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Abstract  Combinatorial game theory is a vast subject. Over the past forty years it has grown to encompass a wide range 
of games. All of those examples were short games, which have finite sub-positions and which prohibit infinite play. The 
combinatorial theory of short games is essential to the subject and will cover half the material in this paper. This paper gives 
the reader a detailed outlook to most combinatorial games, researched until our current date. It also discusses different 
approaches to dealing with the games from an algebraic perspective.  
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1. Historical Background 
Games have been recorded throughout history but the 

systematic application of mathematics to games is a 
relatively recent phenomenon. Gambling games gave rise to 
studies of probability in the 16th and 17th century. What has 
become known as Combinatorial Game Theory was not 
‘codified’ until 1976-1982 with the publications of “On 
Numbers and Games” by John H. Conway and “Winning 
Ways” by Elwyn R. Berlekamp, John H. Conway and 
Richard K. Guy. In the subject of “Impartial Games” 
(essentially the theory as known before 1976), the first MSc 
thesis appears to be in 1967 by Jack C. Kenyon and the first 
PhD by Yaacov Yesha in 1978 ([35]). 

“Games of No Chance” are 2-player perfect-information 
games. A SUM of such games is naturally defined as the 
game in which each player at his turn may choose to make 
any of his legal moves on any single summand. The study of 
such sums is a subject called “combinatorial game theory“. 
The first part of Winning Ways [2nd edition, 2001-2004 
provides a good introduction to this subject. Many research 
papers on this subject were presented at conferences held in 
1994 and 2000 in Berkeley, CA, at the Mathematical 
Sciences Research Institute (MSRI) and at the Banf Research 
Center in Canada in 2005 and 2008 ([35]). Cambridge 
University Press later published proceedings of those 
conferences under the title “Games of No Chance (GONC)”. 
Aaron Siegel's “Combinatorial Game Theory” became the 
most definitive work on the subject when it appeared in 2013  
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([35]). 
The solution of the game of “NIM” in 1902, by Bouton at 

Harvard, is now viewed as the birth of combinatorial game 
theory. In the 1930s, Sprague and Grundy extended this 
theory to cover all impartial games. In the 1970s, the theory 
was extended to a large collection of games called “Partisan 
Games”, which includes the ancient Hawaiian game called 
“Konane”, many variations of “Hacken-Bush”, “Cut-Cakes”, 
“Ski-Jumps”, “Domineering”, “Toads-and-Frogs”, etc.… It 
was remarked that although there were over a hundred such 
games in “Winning Ways” ([35]), most of them had been 
invented by the authors. John Conway axiomatized this 
important branch of the subject. His axioms included two 
restrictive assumptions: 

1.  The game tree is LOOPFREE, so draws by repetitious 
play are impossible. 

2.  The NORMAL TERMINATION RULE states that the 
game ends when one player is unable to move, and his 
opponent then wins. 

Games such as, “Checkers” satisfies the normal 
termination rule, but it is loopy. For example, if each player 
has only one king remaining, and each gets into a double 
corner, then neither player can bring the game to a victorious 
termination. “Dots-and-Boxes” on the other hand is 
loop-free, but it violates the normal termination rule because 
victory is attained by acquiring the higher score rather than 
by getting the last move. “Go” also fails to satisfy the normal 
termination rule, because the game ends when both players 
choose to pass, and then the winner is determined by 
counting score. 

Most games on one side are fruitful targets for 
paper-and-pencil mathematical analysis, based on an 
ever-growing base of general theorems, but it seems the 
deeper you research the more you find that most games resist 
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this approach, even in their late-stages. However, some of 
these games have succumbed to sophisticated computer 
attacks, which construct large databases of relevant 
positions. 

Although chess definitely lies on the less theoretically 
tractable side, Noam Elkies composed some very clever 
“mathematical chess” problems, which fit the abstract theory 
of “Partisan Games”. He has also won the annual award of 
the international chess federation for the best chess problem 
composition. However, most chess masters see problems of 
this genre as only very peripherally related to real chess 
endgames ([35]).  

When “Mathematical Go” began in 1989, it initially 
received a somewhat similarly skeptical reaction from 
professional Go players. However, as the mathematics 
expanded and improved, some scholars are now approaching 
the ability to analyze some real professional games and 
provide analyses, which are deeper and more accurate than 
those, obtained by human experts. The reason for this 
optimism is that virtually all “Go” endgames pass through a 
stage in which the play naturally divides into disjoint 
battlefields. A typical late-stage “Go” endgame on a single 
small battlefield is of at most modest complexity. In the early 
1990s, new operators were introduced which map many such 
positions into the simpler games of “Winning Ways”. These 
mappings preserve winning strategies, and formed the 
original core of “Mathematical Go”, a subject which has 
continued to progress at a substantial rate.  

The theory of “Mathematical Go” has advanced to the 
point that there now appear to be very promising prospects 
for combining it with some of the best tree-searching 
algorithms developed in the AI community. An initial goal 
would be a set of software tools which can analyze most 
championship-level “Go” endgames more accurately than 
any human. This could also have a big intellectual impact 
throughout East Asia, where the conventional wisdom still 
holds to the premise that “Go” demonstrates the superiority 
of “holistic” Asian thinking over the more “reductionist” 
approaches favored in the west. 

There are two other branches of game theory, which have 
significantly different emphases than combinatorial game 
theory. One is called “Artificial Intelligence”, or AI. The AI 
approach to game-playing emphasizes very hard problems, 
including the play of openings and middle games which are 
so complicated that even the best human experts remain 
unsure whether any winning move exists or not. Limited 
search followed by heuristic evaluation and backtracking are 
the favored AI methods. 

Many devotees of artificial intelligence hope or believe 
that there will be considerable commonality in the best 
programs for chess, checkers, Go, Othello, etc. (Since the 
chess victory of Big Blue over Kasparov, some of AI 
community's interest has shifted to “Go”, a game in which, 
as of 2016, thousands of humans can consistently beat the 
world's best current computer program). Skeptics see little 
such commonality in the best programs today. However, 
many adherents of both schools of thought share a common 

interest in tree-searching and tree-pruning algorithms, and in 
the potential to combine such algorithms with the 
decomposition algorithms of combinatorial game theory to 
provide the tools which will support computer attacks on 
much harder problems. 

For the past couple decades, computer-based solutions to 
specific games on specific sizes of boards have been 
appearing faster than humans are digesting them. One of the 
first such was Oren Patashnik's solution of 4 x 4 x 4 
tic-tac-toe. In the 1970s, he wrote a sophisticated program 
with which he interacted extensively for six months, and 
built up a large database of positions, which eventually 
became sufficient to prove that the first player could win. 
However, no human has yet learned to play this game 
perfectly without reference to the database ([35]).  

The classical probabilistic theory of two-person games 
with chance and/or imperfect information is a third branch of 
game theory. This is the sort of classical von Neumann game 
theory in which several people, including John Hicks, 
Kenneth Arrow, John Harsanyi, John Nash and Reinhard 
Selten have won Nobel prizes in economics. This subject 
differs even more from combinatorial game theory and AI 
than the latter two differ from each other. Even so, there are 
some significant overlaps. Linear programming lies near the 
core of the classical probabilistic game theory. Linear 
programming also plays a much smaller but still significant 
role in combinatorial game theory (e.g., in one proof of one 
of D. Wolfe's theorems). 

