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Abstract  It is well-kown that the (Aumann-Maschler) bargaining set of a transferable utility game (or simply a game) 
with less than five players coincides with the core of the game, provided that the core is nonempty. We show that this 
coincidence still holds for a superset of the core, the objection-free core which is the set of all imputations with no bargaining 
set type objection. Furthermore, for any game and for any coalition structure, the objection-free core contains the core, is a 
subset of the bargaining set and is a polyhedron when it is nonempty. 
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1. Introduction 
In the literature, there are many solution concepts to the 

problem of payoff allocation arising from a transferable 
utility cooperative game (or simply a game) when players 
are grouped according to a fixed coalit ion structure; 
especially core solutions (see[1]) and bargaining set 
solutions (see[2],[3] or[4]). Given  a coalit ion structure, the 
core plays a central ro le and generally is a subset of many 
other solution concepts. For instance, given a game and any 
coalition structure, it is well-known that the (standard) 
bargaining set ℳ1

𝑖𝑖  as defined in[2] is a superset of the core. 
Due to its characterization by a unique set of predefined 
linear inequalities, the core is surely the most tractable 
solution concept. It is then important to look for ideal 
situations where the core is equivalent to a given solution 
concept. 

It is shown in[5] that when the core of a game with less 
than five players is nonempty (the game is balanced), it 
coincides with the bargaining set ℳ1

𝑖𝑖 . Th is proves that the 
bargaining set of a  balanced game with less than five 
players is a polyhedron instead of a union of several 
possibly non disjoint or empty polyhedra (see[6] for a fu ll 
description of ℳ1

𝑖𝑖). Roughly, the multitude of polyhedra 
that make up the bargaining set of a balanced game with 
less than five players collapses in a unique polyhedron, the 
core. 

In this paper we prove that the same result holds when 
we rep lace the core by the objection-free core which is the 
set of all imputations with no bargaining set type objection.  
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Moreover, the objection-free core for any coalition structure 
is a superset of the core, is a unique polyhedron when it is 
nonempty, is a subset of the bargaining set ℳ1

𝑖𝑖  and for less 
than five player games, the objection-free core coincides 
with ℳ1

𝑖𝑖  whenever it is nonempty.  
The remainder of the paper is organized as follows : in  

the next section devoted to the model, core and bargaining 
set concepts are presented and the notion of objection-free 
core is introduced. In section 3, the relationship between the 
core and the objection-free core is studied as well as the 
relationship between the objection-free core and the 
bargaining set. Section 4 concludes the paper. 

2. The Model 
2.1. The Core and the Bargaining Set 𝓜𝓜𝟏𝟏

𝒊𝒊  

Consider a nonempty finite set N of n  players. Denote by 
𝜋𝜋𝑁𝑁  the set of all partit ions of N and by 2N  the set of all 
nonempty subsets of N. Hereafter, a  partit ion N is called  a 
coalition structure and elements of a given coalition 
structure are called blocs. In order to simplify notations, 
coalitions will sometimes be written without braces; for 
example the coalition {i,j} will be denoted by ij, N\{i,j} by 
N\ij, ... 

A transferable utility cooperative game is a pair (N,v) 
where N is the set of players and v is a map, called the 
coalitional function, from the power set of N into the set ℝ 
of real numbers such that 𝑣𝑣(∅) = 0. For any nonempty 
subset S of individuals, v(S) is the gain (or the cost if it  is 
negative) obtained by members of S when they are grouped 
in S. 

For a coalition structure 𝓑𝓑 = { 𝐵𝐵1,𝐵𝐵2 , . . . , 𝐵𝐵𝑚𝑚 } , two  
players i and j are partners if i and j belong to the same bloc 
of 𝓑𝓑 and a payoff allocation is any vector x ∈ ℝ N  such that 
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x(𝐵𝐵𝑡𝑡 ) = v(𝐵𝐵𝑡𝑡 ) for all t  ∈ {1,2,...,m}. Given a payoff allocation 
x and a coalition S, let x(S) = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ∈𝑆𝑆  with x(∅) = 0. Note 
that x(S) is the total payoff allocation o f the coalition S  over 
the payoff allocation x. The excess of a coalit ion S over x, is 
the real number 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆)  =  𝑣𝑣(𝑆𝑆) –  𝑥𝑥(𝑆𝑆) . The excess 
𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) measures the dissatisfaction of the coalition S over 
the payoff allocation x.  

