −
4T
3P
− p3                   (25) 

p6 =
−S 3

P 3 +4ST
P 2 −

8Q
P

4p4
                   (26) 

Also, p5 − p6 ≠ 0, p5 > p6, p5 + p6 > 0. 
The possible solutions are, 

S1 =  − S
4P
− p4

2
− �p5−p6

2
          (27) 

S2 =  − S
4P
− p4

2
+ �p5−p6

2
         (28) 

S3 =  − S
4P

+ p4
2
− �p5+p6

2
         (29) 

S4 =  − S
4P

+ p4
2

+ �p5+p6
2

         (30) 

λ < 𝑚𝑚𝑚𝑚𝑚𝑚 � ε
k1R−k2(S1+S2+S3+S4)

,�
ε

k3R−k4P
� (31) 

Through implementation, we derive that πcc…c = 1 as λ 
tends to 0. This shows that the game has achieved Pareto 
optimality. The relation between πcc…c with λ for 2nx2n 
repeated game is given in the below graph. 

 

Figure 1.  πcc …c = 1
(1+λ)n  

6. Industrial Applications 
6.1. Case Study of Coordination Game 

Consider a driver (player) driving on a road against an 
incoming car, who has to choose either to Cooperate (C) or 
to Defect (D) using the road network. 

Table 7.  Payoff matrix of coordination game 

Driver1\Driver2 C D 

C 60,60 20,50 

D 50,20 45,45 

If both drivers cooperate, each will get a payoff of 60; if 
both defect, each will get a payoff of 45; and if one 
cooperates and the other defects then the cooperating driver 
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will get a payoff of 20 and the defecting driver will get a 
payoff of 50 and vice versa. There are two Nash equilibria 
found in this game (60,60) and (45,45), here the drivers 
cannot improve their payoffs using Nash equilibrium. This is 
a complexity that is found in Nash equilibrium. When 
applying PTFT strategy in this game, we choose λ = 0.25 and 
δ = 0.85 since π is independent of δ, payoff of both players 
can be improved and the probability of choosing the strategy 
(decision making shown in table 8) may be obtained. 

Table 8.  Probabilistic decision for 2x2 game 

Driver1\Driver2 C D 

C 0.7875 0.2125 

D 0.85 0.15 

Continuing the game, we move to the next level of 4x4. 
Then, the possible outcome of players is one of the four 
combinations of CC, CD, DC and DD shown below. 

Table 9.  Probabilistic decision for 4x4 game 

Driver1\Driver2 CC CD DC DD 

CC 0.6201 0.1673 0.1673 0.0451 

CD 0.6693 0.1806 0.1181 0.0318 

DC 0.6693 0.1181 0.1806 0.0318 

DD 0.7225 0.1275 0.1275 0.0225 

Continuing the game, we move to the next level of 8x8. 
Then, the possible outcome of players is one of the eight 
combinations of CCC, CCD, CDC, DCC, DCD, DDC, CDD, 
DDD shown below. 

Table 10.  Probabilistic decision for 8x8 game 

Driver1
\Driver

2 
CCC CCD CDC DCC DCD DDC CDD DDD 

CCC 0.4883 0.1317 0.1317 0.1317 0.0355 0.0355 0.0355 0.0095 

CCD 0.5271 0.0930 0.1422 0.1422 0.0251 0.0383 0.0251 0.0067 

CDC 0.5271 0.1422 0.0930 0.1422 0.0383 0.0251 0.0251 0.0067 

DCC 0.5271 0.1422 0.1422 0.0930 0.0251 0.0251 0.0383 0.0067 

DCD 0.5689 0.1004 0.1535 0.1004 0.0177 0.0270 0.0270 0.0047 

DDC 0.5689 0.1535 0.1004 0.1004 0.0270 0.0177 0.0270 0.0047 

CDD 0.5689 0.1004 0.1004 0.1535 0.0270 0.0270 0.0177 0.0047 

DDD 0.6141 0.1083 0.1083 0.1083 0.0191 0.0191 0.0191 0.0033 

However, the payoffs of Nash equilibrium are always 
same in coordination game. We have tested and verified the 
improved efficiency of the game after applying PTFT 
strategy. 