Most of the initial theoretical results of combinatorial 
game theory were achieved by exploiting the power of 
recursions. Combinatorial game theory has that in common 
with many other mathematical topics, including fractals and 
chaos. Combinatorial game theory also has obvious and 
more detailed overlaps with many other branches of 
mathematics and computer science, including topics such as 
algorithms, complexity theory, finite automata, logic, surreal 
analysis, number theory, and probability ([35]). 

2. What is Combinatorial Game 
Theory? 

This Combinatorial Game Theory has several important 
features that sets it apart. Primarily, these are games of pure 
strategy with no random elements. Specifically: 

1.  There are Two Players who Alternate Moves; 
2.  There are No Chance Devices—hence no dice or 

shuffling of cards; 
3.  There is Perfect Information—all possible moves are 

known to both players and, if needed, the whole 
history of the game as well; 

4.  Play Ends, Regardless—even if the players do not 
alternate moves, the game must reach a conclusion; 

5.  The Last Move determines the winner—Normal play: 
last player to move wins; Mis`ere play last player to 
move loses! 

The players are usually called Left and Right and the 
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genders are easy to remember —Left for Louise Guy and 
Right for Richard Guy who is an important ‘player’ in the 
development of the subject ([39]). t. More on him is 
discussed later. 

Examples of games1NOT covered by these rules are: 
DOTS-&-BOXES and GO, since these are scoring games, 
the last person to move is not guaranteed to have either the 
highest or the lowest score; CHESS, since the game can end 
in a draw; BACKGAMMON, since there is a chance element 
(dice); BRIDGE, the only aspect that this game satisfies is 
that it ends ([9]).  

Games which are covered by the conditions are: NIM2; 
AMAZONS, CLOBBER, DOMINEERING and HEX. In 
fact, NIM, AMAZONS, DOMINEERING and also, despite 
the comments of the previous paragraph, DOTS-&-BOXES 
and GO have a property that makes the theory 
extraordinarily useful for the analysis of these games. The 
board breaks up into separate components, a player has to 
choose a component in which to play. Moreover, his 
opponent does not have to reply in the same component. This 
is why condition (4) is important. The aspect is so important 
that it has its own name. The disjunctive sum of games G and 
H, written G+ H, is the game where a player must choose to 
play in exactly one of G and H. The game of NIM with heaps 
of sizes 3, 4 and 5 is the disjunctive sum of three one-heap 
games of NIM. One could also imagine playing the 
disjunctive sum of a game of CHESS with a game of 
CHECKERS and a game of GO. On a move, a player moves 
in only one of the games but the opponent does not have to 
reply in the same game. The winner will be the player 
making the last move over all. As a rule-of-thumb, if a 
position breaks up into components so that the resulting 
game is a disjunctive sum then this theory will be useful. If 
the game does not become a disjunctive sum, HEX for 
example, then the theory is less useful. We still need a few 
more definitions. In an Impartial game both players have 
exactly the same moves—NIM for example. In a Partizan 
game the players have different moves—in CHESS a player 
can only move his own pieces and not those of his opponent; 
she would get rather upset if he did. A game belongs to one 
of four outcome classes. This was first noted, by Ernst 
Zermelo in 1912, but phrased differently ([14]). A game can 
be won by: 

•  Left regardless of moving first or second. 
•  Right regardless of moving first or second. 
•  By the Next player regardless of whether this is Left or 

Right. 
•  Or by the Previous player regardless of whether this is 

Left or Right. 
Its initial usually refers to an outcome class. In an 

Impartial game such as NIM, since both players have the 
same moves thus the outcome of a position must be either N 
or P. A main aim of the theory is to give a value to each 
component: essentially how much of an advantage the 
position is to one of the players—positive value for Left and 
negative for Right. First, though, we have to deal with 

equality: 
Two games should be the same if both players are 

indifferent to playing in one or the other. Or Equality or the 
‘Axiom of In distinguishability’: G = H if, for all games X, 
the outcome for G + X is the same as the outcome for H + X. 

Finally, we are ready to talk history! The history breaks up 
into three main threads and all threads are still very active: 

•  Impartial games under the Normal play ending 
condition which starts with Bouton and NIM through 
Guy & Smith  

•  Partizan games again under the Normal play rule 
starting with Milnor’s and Hanner’s work (from GO) 
through Berlekamp, Conway & Guy. 

•  Impartial games under the Mis`ere rules starting with 
Dawson in 1935. (See the Dover collection) What about 
the obvious fourth thread? 

•  Partizan Mis`ere games: there are exactly two papers on 
the subject, both in 2007. This topic is hard! 
Mathematical Interlude 1. How to play and win at NIM. 

If there is one heap, take it all! If there are two unequal 
heaps, remove from the larger to leave two the same size. For 
three or more heaps, write each heap size as a sum of powers 
of 2, i.e., as sums of 1, 2, 4, 8, etc. pair off equal powers of 2; 
if all powers are paired off, invite your opponent to go first. 
He must disturb the pairings and your winning response is to 
remove enough counters to re-establish a pairing. 
Mathematically, write the numbers in binary and add without 
carrying ([9]). 

For example: with heaps of size 1, 5 and 7 then as sums of 
powers of 2, 1 = 1, 5 = 4 + 1 and 7 = 4 +2 + 1, the 4s pair off 
but not the 2s or the 1s. The winning move (there could be 
more than one but not in this situation) is to play to remove  
3 (=2+1) from the 7 heap to leave the position 1, 5, 4 where  
1 = 1, 5 = 4 + 1 and 4 = 4. If the opponent were now to move 
to 1, 3, 4 then 1 = 1, 3 = 2 + 1 and 4 = 4 and only the 1s are 
paired. No move will ever create another 4 so the 4 has to go 
but at the same time you should leave a 2 to pair off with the 
other 2, i.e. move to the position 1 = 1, 3 = 2 + 1 and 2 = 2. 

 
Figure 1.  A diabolical disjunctive sum 

3. Models of Combinatorial Games 
Now we will show most of the combinatorial games, 

which previously studied, and we will try to explain the 
games in a brief ways. 
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3.1. Nim 

Nim is a game where players take turns removing objects 
from different heaps (think stacks of coins). On a players 
turn, the player must remove at least 1 object from one of the 
heaps. They can remove as many objects as they want as long 
as they are in the same heap. The first player to be unable to 
move loses ([14]).  

3.2. Toads and Frogs  

Toads and Frogs is a game played on a 1×n strip of squares. 
Every square is either empty or has a toad or a frog. Players 
take turns, Left moving toads to the right if the next square is 
an empty square and right moving frogs to the left if the next 
square is empty. Also, if there is a frog in the square that a 
toad wants to move into, it can hop over the frog into the next 
square (2) squares ahead of where it started) if that square is 
empty. Similarly, a frog can jump over a toad to the next 
square if that square is empty. The first player that does not 
have a move loses ([14]). 

3.3. Cut Cake  

Cut Cake is a game played on a rectangular grid. During 
each players turn, they cut the rectangle into two smaller 
rectangles. The Left player can cut along the vertical (North 
to South) lines while Right can cut along the horizontal (East 
to West) lines. The first player without a move loses ([10]). 