For a game (N,v) and a coalit ion structure 𝓑𝓑 , a  
𝓑𝓑 -imputation is a payoff allocation x  ∈  ℝ N such that  
𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑖𝑖)  ≤ 0 for all i ∈ N. The set of all imputations for the 
coalition structure 𝓑𝓑 is denoted by 𝒳𝒳(𝓑𝓑,𝑣𝑣). Note that : 

𝒳𝒳(𝓑𝓑 , 𝑣𝑣) ≠ ∅ ⟺  𝑣𝑣(𝐵𝐵) ≥ � 𝑣𝑣(𝑖𝑖), ∀𝐵𝐵 ∈
𝑖𝑖 ∈𝐵𝐵

 𝓑𝓑 

Given a coalition structure 𝓑𝓑, the 𝓑𝓑  -core, denoted by 
𝒞𝒞(𝓑𝓑, 𝑣𝑣) , is the set of all 𝓑𝓑 -imputations x such that, 
𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤ 0 for all coalitions S ∈ 2N. A profile of balancing 
weights is any collection (𝛾𝛾𝑇𝑇 )𝑇𝑇 ∈2𝑁𝑁  of real numbers such that 

𝛾𝛾𝑇𝑇 ≥ 0, ∀T  ∈  2N and ∑ 𝛾𝛾𝑇𝑇 = 1, ∀𝑖𝑖 ∈ 𝑁𝑁𝑇𝑇 /𝑖𝑖 ∈𝑇𝑇 . 

A game (N,v) is 𝓑𝓑-balanced if fo r any profile  of balancing 
weights (𝛾𝛾𝑇𝑇 )𝑇𝑇 ∈2𝑁𝑁  : 

� 𝛾𝛾𝑇𝑇 𝑣𝑣(𝑇𝑇) ≤ � 𝑣𝑣(𝑇𝑇)
𝑇𝑇 ∈𝓑𝓑

𝑇𝑇∈2𝑁𝑁

. 

When individuals form the grand coalition - that is 
𝓑𝓑 = {𝑁𝑁}  - the nonemptiness of the {𝑁𝑁}-core (or simply the 
core) is stated in the following Bondareva-Shapley theorem 
([7] and[8]). 

Theorem 1 A necessary and sufficient condition that the 
core of a game (N,v) is not empty is that the game is 
{N}-balanced. 

The Bondareva-Shapley theorem is still valid for any 
coalition structure  𝓑𝓑 as shown in[5]: 𝒞𝒞(𝓑𝓑, 𝑣𝑣) is nonempty 
if and only if the game is 𝓑𝓑-balanced. This clearly shows 
that core imputations may not exist for some games. 
Bargaining sets are alternative solutions to overcome the 
possible emptiness of the core.  

Roughly speaking, bargain ing sets select imputations that 
are stable via a certain bargaining possibilities of the players. 
In the case of the Aumann-Maschler bargaining set, g iven a 
coalition structure  𝓑𝓑  and a couple (i,j) of partners, an 
objection of i against j over a 𝓑𝓑-imputation x is any couple 
(S,y) such that 

𝑖𝑖 ∈ 𝑆𝑆 ⊆ 𝑁𝑁 ∖ 𝑗𝑗, 𝑦𝑦 ∈ ℝN, 𝑦𝑦(𝑆𝑆) ≤ 𝑣𝑣(𝑆𝑆) and 𝑦𝑦𝑘𝑘 > 𝑥𝑥𝑘𝑘 ,∀𝑘𝑘 ∈
𝑆𝑆. 

Remark 1 As stated in lemma 2.1 in[6], g iven two players 
i and j, an imputation x and a coalit ion S, there exists an 
objection of i against j over x using the coalit ion S if and only 
if i and j are partners, 𝑖𝑖 ∈ 𝑆𝑆 ⊆ 𝑁𝑁 ∖ 𝑗𝑗 and 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) > 0. 