6.2. Case Study of Braess's Paradox 

Consider an airline traffic network where flights should 
reach destination (END) from source (START). If the path 
from A-B does not exist (Fig. 2), each flight takes 80 minutes 
to reach the destination using the network path of 
START-A-END or START-B-END. Even though the given 
network paths are congested or due to bad weather they will 

take a maximum time of 90 minutes. If all flights cooperate 
to take the shortest route (A-B), they may take 120 minutes 
(assume that there is only one shortest route available).  

 
Figure 2.  Airline network graph 

The payoff matrix for flights to reach destination is shown 
below. 

Table 11.  Payoff matrix of two flights 

Flight1\Flight2 OR AR 

OR 80,80 60,90 

AR 90,60 120,120 

Here AR-Alternate Route, OR-Original Route of the 
airline traffic network. If Nash equilibrium is applied then 
we get (120,120). The outcome is not optimal since it takes 
120 minutes. In this situation the flights cannot improve their 
strategy (using Nash equilibrium), while applying PTFT 
strategy the overall travel time of all flights gets reduced.  

If all flights agree not to use A-B network, every flight 
would benefit by reducing their travel time. However, any 
single flight will always benefit by taking A-B network, then 
the socially optimal network path distribution of all flights 
may not be stable hence Braess's Paradox [1] occurs in this 
situation. Removing a road (network path) can improve 
traffic and overall efficiency. After choosing the values of λ 
= 0.3 and δ = 0.7 we get the probability of choosing the 
strategies (AR/OR) for 2x2 game. 

Table 12.  Probabilistic decision for 2x2 game 

Flight1\Flight2 C D 

C 0.79 0.21 

D 0.7 0.3 

Continuing the game we move to the next level of 4x4. 
Then, the possible outcome of all flights is one of the 
following strategies as shown below. 

Table 13.  Probabilistic decision for 4x4 game 

Flight1\Flight2 CC CD DC DD 

CC 0.624 0.165 0.165 0.044 

CD 0.553 0.147 0.237 0.063 

DC 0.553 0.237 0.147 0.063 

DD 0.49 0.21 0.21 0.09 

Continuing the game, we move to the next level of 8x8. 
Then, the possible outcome of all flights is one of the 
following strategies is shown below. 
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Table 14.  Probabilistic decision for 8x8 game 

Flight1\
Flight2 CCC CCD CDC DCC DCD DDC CDD DDD 

CCC 0.4930 0.1310 0.1310 0.1310 0.0348 0.0348 0.0348 0.0092 

CCD 0.4368 0.1872 0.1161 0.1161 0.0497 0.0308 0.0497 0.0132 

CDC 0.4368 0.1161 0.1872 0.1161 0.0308 0.0497 0.0497 0.0132 

DCC 0.4368 0.1161 0.1161 0.1872 0.0497 0.0497 0.0308 0.0132 

DCD 0.3871 0.1659 0.1029 0.1659 0.0711 0.0441 0.0441 0.0189 

DDC 0.3871 0.1029 0.1659 0.1659 0.0441 0.0711 0.0441 0.0189 

CDD 0.3871 0.1659 0.1659 0.1029 0.0441 0.0441 0.0711 0.0189 

DDD 0.343 0.147 0.147 0.147 0.063 0.063 0.063 0.027 

6.3. Case Study of Price War 

From [9], on August 14, 2012, Liu Dongqiang, the CEO of 
JINGDONG company, posted a news in Weibo and other 
senior managers including Suning, Gome responded this 
Weibo mentioning a new E-Commerce price war started, as 
Dang, Yixun companies joined this war, which finally 
evolved into a free-for-all of the entire domestic electricity 
industry's war. In recent years, the development of home 
appliance industry has been good and then a price war often 
occurs among air conditioners, washing machines, 
microwave ovens and other commodities. The two online 
retailers JINGDONG and SUNING set prices for their 
products. The payoff matrix of two firms (JINGDONG and 
SUNING) is shown below. 