3.4. Hackenbush  

Hackenbush is a game played on a configuration of 
colored lines (usually red, blue, and green). These lines are 
connected to the ground, either directly by touching the 
ground or indirectly by being connected to another line that 
is connected to the ground. Players take turns cutting the line 
segments ([3, 8, 28]) (i.e. erasing). The player Right can cut 
Red lines, the player Left can cut blue lines, and both can cut 
green lines. When a line is cut, any remaining pieces that are 
no longer connected to the ground are also removed. The 
first player to be unable to move loses. 

3.5. Run Over  

Run over is a game played on a finite strip of squares, 
where each square is empty or occupied by a Left or Right 
piece. Each player can move their piece one square to the left 
and replace any piece that is on that square. Once pieces 
reach the last square, they can move off of the board ([7]). 

3.6. Date Game 

This two players game starts with a date in January. 
Players take turns increasing either the month or the number, 
but not both. At any time, the applet is required to show a 
valid date. The player to reach December 31 wins the game. 
(To modify the date click repeatedly on either the month or 
the date and then press Move) ([7]). 

3.7. Dawson's Chess  

Dawson's Chess was invented in 1930s and is played with 

one or more heaps of items. The nature of the items is not 
important, but as in the game of Kayles they are referred to as 
Skittles. In the applet below, they are positioned on a circle, 
with the number of positions shown in the upper right portion 
of the applet. This may be specified by clicking a little off the 
vertical axis of the number. (Clicking to the left of the axis 
decreases the number, to the right increases it.) 

To remove a skittle, just click on it. However, the rules 
devised by T. R. Dawson stipulate that, the immediate 
neighbors - if any - of a skittle that was clicked on are also 
removed. So that, depending on the configuration, a player 
may remove 1, 2, or 3 skittles ([45]). 

3.8. Dawson's Kayles  

Dawson's Kayles was invented in 1930s and is played with 
one or more heaps of items. The nature of the items is not 
important, but as in the game of Kayles they are referred to as 
Skittles. In the applet below, the skittles are positioned on a 
circle, with the number of positions shown in the upper right 
portion of the applet. Clicking a little off its vertical axis may 
specify this number. (Clicking to the left of the axis 
decreases the number, to the right increases it). 

In Dawson's Kayles a player always removes exactly two 
adjacent skittles. Thus a lone skittle is a "dead weight" with 
the Grundy number of 0. The presence of a lone skittle, with 
no neighbors, does not affect the course of the game. To 
remove a pair of adjacent skittles, click somewhere between 
the two ([29]). 

3.9. The Fraction Game  

You are given several fractions that can be modified 
according to certain rules: 

1.  The number replacing a given one must have strictly 
smaller denominator, or, 

2.  If the denominator is already 1, it must have numerator 
strictly smaller in absolute value 

There are two players: Left and Right. A replacement is 
only legal for Left if it decreases the number, legal for Right 
only if it increases the number. You choose to be either Right 
or Left and may force your computer to go first by pressing 
you move button. All numbers in the game are modified by 
clicking a little off their center line. Clicking on the right 
increases the number, clicking on the left decreases it. To 
perform a move, select a fraction, adjust it to the desired 
value and press the I move button. 

The game has two parameters. Numbers is the number of 
fractions in a game. Max is the absolute maximum number 
that may appear in the numerator or denominator of a game. 
([11]) 

3.10. Grundy's Game 

Grundy's Game is played with one or more heaps of items. 
The nature of the items is not important, but in the applet 
below they may perhaps remind of chocolate squares. The 
only legal move in the game is to split a single heap into 
smaller two of different sizes. To perform a move click 
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between any two (with the above provision) adjacent squares 
([13]). 

3.11. The Game of Hex 

The game of Hex has been invented in 1942 by Piet Hein, 
reinvented in 1948 by John Nash, got its name in 1952 from a 
commercial distribution by Parker Brothers and has been 
popularized by Martin Gardner in 1957. In Hex, the player to 
make the first move has a better chance of winning than the 
other player. This follows by the strategy stealing argument 
invented by John Nash. Hence the first player has an 
advantage in the game. To compensate for this advantage in 
the applet below, the central cell is blocked for the very first 
move. Unlike chess or checkers, Hex can't end in a draw. 
You'll have to do your best to win against the computer 
([17]). 

3.12. Kayles  

Kayles was introduced by Dudeney and Loyd. Two 
players take turns knocking down skittles - pins here in the 
US. Usually skittles are arranged in a row. In the applet 
below they make a circular pattern. With one ball a player 
may knock either 1 (a direct hit) or 2 adjacent skittles (hitting 
just in-between the two.) The players are so good at playing 
the game they can knock down the desired skittles at will. 
The last player to move wins. 

(Clicking a little left or right off its centerline modifies the 
number of skittles. You can force the computer to make first 
move by clicking the start button) ([7]). 

3.13. Nimble  

The game of Nimble is much the same as the game of 
Scoring as we shall see later. The only difference is that now 
there is no limitation on the length of a move ([5, 14]). 

3.14. Northcott's game  

In every row of a rectangular board, there are two checkers: 
one white and one black. A move consists in sliding a single 
checker in its original row without jumping over another 
checker. You play white while the computer plays black. As 
usual, the player to make the last move wins ([17]). 

3.15. Odd Scoring  

The applet below serves a play board for a problem (Kvant, 
n 2, 1970, M8, p. 47) that I paraphrase the following way: 

A chip is placed at the end of a grid band with N cells. On 
a move the chip is shifted leftwards 1, 2, or 3 steps. When it 
reaches the last cell, the total numbers of steps made by you 
and the computer are counted and the player who made an 
even number of steps is declared a winner. 

The game is played against the computer. You move first. 
To avoid a draw, the number of available steps is always 

odd. The idea is of course to devise a winning strategy         
([16, 27]).  

3.16. One Pile  

One Pile is the most direct generalization of Scoring and 

the simplest of the Subtraction games. On each move a 
player is permitted to remove any number of objects 
bounded both from above and below. In the applet, a move is 
performed by pressing one of the buttons located on the 
perimeter of the drawing area. Clicking a little off their 
central line can modify the Min and Max attributes          
([32, 33]). 

3.17. Plainim  

Plainim is played on a checkered board by removing or 
adding chips. There are just a few rules. 

1.  On a single move, one may only add/remove chips in a 
single row. 

2.  At most one chip is allowed per square. 
3.  One may only add chips to the right of a chip being 

removed on the same move. 
4.  The one to remove the last chip wins. 
To perform a move click on squares (in a single row) 

where you want chips placed or removed (see that you 
confirm to Rules 1-3). Then press the button "Make Move" 
([11]). 

3.18. Plainim Misère 

Plainim Misère is played on a checkered board by 
removing or adding chips. There are just a few rules. 

1.  On a single move, one may only add/remove chips in a 
single row. 

2.  At most one chip is allowed per square. 
3.  One may only add chips to the right of a chip being 

removed on the same move. 
4.  The one to remove the last chip loses. 
To perform a move click on squares (in a single row) 

where you want chips placed or removed (see that you 
confirm to Rules 1-3). Then press the button "Make Move" 
([15, 33]). 

3.19. Scoring  

The game of Scoring is very simple: the board is a strip of 
several squares (parameter Heap size), on which there are 
placed several chips (whose number is controlled by the 
parameter Counters). Taking turns with your computer you 
drag chips (one at a time) leftward until all are collected in 
the leftmost square. The last fellow to make a move wins 
([19, 34]). 

3.20. Scoring Misère 

Misère games are played by the same rules as the normal 
ones with one notable exception: while in the normal game 
the player unable to move loses, in the misère games, the 
player unable to move wins. 