A counter-objection of j against the objection (S,y) of i 
against j over x is any couple (T,z) such that 𝑗𝑗 ∈ 𝑇𝑇 ⊆ 𝑁𝑁 ∖ 𝑖𝑖 
and 𝑧𝑧 ∈ ℝN satisfies 

𝑧𝑧(𝑇𝑇) ≤ 𝑣𝑣(𝑇𝑇) , 𝑧𝑧𝑘𝑘 > 𝑦𝑦𝑘𝑘 , ∀𝑘𝑘 ∈ 𝑆𝑆 ∩ 𝑇𝑇 and 𝑧𝑧𝑘𝑘 ≥ 𝑥𝑥𝑘𝑘 , ∀𝑘𝑘 ∈
𝑇𝑇\𝑆𝑆. 

The Aumann-Maschler bargaining set is the set ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣) 

of all stable 𝓑𝓑-imputations in the sense that a 𝓑𝓑-imputation 
x is stable if any objection over x has at least a 
counter-objection. The bargaining set is nonempty for almost 

all coalition  structures as stated in the following theorem 
(see[9]): 

Theorem 2 Given any game (N,v) and any coalition 
structure 𝓑𝓑 , the bargaining set ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣 ) is nonempty 
whenever the set of 𝓑𝓑-imputations is nonempty. 

Theorem 2 provides the main structural difference 
between the core and the bargaining set: while only the core 
of a balanced game is nonempty, the bargaining set given 
any coalition structure is always nonempty whenever the set 
of imputations is nonempty. 

2.2. Objection-Free Core 

Although the nonemptiness of the bargaining set is proved, 
the remain ing difficu lty is a  simple determination or 
description of all imputations that belong to the bargaining 
set. According to the definition, a basic way to obtain a 
subset of the bargaining set consists in considering only 
imputations with no objection. 

Hereafter, given a game (N,v) and a coalition structure 𝓑𝓑, 
the set of all 𝓑𝓑-imputations with no objection denoted by 
𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) is called the objection-free 𝓑𝓑-core. Clearly the 
objection-free 𝓑𝓑 -core is contained in  ℳ1

𝑖𝑖(𝓑𝓑,𝑣𝑣 ) for every 
coalition structure 𝓑𝓑. Moreover at core imputations there is 
no objection. As a consequence the 𝓑𝓑 -core 𝒞𝒞(𝓑𝓑, 𝑣𝑣)  is 
contained in the objection-free 𝓑𝓑 -core 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣)  for 
every coalition structure 𝓑𝓑. It is then straightforward that: 

𝒞𝒞(𝓑𝓑, 𝑣𝑣) ⊆ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ⊆ ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣). 

By definit ion of an  objection, a  coalition S involved in  an 
objection separates at least a couple of partners. That is there 
exists two partners i and j such that 𝑖𝑖 ∈ 𝑆𝑆  and 𝑗𝑗 ∉ 𝑆𝑆. We 
then split 2N  into two subsets: (i) 𝓑𝓑*  collects all blocs and 
all coalit ions that separate at least a couple of partners; and 
(ii) 𝓑𝓑0 consists of all coalit ions other than blocs that do not 
separate partners. More formally, a coalition 𝑇𝑇 ∈  𝓑𝓑0 if and 
only if T is not a bloc and for any couple (i,j) of partners with 
respect to 𝓑𝓑, 𝑖𝑖 ∈ 𝑇𝑇 if and only if 𝑗𝑗 ∈ 𝑇𝑇. It then follows that 
𝓑𝓑* = 2N ∖ 𝓑𝓑0 with : 

𝓑𝓑0 = �� 𝐵𝐵𝑡𝑡 
𝑡𝑡∈𝐼𝐼

: 𝐼𝐼 ⊆ {1,2, … , 𝑚𝑚} 𝑎𝑎𝑎𝑎𝑎𝑎 |𝐼𝐼| ≥ 2� 

With the notation above, it is straightforward from remark 
1 that: 

Proposition 1 For any game (N,v) and for any coalit ion 
structure  𝓑𝓑,  

𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) = {𝑥𝑥 ∈ 𝒳𝒳(𝓑𝓑, 𝑣𝑣) ∶ ∀𝑆𝑆 ∈ 𝓑𝓑∗, 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤ 0 }. 
Clearly, the object ion-free core is defined by a unique set 

of linear inequations (and equations); therefore is a 
polyhedron when it is nonempty. 