Table 15.  Payoff matrix of two firms 

JINGDONG\SUNING HP LP 

HP 100,100 20,150 

LP 150,20 70,70 

Here HP-High Price and LP-Low Price are the strategies 
available for two firms (players). In this case study, there 
exists Nash equilibrium (LP, LP). The pair (HP, HP) is better 
in the sense of Pareto efficiency. If the decisions of two 
online retailers are rational, then there won’t be any price 
war between them [9]. In our research work, we apply PTFT 
strategy to this case study by choosing the values of λ = 0.1 
and δ = 0.98, the efficiency of two online retailers gets 
increased. The probability of choosing the strategy (HP/LP) 
is shown below. 

Table 16.  Probabilistic decision for 2x2 game 

JINGDONG \ SUNING C D 

C 0.902 0.098 

D 0.98 0.02 

Continuing the game, we move to the next level of 4x4. 
Then, the possible outcome of players is one of the following 
strategies as shown below. 

Continuing the game we move to the next level of 8x8. 
Then, the possible outcome of players is one of the following 
strategies as shown below. 

 

Table 17.  Probabilistic decision for 4x4 game 

JINGDONG \ 
SUNING CC CD DC DD 

CC 0.8136 0.0883 0.0883 0.0096 

CD 0.8839 0.0960 0.0180 0.0019 

DC 0.8839 0.0180 0.0960 0.0019 

DD 0.9604 0.0196 0.0196 0.0004 

Table 18.  Probabilistic decision for 8x8 game 

JINGDO
NG\ 

SUNING 
CCC CCD CDC DCC DCD DDC CDD DDD 

CCC 0.733 0.079 0.0797 0.0797 0.0086 0.0086 0.0086 0.00094 

CCD 0.797 0.016 0.0866 0.0866 0.0017 0.0094 0.0017 0.00019 

CDC 0.797 0.086 0.0162 0.0866 0.0094 0.0017 0.0017 0.00019 

DCC 0.797 0.086 0.0866 0.0162 0.0017 0.0017 0.0094 0.00019 

DCD 0.866 0.017 0.0941 0.0176 0.0003 0.0019 0.0019 0.00003 

DDC 0.866 0.094 0.0176 0.01767 0.0019 0.0003 0.0019 0.00003 

CDD 0.866 0.017 0.0176 0.09411 0.0019 0.0019 0.0003 0.00003 

DDD 0.941 0.019 0.0192 0.01920 0.0003 0.0003 0.0003 0.000008 

Similarly, the probability for choosing the strategy can be 
obtained for 2nx2n repeated games. When we apply PTFT 
strategy to the game of price war, it gives better outcome for 
repeated games. Hence, we prove that PTFT strategy is 
optimal to Nash equilibrium. 

6.4. Case Study of Legal Battle 

The cellular company Samsung ran into legal issues 
around 2012. In order to compete Apple’s market, Samsung 
launched Galaxy with some features resembling iPhone 
facilities. Apple had patented for some features in iPhone 
hardware but the same feature was implemented in 
Samsung’s android phone. Apple Company filed a suit 
against Samsung, so this legal battle can be viewed as a game. 
From payoff matrix, F – File a lawsuit and DF – Does not file 
a lawsuit.  

Table 19.  Payoff matrix of two firms 

Apple\Samsung F DF 

F 9,9 0,8 

DF 8,0 7,7 

In this case study if we apply Nash equilibrium, then there 
exist two solutions of (9,9) and (7,7). The outcome is not 
optimal for both companies. When we apply PTFT strategy 
to this game, companies can improve their payoffs. By 
applying PTFT strategy, we choose λ = 0.15 and δ = 0.65. 

Table 20.  Probabilistic decision for 2x2 game 

Apple\Samsung C D 

C 0.902 0.097 

D 0.65 0.35 
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Continuing the game we move to the next level of 4x4. 
Then, the possible outcome of two firms is one of the 
following strategies as shown below. 

Table 21.  Probabilistic decision for 4x4 game 

Apple\Samsung CC CD DC DD 

CC 0.8145 0.0879 0.0879 0.0095 

CD 0.5866 0.0633 0.3158 0.0341 

DC 0.5866 0.3158 0.0633 0.0341 

DD 0.4225 0.2275 0.2275 0.1225 

Continuing the game we move to the next level of 8x8. 
Then, the possible outcome of two firms is one of the 
following strategies as shown below. 