In the Scoring misère, like in Scoring, the players are 
presented with one or more piles (or heaps) of objects (chips, 
counters, pebbles.) A move consists in removing a number of 
objects from a single pile. In Scoring (normal or misère), a 
player, on a single move, is allowed to remove one or more 
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objects up to a prescribed maximum. 
Strangely, the misère games are by far more difficult than 

their normal counterparts. A winning strategy is known for 
the straight Nim and its various incarnations (Nimble, 
Plainim, Date Game, or, say, Silver Dollar Game with No 
Silver Dollar.) For Nim, the winning strategy is to play as in 
normal Nim until all non-empty heaps with one exception, 
contain a single counter. Then make a move so as to leave an 
odd number of single counter heaps. 

Scoring, especially with several heaps, is often (and 
mistakenly) identified with Nim. In particular, it is very easy 
to give an example when the above Nim misère strategy does 
not work for the Scoring misère. I've no doubt you would run 
into such a situation if you play with the applet below. (In 
addition to the above, it implements one other strategy and 
makes a random selection between the two) ([12, 28, 41]). 

3.21. Scoring Misère: Two Heaps Perfect Strategy 

Misère games are played by the same rules as the normal 
ones with one notable exception: while in the normal game 
the player unable to move loses, in the misère games, the 
player unable to move wins. 

In the Scoring misère, like in Scoring, the players are 
presented with one or more piles (or heaps) of objects (chips, 
counters, pebbles.) A move consists in removing a number of 
objects from a single pile. In Scoring (normal or misère), a 
player, on a single move, is allowed to remove one or more 
objects up to a prescribed maximum. In the misère game, the 
player who was forced to remove the last item loses. 

Unlike the normal games, the misère does not in general 
have a perfect strategy. However, in case of just two heaps a 
perfect strategy does exist. 

The MAA Math Horizons magazine (v 17, n 4, April 2010, 
pp. 31-33) posted a solution to the problem by Dan Kalman 
and Michael Keynes of American University Which is called 
Double Take: 

Starting with two non-empty stacks of chips, one of size m 
and the other of size n, the two players alternate turns and 
take 1, 2, or 3 chips from a single stack on each turn. The 
loser is the player who removes the last chip out of the initial 
m + n chips. Find the values of m and n that guarantee that 
the second player wins with best play. 

In the problem, the players are allowed to remove 
maximum of 3 chips. In the applet this restriction is removed 
and you can specify the maximum move of any size - in 
principle, of course. For technical reasons the applet allows 
removing at most 10 chips. The chips are represented by 
small squares lined in a row (a heap). The squares are 
counted left to right. To remove a desired (but legal) number 
of squares click on the first one to be removed ([12, 28, 21]). 

3.22. The Silver Dollar Game  

This game adds a twist to the bogus Nim. One of the 
counters - a Silver Dollar - is different. A counter may be 
only moved leftward without jumping over other counters. 
Also, as before, no two counters may occupy the same square. 

The leftmost square is the only exception to that rule. The 
leftmost square may contain any number of counters. The 
purpose of the game now is to gain possession of the Silver 
Dollar. 

The cherished coin may only be removed from the 
leftmost square. The game has two variants. In the first, the 
player who places the Silver Dollar on the leftmost square 
earns the right to grab it on the same move. In the second 
variant, removal of the Dollar takes two steps. After one 
player is forced to place the Dollar on the leftmost square, the 
other player wins by picking it up on his turn ([31]). 

3.23. The Silver Dollar Game with No Silver Dollar 
(Bogus Nim)  

This game is played very much like the games of Nimble 
and Scoring. Counters are placed on strip of squares and are 
moved (dragged) leftward. Counters are not allowed to move 
over each other, and no two counters may be placed on the 
same square ([31, 36, 41]). 

3.24. A Sticky Problem  

The game presented by a Java applet below was published 
in 2002 the American Mathematical Monthly as problem 569 
(Sung Soo Kim). A solution by Li Zhou appeared in v. 111, n. 
4 (April, 2004), pp. 363-364. 

A game starts with one stick of length 1 and four sticks of 
length 4. The two players move alternately. A move consists 
of breaking a stick of length at least two into two sticks of 
shorter lengths or removing n sticks of length n for some 
𝑛𝑛 ∈ {1, 2, 3, 4}. The player who makes the last move wins. 
Which player can force a win, and how? 

The applet allows one to start with different initial 
configurations, but also with the standard one. At the outset, 
you can force the computer to make the first move by 
pressing the "Make move" button. Sticks are represented by 
a row of small squares that might remind of a chocolate brick. 
To break a piece click on a square to the right of the desired 
break line ([23, 37]). 

3.25. Another Sticky Problem 

The game presented by a Java applet below was published 
in 2004 the Mathematics Magazine as problem 1687 (Sung 
Soo Kim). A solution by Li Zhou appeared in v. 78, n. 1 
(February, 2005), p. 70. 

A two-player game starts with two sticks, one of length N 
and one of length N+1, where n is a positive integer. Players 
alternate turn. A turn consists of breaking a stick into two 
sticks of positive integer lengths, or removing k sticks of 
length k for some positive integer k. The player who makes 
the last move wins. Which player can force a win, and how? 

The applet allows for experimentation with different 
starting lengths. At the outset, you can force the computer to 
make the first move by pressing the "Make move" button. 
Sticks are represented by a row of small squares that might 
remind of a chocolate brick. To break a piece click on a 
square to the right of the desired break line ([22]). 
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3.26. Subtraction Game 

In the Subtraction Game you are given a number of 
minuends and a number of subtrahends. Players take turns 
subtracting subtrahends from minuends - one subtraction at a 
time. Only non-negative results are legal. The player unable 
to move loses. A horizontal line separates minuends (placed 
above the line in a rectangular array) from subtrahends 
(always located in a row below the line). 

To perform a move, select a minuend and then click on a 
subtrahends. 

The game has three parameters. Nums is the number (from 
1 through 12) of minuends to subtract from. Subs is the 
number (from 1 through 8) of possible subtrahends to be 
subtracted from minuends. Max is the absolute maximum of 
minuends. Subtrahends may change between 1 and 9 
(inclusive). They may be modified when the Define button is 
checked. 

The numbers that could be modified (Nums, Subs, Max 
and subtrahends) by clicking a little off their vertical central 
line. Clicking on the right from the line increases the number, 
clicking on the left decreases it. 

When subtrahends form a sequence of consecutive 
numbers starting with one, the game is equivalent to Scoring. 
Since the players are free to define subtrahends to their liking, 
Subtraction Game is more general ([24, 41]). 

3.27. TacTix  

TacTix is a derivation from Nim invented by Piet Hien in 
the late 1940s. It is played on a N×N board filled with chips. 
At a turn, a player removes a number of contiguous chips 
from a single row or column. TacTix's normal game is trivial: 
if N is odd there is a winning strategy for the first player; if N 
is even there is a winning strategy for the second player. (In 
both cases, the clever player would utilize the central 
symmetry of the board.) Hence, TacTix is played in itsmisère 
variance: the player to pick the last piece loses the game 
([25]). 

3.28. Take-Away Games  

Like One Pile, the Take-Away games are played on a 
single pile of objects. On the first move a player is allowed to 
remove any number of objects, but the whole pile. On any 
subsequent move, a player is allowed to remove any number 
of objects bounded from above by a quantity that depends on 
the previous move. 