3. Results 
3.1. The Core and the Objection-Free Core 

As mentioned above, the core is a  subset of the 
objection-free core. The following example shows that the 
core and the objection-free core may be distinct sets of 
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imputations. 
Example 1 Consider the following four-person game (N,v) 

defined by v(i) = 0 for all i  ∈ {1,2,3,4} , v(S) = 2 if S ∈
{14,23,24,34} , v(S) = 3 if S ∈ {12,123,124,134,234}, v(13) 
= 6 and v(1234) = 7. Let 𝓑𝓑 = {13,2,4} be the coalit ion 
structure. One can easily check that 𝓑𝓑 * = 2N \ 
{24,123,134,1234} and that 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣)  = {( 3,0,3,0)}. 

Moreover any 𝓑𝓑 -imputation satisfies x1 + x3 = 6 and x2 = 
x4 = 0. Thus x(1234) = 6 < v(1234) = 7 and then x ∉ 𝒞𝒞(𝓑𝓑, 𝑣𝑣). 
Clearly the object ion-free core with respect to 𝓑𝓑  is 
nonempty while the core is empty. 

Proposition 2 For any game (N,v) and for any coalit ion 
structure 𝓑𝓑, if 𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅ then 𝒞𝒞(𝓑𝓑, 𝑣𝑣) = 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑,𝑣𝑣). 

Proof. Suppose that 𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅  and consider 𝑎𝑎 ∈
𝒞𝒞(𝓑𝓑, 𝑣𝑣). To prove that 𝒞𝒞(𝓑𝓑 , 𝑣𝑣) = 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣), it is sufficient 
to prove that 𝒞𝒞(𝓑𝓑 ,𝑣𝑣) ⊇ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) . Consider any  
imputation 𝑥𝑥 ∈ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) and 𝑆𝑆 ∈  2N. If 𝑆𝑆 ∈  𝓑𝓑 * then 
𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤ 0. Now if 𝑆𝑆 ∈  𝓑𝓑 0, then 𝑆𝑆 = ⋃ B𝑡𝑡𝑡𝑡 ∈𝐼𝐼

 for some 
 𝐼𝐼 ⊆ {1,2, . . . , 𝑚𝑚} with |𝐼𝐼| ≥  2. Then  

𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) = 𝑣𝑣(⋃ 𝐵𝐵𝑡𝑡𝑡𝑡 ∈𝐼𝐼 ) −  𝑥𝑥(⋃ 𝐵𝐵𝑡𝑡𝑡𝑡 ∈𝐼𝐼 )  
         = 𝑣𝑣(⋃ 𝐵𝐵𝑡𝑡𝑡𝑡 ∈𝐼𝐼 ) −  ∑ 𝑥𝑥(𝐵𝐵𝑡𝑡 )𝑡𝑡 ∈𝐼𝐼  
         = 𝑣𝑣(⋃ 𝐵𝐵𝑡𝑡𝑡𝑡 ∈𝐼𝐼 ) −  ∑ 𝑎𝑎(𝐵𝐵𝑡𝑡 )𝑡𝑡 ∈𝐼𝐼 , 𝑎𝑎 ∈ 𝒞𝒞(𝓑𝓑, 𝑣𝑣) 
         = 𝑒𝑒𝑎𝑎 (𝑣𝑣 , 𝑆𝑆) ≤ 0, 𝑎𝑎 ∈ 𝒞𝒞(𝓑𝓑, 𝑣𝑣) 

In both cases, 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤  0. Thus 𝑥𝑥 ∈ 𝒞𝒞(𝓑𝓑,𝑣𝑣)  and 
𝒞𝒞(𝓑𝓑 , 𝑣𝑣) ⊇ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣). 