Table 22.  Probabilistic decision for 8x8 game 

Apple\ 
Samsung 

CCC CCD CDC DCC DCD DDC CDD DDD 

CCC 0.7350 0.0794 0.0794 0.0794 0.0085 0.0085 0.0085 0.0009 

CCD 0.5294 0.2850 0.0571 0.0571 0.0307 0.0061 0.0307 0.0033 

CDC 0.5294 0.0571 0.2850 0.0571 0.0061 0.0307 0.0307 0.0033 

DCC 0.5294 0.0571 0.0571 0.2850 0.0307 0.0307 0.0061 0.0033 

DCD 0.3813 0.2053 0.0411 0.2053 0.1105 0.0221 0.0221 0.0119 

DDC 0.3813 0.0411 0.2053 0.2053 0.0221 0.1105 0.0221 0.0119 

CDD 0.3813 0.2053 0.2053 0.0411 0.0221 0.0221 0.1105 0.0119 

DDD 0.2746 0.1478 0.1478 0.1478 0.0796 0.0796 0.0796 0.0428 

6.5. Case Study of Duopoly Market Analysis 

From [6], Duopoly is a form of oligopoly market having 
two participants (producers/sellers). The number of 
competitors is limited to two and their interactions are 
important because every producer before making decisions 
on prices and quantities, has to take into account not only the 
current strategy of the competitor but also forthcoming 
responsive actions. In duopoly market both firms can 
coordinate and fix prices of their products. The payoff matrix 
of two firms is shown below where F – Follow, C – Cheat. 

Table 23.  Payoff matrix of two firms 

Firm1\Firm2 F C 

F 125,125 93,140 

C 140,93 93,93 

Firms have two strategies either to follow or to cheat the 
other firm. In this case study, there exists Nash equilibrium 
(93,93). When Nash equilibrium is applied, both firms get 
stuck in (C,C) therefore this outcome is not optimal. By 
applying PTFT strategy in this game, we choose λ = 0.3 and 
δ = 0.94 and the firms can unilaterally improve their payoffs.  

Table 24.  Probabilistic decision for 2x2 game 

Firm1\Firm2 C D 

C 0.718 0.282 

D 0.94 0.06 

Continuing the game we move to the next level of 4x4. 
Then, the possible outcome of two firms is one of the 
following strategies shown below. 

Table 25.  Probabilistic decision for 4x4 game 

Firm1\Firm2 CC CD DC DD 

CC 0.5155 0.2024 0.2024 0.0795 

CD 0.6749 0.2650 0.0430 0.0169 

DC 0.6749 0.0430 0.2650 0.0169 

DD 0.8836 0.0564 0.0564 0.0036 

Continuing the game we move to the next level of 8x8. 
Then, the possible outcome of two firms is one of the 
following strategies shown below. 

Table 26.  Probabilistic decision for 8x8 game 

Firm1\
Firm2 CCC CCD CDC DCC DCD DDC CDD DDD 

CCC 0.3701 0.1453 0.1453 0.1453 0.0570 0.0570 0.0570 0.02242 

CCD 0.4845 0.0309 0.1903 0.1903 0.0121 0.0747 0.0121 0.00477 

CDC 0.4845 0.1903 0.0309 0.1903 0.0747 0.0121 0.0121 0.00477 

DCC 0.4845 0.1903 0.1903 0.0309 0.0121 0.0121 0.0747 0.00477 

DCD 0.6344 0.0404 0.2491 0.0404 0.0025 0.0159 0.0159 0.00101 

DDC 0.6344 0.2491 0.0404 0.0404 0.0159 0.0025 0.0159 0.00101 

CDD 0.6344 0.0404 0.0404 0.2491 0.0159 0.0159 0.0025 0.00101 

DDD 0.8305 0.0530 0.0530 0.0530 0.0033 0.0033 0.0033 0.00021 

7. Conclusions 
Nash equilibrium is a solution concept in game theory and 

it does not give an optimal solution for repeated games. The 
players get stuck in repeated games because they cannot 
unilaterally change their strategy. PTFT strategy resolves the 
complexity that arises in Nash equilibrium. We have 
generalized PTFT strategy results to infinitely repeated 
games. In this paper, PTFT strategy is applied to various 
industrial case studies and proved that PTFT strategy is 
better than Nash equilibrium for repeated games. For each 
repeated game, we analyze the conditions for ε–optimal 
strategy.  
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