The applet below implements three such games. In one, a 
player can remove no more than what his or her opponent 
removed on the previous move. In the second game, the 
condition changes to less than twice of the previous move. 
An in the third, it's no more than twice the previous move 
([24, 44]). 

3.29. Turning Turtles  

At each move a player chooses an "O" and turns it into an 
"X". At the same time this player may, if he so wishes, 
changes a letter in any other square to the left from the first 

one. In the left square, the player is allowed to turn "O" into 
"X" and also "X" into "O". To perform a move, the player 
should first click under the square he plans to change. After 
selecting 1 or 2 squares, click on the "Make Move" button. If 
you plan to change a single square (an "O" into an "X") you 
may click on that square directly. This is kind of a shortcut 
with which one should be cautious. You can't undo your 
moves. The player to make the last move wins. 

In the original version, players turn turtles upside down 
and back to their feet. Not having any aptitude for painting, I 
settled on the Tic Tac Toe symbols to present the two 
possible states of each square ([26]). 

3.30. Wythoff's Nim  

The game below has no traditional name, was invented at 
about 1960 by Rufus P. Isaacs, a mathematician at Johns 
Hopkins University. It is described briefly in Chapter 6 of the 
1962 English translation of The Theory of Graphs and Its 
Applications, a book in French by Claude Berge. Let's call 
the game "Corner the Lady." Computer puts the queen on 
any cell in the top row or in the column farthest to the right of 
the board; Queen's location is designated by the red square. 
The queen moves in the usual way but only west, south or 
southwest. Eligible squares are colored in magenta. You 
click on one of these to select a move. You move first, and 
then the computer and you alternate moves. The player who 
gets the queen to the lower left corner is the winner. No draw 
is possible, so that one of the players is sure to win ([15]). 

3.31. Wythoff's Nim II  

This is a second and a more direct implementation of 
Wythoff's Nim. To remind, the players take turns removing 
any number of objects from one of the heaps, or removing 
the same number of objects from the two heaps 
simultaneously. 

In the applet objects are removed from the right. Click on 
the last square you want removed. If the box "Two heaps" is 
checked, the same number of objects will be removed from 
both heaps regardless of which one you click upon ([15]). 

4. Comparison of Some Games 
From a mathematical point of view, we note that 

combinatorial games can be classified into several 
categories. 

The first category can be dealt with algebraically, where 
we can analyze and find appropriate algorithms to solve the 
game. For example, “Nim” is a game, which has a clear 
connection with the mathematical binary system. You can 
clearly find the correct winning strategies by understanding 
the mathematical binary system. 

The second category can be dealt with graphical or 
engineering methods. For example, “Hackenbush” is a game, 
where graphical knowledge can explain the winning 
solutions, step by step.  

The third category is more complicated, such as “Chess”, 
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which requires knowledge in different mathematical 
concepts and methods to develop correct strategies to win the 
game.  

5. Game Rules and Game abbreviations 
We will try to explain how to deal with the Games and 

we'll show the rules. 

5.1. Various Game Values  
If we have a game 𝐺𝐺 and this game and This game include 

options for player L named 𝐺𝐺𝐿𝐿  and options for player R 
named  𝐺𝐺𝑅𝑅 : 

  𝐺𝐺 = {𝐺𝐺𝐿𝐿 |  𝐺𝐺𝑅𝑅 }  
 −𝐺𝐺 = {−𝐺𝐺𝐿𝐿 | −𝐺𝐺𝑅𝑅 }  
  𝐺𝐺 = 𝐻𝐻  if  𝐺𝐺 − 𝐻𝐻 = 0  

Equivalently,  𝐺𝐺 = 𝐻𝐻  if  𝐺𝐺 + 𝐻𝐻  has the same outcome in 
best play as 𝐻𝐻 + 𝐺𝐺 for all games𝐾𝐾  

 0 = { | } 
If 0=G , then the first player to move loses 

 1 = {0 | } 
A positive game value is a Left win 

 −1 = {|0 } 
A negative game value is a Right win 
From the above, we find: 

 0 = { | } 
 1 = {0 | }, 2 = {1 | } , 3 = {2 | } 
 −1 = { | 0}, 2 = { | − 1} , −3 = { | − 2 } 
 𝑛𝑛 = {𝑛𝑛 − 1 | } 
 ∗ = {0 |0 } 
 ∗ = − ∗ 
 ∗ 𝑛𝑛 = {∗ 0,∗ 1, … ,∗ 𝑛𝑛 − 1 | ∗ 0,∗ 1, … ,∗ 𝑛𝑛 − 1 } 
 ↑ = {0 | ∗ } 
 ↓ = −↑ 
 𝐺𝐺 > 0 means Left wins 
 𝐺𝐺 < 0 means Right wins 
 𝐺𝐺 = 0 means first player loses 
 𝐺𝐺 0 means second player loses 

In another way 
  Zero: If 𝐺𝐺 is a 2nd player wins then the outcome of 

 𝐺𝐺 + 𝐻𝐻  is the same as that of 𝐻𝐻 for all games 𝐻𝐻. The 
player who can win 𝐻𝐻 plays this strategy and never 
plays in 𝐺𝐺 except to respond to his opponent’s moves 
in 𝐺𝐺. Thus, any 2nd player wins game acts like 0 in 
that it changes nothing when added to another game.  

  Negative: Given a game 𝐺𝐺 ,−𝐺𝐺  is 𝐺𝐺  with the roles 
reversed. For example, in CHESS this is the same as 
turning the board around.  

  Equality:  𝐺𝐺 = 𝐻𝐻 if  𝐺𝐺 + (−𝐻𝐻) is a 2nd player win; i.e. 
neither player has an advantage when playing first. 

Note this is a ‘definition’ of equality and 
mathematically we can say  𝐺𝐺 + (−𝐻𝐻) = 0 is the 
same as  𝐺𝐺 = 𝐻𝐻 . (Note that: this really defines an 
equivalence relation and the ‘equality’ is for the 
equivalence classes). 

  Associativity  𝐺𝐺 + (𝐻𝐻 + 𝐾𝐾) = (𝐺𝐺 + 𝐻𝐻) + 𝐾𝐾  is 
straightforward from the definition of the disjunctive 
sum; 5. Commutativity:,   𝐺𝐺 + 𝐻𝐻 = 𝐻𝐻 + 𝐺𝐺  again 
straightforward;  

  Inverses: For any game  𝐺𝐺, 𝐺𝐺 + (−𝐺𝐺) is a 2nd player 
win, (i.e.  𝐺𝐺 + (−𝐺𝐺) = 0 ) by  
‘Tweedledum-Tweedledee’. Whatever you play in 
one, I play exactly the same in the other. 

  Inequality:  𝐺𝐺 ≥ 𝐻𝐻  if the Left wins 𝐺𝐺 + (−𝐻𝐻) ; i.e. 
there is a bigger advantage to Left in 𝐺𝐺 than in 𝐻𝐻.  

The structure really is a partial order. For example, when 
playing NIM, a heap of size 1 and a heap of size 2 are 
incomparable. Let’s call these games∗ 1 and∗ 2  for easy 
reference. Note that −(∗ 2) is the same game as∗ 2 since 
the Left moves are the same as the moves available to Right 
so interchanging them has no effect on the play of the game. 
We already know that  ∗ 1 +∗ 2  a first player win, the 
winning move is to ∗ 1 +∗ 1. According to the definition of 
‘equality’ then ∗ 1 ≠∗ 2 . Moreover, according to the 
definition of inequality ∗ 1 not >∗ 2  and ∗ 1 not <∗ 2 
([26]). 