Proposition 3 Consider a game (N,v) and a coalit ion 
structure 𝓑𝓑 . If 𝒞𝒞(𝓑𝓑, 𝑣𝑣) = ∅  and 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅ , then 
𝑣𝑣(⋃ 𝐵𝐵𝑡𝑡 )𝑡𝑡 ∈𝐼𝐼 > ∑ 𝑣𝑣(𝐵𝐵𝑡𝑡𝑡𝑡 ∈𝐼𝐼 )  for some 𝐼𝐼 ⊆ {1,2, . . . , 𝑚𝑚} with 
|𝐼𝐼| ≥ 2. 

Proof. Suppose that 𝒞𝒞(𝓑𝓑 , 𝑣𝑣) = ∅ and 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅. 
Then there exists 𝑥𝑥 ∈ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) such that 𝑥𝑥 ∉ 𝒞𝒞(𝓑𝓑, 𝑣𝑣) . 
Since 𝑥𝑥 ∉ 𝒞𝒞(𝓑𝓑, 𝑣𝑣), there exists 𝑆𝑆 ∈ 2N such that 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) >
0 . By proposition 1, it fo llows that 𝑆𝑆 ∈ 𝓑𝓑 0. Therefore 
𝑆𝑆 = ⋃ B𝑡𝑡𝑡𝑡∈𝐼𝐼

 for some  𝐼𝐼 ⊆ {1,2, . . . , 𝑚𝑚} with |𝐼𝐼| ≥  2. Note 
that x is a 𝓑𝓑-imputation. Thus 

𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) = 𝑣𝑣(⋃ 𝐵𝐵𝑡𝑡 )𝑡𝑡 ∈𝐼𝐼 − ∑ 𝑣𝑣(𝐵𝐵𝑡𝑡𝑡𝑡∈𝐼𝐼 ) > 0 . 
Proposition 3 shows that the core and the objection-free 

core are distinct only for non efficient coalition structures for 
which some blocs may gain  more when their members form 
a unique bloc. 

Given a game (N,v) and a coalition structure 𝓑𝓑, define a 
new game (N,𝑣𝑣𝓑𝓑) as follows: 

𝑣𝑣𝓑𝓑 (𝑆𝑆) = 𝑣𝑣(𝑆𝑆) , ∀𝑆𝑆 ∈  𝓑𝓑∗and 𝑣𝑣𝓑𝓑 (𝑆𝑆) =
∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝑆𝑆 , ∀S ∈ 𝓑𝓑 0. 

Remark 2 For any game (N,v) and for any coalit ion 
structure 𝓑𝓑 , 𝒳𝒳(𝓑𝓑, 𝑣𝑣) = 𝒳𝒳(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). In fact by definition, 
𝑣𝑣𝓑𝓑 (𝑇𝑇) = 𝑣𝑣(𝑇𝑇) , fo r all 𝑇𝑇  ∈  𝓑𝓑  and 𝑣𝑣𝓑𝓑 (𝑖𝑖) = 𝑣𝑣(𝑖𝑖)  for 
all  𝑖𝑖 ∈  𝑁𝑁 . The equality between the two sets then 
immediately follows from the definit ion of a 𝓑𝓑-imputation 
in both games. 

Proposition 4 For any game (N,v) and for any coalit ion 
structure 𝓑𝓑, 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) = 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). 

Proof. Consider 𝑥𝑥 ∈ 𝒳𝒳(𝓑𝓑,𝑣𝑣)  and suppose that 𝑥𝑥 ∈
𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣). Then by remark 2, 𝑥𝑥 ∈ 𝒳𝒳(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). First assume 
that 𝑆𝑆 ∈  𝓑𝓑0 . Then 𝑆𝑆 = ⋃ B𝑡𝑡𝑡𝑡 ∈𝐼𝐼

 for some  𝐼𝐼 ⊆ {1,2, . . . , 𝑚𝑚}  
with |𝐼𝐼| ≥ 2. Any two distinct blocs are disjoint and x is a 

𝓑𝓑 -imputation. Thus 𝑥𝑥(𝑆𝑆) = ∑ 𝑣𝑣(𝐵𝐵𝑡𝑡 )𝑡𝑡 ∈𝐼𝐼  and 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) = 0 . 
Now assume that 𝑆𝑆 ∈  𝓑𝓑*. By definit ion of 𝑣𝑣𝓑𝓑, 𝑒𝑒𝑥𝑥 (𝑣𝑣𝓑𝓑 ,𝑆𝑆) =
𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆). Since 𝑥𝑥 ∈ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣), it fo llows from proposition 
1 that 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤ 0. In both cases, 𝑒𝑒𝑥𝑥 (𝑣𝑣𝓑𝓑 ,𝑆𝑆) ≤ 0 . Hence 
𝑥𝑥 ∈ 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) and 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ⊆ 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). 

Now assume that 𝑥𝑥 ∈ 𝒞𝒞(𝓑𝓑,𝑣𝑣𝓑𝓑 ) . For any 𝑆𝑆 ∈  𝓑𝓑 *, 
𝑒𝑒𝑥𝑥 (𝑣𝑣𝓑𝓑 ,𝑆𝑆) = 𝑒𝑒𝑥𝑥 (𝑣𝑣 , 𝑆𝑆) ≤ 0. Since 𝑥𝑥 ∈ 𝒳𝒳(𝓑𝓑 , 𝑣𝑣𝓑𝓑 ) = 𝒳𝒳(𝓑𝓑, 𝑣𝑣), 
then 𝑥𝑥 ∈ 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑,𝑣𝑣) and 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑,𝑣𝑣) ⊇ 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). 

Note that payoffs for coalit ions in 𝓑𝓑0 are inessential for 
the objection-free core 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣). This mainly justifies the 
result in  proposition 4 since the game (N, 𝑣𝑣𝓑𝓑 ) does not 
depend on 𝑣𝑣(𝐵𝐵) for 𝐵𝐵 ∈  𝓑𝓑 0. 

To generalize the notion of balancedness, consider any 
nonempty subset E of 2N and define a profile  of balancing 
weights over E as any collection (𝛾𝛾𝑇𝑇 )𝑇𝑇∈𝐸𝐸  of real numbers 
such that 𝛾𝛾𝑇𝑇 ≥ 0, for all T  ∈  𝐸𝐸 and ∑ 𝛾𝛾𝑇𝑇 = 1, ∀𝑖𝑖 ∈𝑇𝑇∈𝐸𝐸 /𝑖𝑖 ∈𝑇𝑇
𝑁𝑁. In particular, any profile of balancing weights over 2N is 
simply a (standard) profile o f balanced weights presented in 
section 2. Moreover, a  game (N,v) is almost 𝓑𝓑-balanced if 
𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) is nonempty. 

Proposition 5 For any game (N,v) and for any coalit ion 
structure 𝓑𝓑, the game is almost 𝓑𝓑-balanced if and only if for 
any profile o f balancing weights (𝛾𝛾𝑇𝑇 )𝑇𝑇∈𝓑𝓑∗  over 𝓑𝓑∗, 

� 𝛾𝛾𝑇𝑇
𝑇𝑇 ∈𝓑𝓑∗

𝑣𝑣(𝑇𝑇) ≤ � 𝑣𝑣(𝐵𝐵)
𝐵𝐵 ∈𝓑𝓑

. 