 

Figure 2.  Sample Game with Two players, left and right, alternate moves 

If you have no move, you lose and your opponent wins and 
games must terminate in finite time. 

5.1.1. Definition  
A game is an ordered pain of sets of games and we write a 

game as { left's moves | right's moves } Or { left's options | 
right's options } Or 𝐺𝐺 = {𝐺𝐺𝐿𝐿 |  𝐺𝐺𝑅𝑅 }  ([5.6]). For example 
the empty set of games, so { | } = 0 is a game, won by the 
second player. We now have two sets of games: { } and {0 }, 
so we can form games{0 | } = 1 left wins {|0 } = −1 right 
wins{0 |0 } =∗ first player wins We now have 16 set of 
{0 ,1, −1,∗ } and we can write: 
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Games Born on day 𝒏𝒏 = 

{ | } = 0 0 

{0 | } = 1, 
{|0 } = −1 
{0 |0 } =∗ 

1 

e.g. 
{0 ,∗ | − 1 }, 
{1 ,∗ |0,1 } 

2 

etc. etc. 

5.2. Addition 

In the sum of two games 𝑥𝑥 + 𝑦𝑦, a player may move in 
either x or y, leaving the other unchanged, more formally 
([7]). 

Definition 𝑥𝑥 + 𝑦𝑦 = {𝑥𝑥𝐿𝐿 + 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦𝐿𝐿|𝑥𝑥𝑅𝑅 + 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦𝑅𝑅} 
Note: Game 𝑥𝑥 + 𝑦𝑦 is born on the sum of the days on 

which 𝑥𝑥 and 𝑦𝑦 are born. 
5.2.1. Properties of Addition  
5.2.1.1. Theorem Addition is Commutative. 
Proof Base case: 𝐺𝐺 + 0 = 0 + 𝐺𝐺 for all games 𝐺𝐺. 
Induct on the sum of days on which 𝑥𝑥 and 𝑦𝑦 are born: 

 𝑥𝑥 + 𝑦𝑦 = {𝑥𝑥𝐿𝐿 + 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦𝐿𝐿|𝑥𝑥𝑅𝑅 + 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦𝑅𝑅} 
= {𝑦𝑦 + 𝑥𝑥𝐿𝐿, 𝑦𝑦𝐿𝐿 + 𝑥𝑥|𝑦𝑦 + 𝑥𝑥𝑅𝑅, 𝑦𝑦𝑅𝑅 + 𝑥𝑥} 
=𝑦𝑦 + 𝑥𝑥 

5.2.1.2. Theorem Addition is associative ([9]) 

5.3. The Negative of a Game 

5.3.1. Definition −𝐺𝐺 = {−(𝐺𝐺𝑅𝑅)| − (𝐺𝐺𝐿𝐿)} 
The effect is that all moves of Left and Right are switched 

([26]). 
𝐺𝐺 + (−𝐺𝐺) is a second player win. For example in Fig. 3, 

Right first: 

Figure 3

Right to move, so Left wins. 

5.4. Zero Games 
Note that 𝑥𝑥 − 𝑥𝑥  is not the same as 0! 
5.4.1. Definition 
 A game is a zero game if it is a second player win.
 Define  𝑥𝑥 = 𝑦𝑦  to mean that 𝑥𝑥 − 𝑦𝑦  is a zero game

([40, 48]).

5.5. Comparing Games 
5.5.1. Definition If 𝑥𝑥 − 𝑦𝑦 is positive then 𝑥𝑥 > 𝑦𝑦. 
For example 1 −∗ is a Left win, so 1 >∗.  
and ∗ −0 =∗ is fuzzy, so ∗ and 0 are not comparable. So 

games form a po ''set'' ([9]). 
5.5.2. The Game "2" 
Let 2 − {0,1| }, 𝑠𝑠𝑠𝑠 − 2 = { |0,−1} . 
Analyze the game , see Fig .4 to find 1 + 1 − 2 = 0, so 

1 + 1 = 2 

Figure 4 

5.6. Ordinals 

5.6.1. Definition 
2 = {0,1| } 
3 = {0,1,2| } 
4 = {0,1,2,3| } 

. 

. 

. 
𝑛𝑛 = {0,1,2, … , 𝑛𝑛 − 1| } 

. 

. 

. 
𝑤𝑤 = {0,1, … … … | } 𝐿𝐿 𝑤𝑤𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠 𝑤𝑤 > 𝑛𝑛 
𝑤𝑤 + 1 = {0,1, … … … ,𝑤𝑤| } 
𝑤𝑤 + 2 
Ets, ([14]). 

for example Consider the game 
 {0|1} = 𝑥𝑥. 
see Fig .5 to find that it is positive: 

Figure 5 
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5.6.2. What is 𝑥𝑥 = {0|1} ?  
see Fig .6 to find 0 < 𝑥𝑥 < 1. 

 

Figure 6 

5.7. Making More Games 

Let 𝑦𝑦 = �0� 1
2
�. As before, we can show 0 < 𝑦𝑦 < 1

2
. 

In fact.  𝑦𝑦 + 𝑦𝑦 − 1
2

= 0, so 𝑦𝑦 = 1
4
. 1

8
= �0� 1

4
�, 

1
16

= �0�
1
8
�  𝑒𝑒𝑒𝑒𝑒𝑒. 

In this way we can construct games corresponding to 𝑍𝑍 �1
2
� 

Recall that we have also constructed a game for every 
ordinal number. Now let’s combine all the games we have so 
far ([20, 38]). 

5.8. Multiplication 
For numbers 𝑎𝑎 < 𝑏𝑏, 𝑎𝑎 < {𝑎𝑎|𝑏𝑏} < 𝑏𝑏 or, if 𝐺𝐺, 𝐻𝐻 are surreal, 
 𝐺𝐺𝑅𝑅 − 𝐺𝐺 > 0 𝐻𝐻𝑅𝑅 − 𝐻𝐻 > 0 
 𝐺𝐺 − 𝐺𝐺𝐿𝐿 > 0 𝐻𝐻 − 𝐻𝐻𝐿𝐿 > 0 
 0 < (𝐺𝐺 − 𝐺𝐺𝐿𝐿)(𝐻𝐻 − 𝐻𝐻𝐿𝐿) = 𝐺𝐺𝐺𝐺 − 𝐺𝐺𝐿𝐿𝐻𝐻 − 𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐺𝐺𝐿𝐿𝐻𝐻𝐿𝐿 
 𝐺𝐺𝐺𝐺 > 𝐺𝐺𝐿𝐿𝐻𝐻 + 𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐻𝐻𝐿𝐿 
Similarly 
 𝐺𝐺𝐺𝐺 > 𝐺𝐺𝑅𝑅𝐻𝐻 + 𝐺𝐺𝐻𝐻𝑅𝑅 − 𝐺𝐺𝑅𝑅𝐻𝐻𝑅𝑅 
 𝐺𝐺𝐺𝐺 < 𝐺𝐺𝐿𝐿𝐻𝐻 + 𝐺𝐺𝐻𝐻𝑅𝑅 − 𝐺𝐺𝐿𝐿𝐻𝐻𝑅𝑅 
 𝐺𝐺𝐺𝐺 < 𝐺𝐺𝑅𝑅𝐻𝐻 + 𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐺𝐺𝑅𝑅𝐻𝐻𝐿𝐿 

𝐺𝐺𝐺𝐺 = �𝐺𝐺
𝐿𝐿𝐻𝐻 + 𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐻𝐻𝐿𝐿 

𝐺𝐺𝑅𝑅𝐻𝐻 + 𝐺𝐺𝐻𝐻𝑅𝑅 − 𝐺𝐺𝑅𝑅𝐻𝐻𝑅𝑅 | 𝐺𝐺𝐿𝐿𝐻𝐻 + 𝐺𝐺𝐻𝐻𝑅𝑅 − 𝐺𝐺𝐿𝐿𝐻𝐻𝑅𝑅 
𝐺𝐺𝑅𝑅𝐻𝐻 + 𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐺𝐺𝑅𝑅𝐻𝐻𝐿𝐿 �  

5.8.1. Properties of Multiplication  
Can prove the following by induction 
 Well defined 
 Distributive law 
 Associative 
 1 is the multiplicative identity 
 Commutative 
 Every nonzero surreal has an inverse 
So the surreal numbers are almost a field ([6, 17, 42]) 

5.9. Other Games 
Consider the game {1|−1} . It is not a number because 

1 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 < −1 

We compare to a number 𝑥𝑥 with  −1 ≤  𝑥𝑥 ≤ 1 in Fig .7. 

 

Figure 7 

So {1|−1} − 𝑥𝑥 is fuzzy (a first player win). Because the 
first player move with {1|−1}. 

Note that In a number 𝑥𝑥 , nobody wants to move because 
𝑥𝑥𝐿𝐿  < 𝑥𝑥 and 𝑥𝑥𝑅𝑅 > 𝑥𝑥. 

More on {1|−1}  
In Fig.4 we have shown that {1|−1} is not comparable to 

numbers −1 ≤  𝑥𝑥 ≤ 1. For 𝑥𝑥 ≥ 1, then 

 

Figure 8 

Is a right win, so {1|−1} < 𝑥𝑥  
In Fig .9 note that −{1|−1} =  {1|−1} so also 

0 > {1|−1} − 𝑥𝑥 = −𝑥𝑥 − {1|−1}  
 {1|−1} > −𝑥𝑥  

 

Figure 9.  Relating to surreals 

Any game born on a finite day corresponds to a cloud with 
dyadic endpoints. 

If two games overlap, they are not comparable, if they do 
not overlap, you can compare them ([1, 2]). 

5.9.1. Lemma 
For any game 𝐺𝐺 , there is an ordinal 𝛼𝛼 such that 

−𝛼𝛼 < 𝐺𝐺 < 𝛼𝛼. 
Proof 

If 𝐺𝐺 is born on day 𝑛𝑛, choose 𝛼𝛼 = 𝑛𝑛 + 1. Game 𝐺𝐺 will 
turn to 0 in at most 𝑛𝑛 moves. 

Left wins (𝑛𝑛 + 1) − 𝐺𝐺 by always moving in(𝑛𝑛 + 1). He 
will always have a response to a move in 𝐺𝐺. So 

(𝑛𝑛 + 1) > 𝐺𝐺. In Fig .10 note that similarly−(𝑛𝑛 + 1) < 𝐺𝐺. 
Any game corresponds to same cloud. 
If two games overlap, they are not comparable. If they do 

not overlap, you can compare them ([42, 43]) 
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Figure 10 

5.9.1.1. Where is ∗ ?  
Recall that ∗ {0|0} is fuzzy with 0. 
5.9.2. Lemma 
If 𝑥𝑥 > 0 is a number, then 𝑥𝑥 −∗ is a left win. 
We will Proof that in Fig .11  

 

Figure 11 

Since 𝑥𝑥 is a number,  𝑥𝑥𝑅𝑅 > 𝑥𝑥 > 0  
∗ is not comparable to 0. 
For a number > 0 , since 𝑥𝑥 −∗ positive we get 𝑥𝑥 >∗. 
Similarly, ∗ is greater than all negative numbers. So ∗ 

forms a cloud all at 0 , see Fig .12 to find it ([4]).  

 

Figure 12 

Impartial games, means game 𝐺𝐺 is impartial if 𝐺𝐺𝐿𝐿  and 
𝐺𝐺𝑅𝑅 are identical and impartial. We write 𝐺𝐺 = {𝐺𝐺𝐼𝐼}, where 
𝐺𝐺𝐼𝐼 are the options of 𝐺𝐺. 

 {∗} is a zero game: 

{∗}
1𝑠𝑠𝑠𝑠
�� ∗

2𝑛𝑛𝑛𝑛
��0

1𝑠𝑠𝑠𝑠
�� 

5.9.3. Definition 
∗2= {0,∗} 
∗3= {0,∗,∗2} 

. 

. 

. 
∗𝑛𝑛= {0,∗, … ,∗𝑛𝑛−1} 

. 

. 

. 
∗𝑤𝑤= {0,∗, … ,∗𝑛𝑛 , … } 

. 

. 

. 
0 

each of these has a cloud all at 0 ([46]). 
5.9.4. All stars are different 
If 𝑛𝑛 >m then see Fig .13 to find that is a first player win.  

 

Figure 13 

So far two different ordinals 𝑛𝑛 and 𝑚𝑚 ,∗𝑛𝑛≠∗𝑚𝑚  since the 
difference is fuzzy ([30, 47]). 

5.9.5. Terminology  
These games are also called Nim piles 
Another small game: {0| ∗} =↑  

 

Figure 14.  Nim piles 

So {0| ∗} > 0 ([22. 34]). 

6. Some Applications 
After we learned about the combinatorial games and how 

to deal with the games in algebraic ways, We will talk about 
some of the chess-related applications, which is one of the 
most important applications. 

6.1. The Chessboard Problems 
For more than 250 years, combinatorial problems on 

chessboards have been studied and published in numerous 
books on recreational mathematics. Two problems of this 
type include the problem of finding a placement of n 
non-attacking queens on an 𝑛𝑛 × 𝑛𝑛  chessboard and the 
problem of determining the minimum number of queens who 
are necessary to cover every square of an 𝑛𝑛 × 𝑛𝑛 chessboard. 
Within the past five years a surge of interest in chessboard 
problems has occurred among a group of a dozen or so graph 
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theorists and computer scientists. This paper surveys recent 
developments and mentions a large number of open 
problems. Combinatorial lists and puzzle-solvers have 
studied combinatorial problems on chessboards for over 250 
years. Investigations center on the placement of the various 
types of chess pieces, viz, kings, queens, bishops, rooks, 
knights and pawns, on generalized 𝑛𝑛 𝑥𝑥 𝑛𝑛  chessboards    
([47, 48]). 