Proof. Suppose that the game (N,v) is almost 𝓑𝓑-balanced. 
Let (𝛾𝛾𝑆𝑆 )𝑆𝑆 ∈𝓑𝓑∗ be a profile of balanced weights over 𝓑𝓑∗. Pose 
𝛾𝛾𝑆𝑆 = 0  for any 𝑆𝑆 ∈ 𝓑𝓑 0. Clearly (𝛾𝛾𝑆𝑆 )𝑆𝑆 ∈2𝑁𝑁  is a  profile  of 
balanced weights. Since the game is almost 𝓑𝓑-balanced, by 
proposition 4 the game (N,𝑣𝑣𝓑𝓑)) is 𝓑𝓑-balanced. Therefore, 
∑ 𝛾𝛾𝑆𝑆 𝑣𝑣𝓑𝓑 (𝑆𝑆) ≤ ∑ 𝑣𝑣𝓑𝓑 (𝑆𝑆)𝑆𝑆∈𝓑𝓑𝑆𝑆 ∈2𝑁𝑁 . Since 𝑣𝑣𝓑𝓑 (𝑆𝑆) = 𝑣𝑣(𝑆𝑆) for all 
𝑆𝑆 ∈ 𝓑𝓑∗ ⊇ 𝓑𝓑  and 𝛾𝛾𝑆𝑆 = 0  for any 𝑆𝑆 ∈ 𝓑𝓑0,  then  
∑ 𝛾𝛾𝑆𝑆 𝑣𝑣(𝑆𝑆) ≤ ∑ 𝑣𝑣(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑𝑆𝑆 ∈𝓑𝓑∗ . 

Conversely suppose that for any profile (𝛾𝛾𝑆𝑆 )𝑆𝑆∈𝓑𝓑∗  of 
balanced weights over 𝓑𝓑∗ , ∑ 𝛾𝛾𝑆𝑆 𝑣𝑣(𝑆𝑆) ≤ ∑ 𝑣𝑣(𝑆𝑆)𝑆𝑆∈𝓑𝓑𝑆𝑆 ∈𝓑𝓑∗ . If 
𝓑𝓑 = {𝑁𝑁}  then 𝓑𝓑∗ = 2N, 𝑣𝑣 = 𝑣𝑣𝓑𝓑  and the game (N,v) is  
balanced. Now suppose that the coalition structure contains 
at least two blocs. Let (𝛿𝛿𝑆𝑆 )𝑆𝑆∈2𝑁𝑁  be a profile of balanced 
weights. Observe that 

∑ 𝛿𝛿𝑆𝑆 𝑣𝑣𝓑𝓑 (𝑆𝑆) = ∑ 𝛿𝛿𝑆𝑆 𝑣𝑣𝓑𝓑 (𝑆𝑆)𝑆𝑆∈𝓑𝓑∗𝑆𝑆∈2𝑁𝑁 + ∑ 𝛿𝛿𝑆𝑆 𝑣𝑣𝓑𝓑 (𝑆𝑆)𝑆𝑆∈𝓑𝓑0   
        = ∑ 𝛿𝛿𝑆𝑆 𝒗𝒗(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑∗ + ∑ 𝛿𝛿𝑆𝑆 ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝑆𝑆𝑆𝑆 ∈𝓑𝓑0   

         = ∑ 𝛿𝛿𝑆𝑆 𝒗𝒗(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑∗ + ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝑁𝑁 ∑ 𝛿𝛿𝑆𝑆𝑆𝑆 ∈𝓑𝓑0/𝑖𝑖∈𝑆𝑆  
         = ∑ 𝛿𝛿′𝑆𝑆 𝑣𝑣(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑∗  

where for each 𝑆𝑆 ∈ 𝓑𝓑∗,  

𝛿𝛿′𝑆𝑆 = �
𝛿𝛿{𝑖𝑖} + � 𝛿𝛿𝑆𝑆

𝑆𝑆 ∈𝓑𝓑0/𝑖𝑖∈𝑆𝑆
 if 𝑆𝑆 = {𝑖𝑖}

𝛿𝛿𝑆𝑆 otherwise
�  

For each 𝑆𝑆 ∈ 𝓑𝓑∗, 𝛿𝛿′𝑆𝑆 ≥ 0 and for each i ∈ N, 
∑ 𝛿𝛿′𝑆𝑆 = 𝛿𝛿′{𝑖𝑖} + ∑ 𝛿𝛿′𝑆𝑆𝑆𝑆 ∈𝓑𝓑/𝑖𝑖 ∈𝑆𝑆≠{𝑖𝑖}𝑆𝑆 ∈𝓑𝓑∗/𝑖𝑖∈𝑆𝑆   
             = 𝛿𝛿{𝑖𝑖} + ∑ 𝛿𝛿𝑆𝑆𝑆𝑆 ∈𝓑𝓑0/𝑖𝑖 ∈𝑆𝑆 + ∑ 𝛿𝛿𝑆𝑆𝑆𝑆 ∈𝓑𝓑∗/𝑖𝑖∈𝑆𝑆≠{𝑖𝑖}  
             = ∑ 𝛿𝛿𝑆𝑆𝑆𝑆 ∈2𝑁𝑁 = 1 