6.1.1. The Knight’s Tour 
The closed knight's tour of a chessboard is a classic 

problem in mathematics. Can the knight use legal moves to 
visit every square on the board and return to its starting 
position? The unique movement of the knight makes its tour 
an intriguing problem, which is trivial for other chess pieces 
(Fig. 15). The knight's tour is an early example of the 
existence problem of Hamiltonian cycles. So early, in fact 
that it predates Kirkman's 1856 paper, which posed the 
general problem and Hamilton's Icosian Game of the late 
1850s ([47, 48]). Euler presented solutions for the standard 
8_8 board and the problem is easily generalized to 
rectangular boards. In 1991 Schwenk completely answered 
the question: Which rectangular chessboards have a knight's 
tour? Schwenk's Theorem: An m × n  chessboard with 
m ≤  n has a closed knight's tour unless one or more of the 
following three conditions hold: 

m and n are both odd; 
m ∈ {1,2,4}; 
m = 3 and n ∈ {1,2,4}. 

The problem of the closed knight's tour has been further 
generalized to many three- dimensional surfaces: the torus, 
the cylinder, the pillow, the Mobius strip, the Klein bottle, 
the exterior of the cube, the interior levels of the cube, etc. 
Watkins provides excellent coverage of these variations of 
the knight's tour in Across the Board: The Mathematics of 
Chessboard Problems. However, the general analysis of 
these three- dimensional surfaces are to unfold them into the 
two-dimensional plane, apply Schwenk's Theorem as 
liberally as possible and tidy up any remaining cases as 
simply as possible. While this technique is successful at 
obtaining complete characterizations in some set- tings, it 
does not adequately tackle every surface and leaves the 
reader wondering what could be accomplished with a true 
three-dimensional technique ([47, 48]). 

 

Figure 15.  Knight’s moves 

6.1.2. The Domination Problem 

The classical problems of covering chessboards with the 
minimum number of chess pieces (P) were important in 
motivating the revival of the study of dominating sets in 
graphs, which commenced in the early 1970’s. These 
problems certainly date back to de Jaenisch and have been 
mentioned in the literature frequently since that time. 

The domination means that all vacant positions are under 
attack. This problem is called the domination number of 
problem and this number is denoted by γ(P). The number of 
different ways for placing pieces of P type to obtain the 
minimum domination number of P in each time denoted by 
S(γ(P) ). Also, the researchers are interested in the 
domination number of two different types of pieces by fixing 
a number nr  of one type P of pieces and determine the 
domination number γ(P∗, nr) of another type P∗of pieces. 
Finally, they compute the number of different ways 
S(γ(P∗, nr)) to place the minimum number of pieces with a 
fixed number of pieces to dominate the chessboard. 

Theorem 6.1.2.1 The domination number of K  pieces 
with fixed nr  pieces of R in a square chessboard of size n 
is given by 

 γ(K, nr) = �n−nr
3
�

2
.          (5.6) 

Proof: We know that γ(K) = �n+2
3
�

2
= �n

3
�

2
 by equation 

(1.5) in a square chessboard of size n. If we distribute the K 
pieces in the chessboard as minimum dominating 
distribution and place the R pieces in si ,i, i = 1,2, … , n − 1 
in order to keep the minimum number of domination (any 
other placing make a partition on the chessboard). According 
to these placing of R pieces, then we get the maximum of 
Nr  for these pieces, and a square chessboard of length 
n − nr of cells which are not attacked.  

Hence γ(K, nr) = �n−nr
3
�

2
. 

There are several distributions for B pieces and all these 
distributions lead to the same conclusion, therefore we will 
take any one of them to complete the calculations. Therefore, 
in the following theorem, we will take any of the different 
cases of distribution of B pieces to find results. 

Example: Given an n × n  board, find the domination 
number, which is the minimum number of queens (or other 
pieces) needed to attack or occupy every square. 

 

Figure 16&17.  (a) The minimum dominating K pieces in chessboard of 
size 9 (b) A distribution of 𝐾𝐾 pieces with fixed number of 𝑅𝑅 pieces 
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Figure 18.  Domination of the 8 × 8 Chessboard with 5 Queens 

Table 1.  Known Domination Numbers 

𝒏𝒏 1 2 3 4 5 6 7 8 9 

𝜸𝜸(𝑸𝑸𝒏𝒏) 1 1 1 2 3 3 4 5 5 

𝒏𝒏 10 11 12 13 14 15 16 17 18 

𝜸𝜸(𝑸𝑸𝒏𝒏) 5 5 6 7 8 9 9 9 9 

𝒏𝒏 19 20 21 22 23 24 25 19 20 

𝜸𝜸(𝑸𝑸𝒏𝒏) 10 10 or 
11 11 11 or 

12 12 12 or 
13 13 10 10 or 

11 

 
  Q      

     Q   

   Q     

 Q       

       Q 

    Q    

      Q  

Q        

Figure 19.  Eight queens problem 

6.1.3. The Eight Queens Problem 

The eight queens puzzle is the problem of putting eight 
chess queens on an 8 ×  8  chessboard such that none of 
them is able to capture any other using the standard chess 
queen.s moves. The colour of the queens is meaningless in 
this puzzle, and any queen is assumed to be able to attack any 
other. Thus, a solution requires that no two queens share the 
same row, column, or diagonal. 

The eight queens puzzle is an example of the more general 
𝑛𝑛  queens puzzle of placing 𝑛𝑛  queens on an 𝑛𝑛 ×  𝑛𝑛 
chessboard. 

6.2. Independence of 𝑩𝑩 Pieces with a Fixed Number of 
𝑹𝑹 Pieces 

We denote the Independence number of B pieces with a 
fixed number nr  of R pieces by β(B , nr). 

Theorem 6.2.1. The independence of B pieces β( B, nr) 
with a fixed number nr  of R pieces is given by  

β(B, nr) = 2(n − nr) − 3.       (5.5) 
Proof: The idea is to place nr  pieces of R and then we 

distribute the B pieces to get the independence number of 
the B pieces together with a fixed number nr .  

We place the R pieces in suitable cells that in the main 
diagonal of a square chessboard si,i , i = 1, . . , r  in order. 
Since in this cell the R pieces take the maximum Nr , and no 
make partition to the chessboard that contains from the cells 
which are not attacked by these pieces. This chessboard 
forms a square chessboard of length n − nr . We know that 
β(B) = 2n − 2 by equation (1.4), where n is the size of the 
square chessboard. So we distribute 2(n − nr)  − 2 in the 
chessboard of size n − nr , but we must remove the B piece 
from the main diagonal, since it is attacked by the R pieces. 
Thus we get: β(B, nr) = 2(n − nr) − 3. 

The following example illustrates the application of the 
above theorem for different values of nr.  
Example 6.2.2 

For 𝑛𝑛 = 10 and 𝑛𝑛𝑟𝑟  = 1, using the equation (5.5), it is 
obtained that 𝛽𝛽(𝐵𝐵 , 1) = 15,  

 

Figure 20.  A distribution of B pieces with fixed R pieces 

7. Conclusions 
In this paper, we have explained some models of 

combinatorial games, and we did perform a simple 
comparison between them. Then we have introduced the 
games’ rules and how to add, multiply and compare them. 
We have also noted how to implement what we have 
discussed into a mathematical environment, and finally gave 
some examples of those processes over some chess games 
such as, “The Knight’s Tour'','' The Domination Problem '', 
and'' The Eight queens Problem''. 

8. Future Potential Topics 
We noticed that there are a number of mathematical 

operations such as, addition and multiplication. We find for 
every game “G” there is – G  where G − G = 0, which leads 
to a conclusion that can be discovered. Is there a group that 
can be defined as “Games” which consists of different games 
as elements, and does that group is an algebraic structure?. 

 

𝑛𝑛 − 𝑛𝑛𝑟𝑟  
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