This proves that (𝛿𝛿′𝑆𝑆 )𝑆𝑆∈2𝑁𝑁  is a  profile of balanced  
weights over 𝓑𝓑∗ . Therefore, ∑ 𝛿𝛿′𝑆𝑆 𝑣𝑣(𝑆𝑆) ≤ ∑ 𝑣𝑣(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑𝑆𝑆∈𝓑𝓑∗  
by assumption. But ∑ 𝛿𝛿′

𝑆𝑆 𝑣𝑣(𝑆𝑆) = ∑ 𝛿𝛿𝑆𝑆 𝑣𝑣𝓑𝓑(𝑆𝑆)𝑆𝑆 ∈2𝑁𝑁𝑆𝑆∈𝓑𝓑∗ . Thus 
∑ 𝛿𝛿𝑆𝑆 𝑣𝑣𝓑𝓑 (𝑆𝑆)𝑆𝑆 ∈2𝑁𝑁 ≤ ∑ 𝑣𝑣(𝑆𝑆)𝑆𝑆 ∈𝓑𝓑 = ∑ 𝑣𝑣𝓑𝓑 (𝑆𝑆)𝑆𝑆 ∈𝓑𝓑 . Thus the game 
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(N,𝑣𝑣𝓑𝓑) is 𝓑𝓑-balanced. By  proposition 4, the game is almost 
𝓑𝓑-balanced. 

3.2. The Bargaining Set and the Objection-Free Core 

The game (N,𝑣𝑣𝓑𝓑 ) has the same core with the game (N,v). 
The two games also share the same bargaining set as shown 
below. 

Proposition 6 For any game (N,v) and for any coalit ion 
structure 𝓑𝓑, ℳ1

𝑖𝑖(𝓑𝓑 , 𝑣𝑣) = ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). 

Proof. Suppose that 𝑥𝑥 ∈ ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣). Consider any pair {i,j} 

of partners and any objection (S,y) in the game (N,𝑣𝑣𝓑𝓑) of i 
against j at x. By remark 1, 𝑒𝑒𝑥𝑥 (𝑣𝑣𝓑𝓑 ,𝑆𝑆) > 0. Note that i and j 
are partners and i ∈  𝑆𝑆 ⊆ 𝑁𝑁 ∖ j. Therefore 𝑆𝑆 ∈  𝓑𝓑* and then 
𝑣𝑣(𝑆𝑆) = 𝑣𝑣𝓑𝓑 (𝑆𝑆). The objection (S,y) of i in the game (N,𝑣𝑣𝓑𝓑) is 
also an objection in the game (N,v) of i against j at x. Since 
𝑥𝑥 ∈ ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣), there exists a counterobjection (T,z) in the 
game (N,v) of j against (S,y). Since j  ∈  𝑇𝑇 ⊆ 𝑁𝑁 ∖ 𝑖𝑖 , then 
𝑇𝑇 ∈ 𝓑𝓑 * and 𝑣𝑣(𝑇𝑇) = 𝑣𝑣𝓑𝓑 (𝑇𝑇) . Therefore (T,z) is also a 
counterobjection of j against the objection (S,y) of i in the 
game (N,𝑣𝑣𝓑𝓑). This proves that 𝑥𝑥 ∈ ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣𝓑𝓑 ). 
In the same way, we prove that any imputation 𝑥𝑥  in 

ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) belongs to ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣). This is clearly due to the 
fact that both games have the same set of objections and 
counterobjections on 𝑥𝑥 . 

It is known from[5] that for games with less than five 
players, when the core for any coalit ion structure is 
nonempty, it coincides with the bargaining set.  

Theorem 3 For any game (N,v) with less than five players 
and for any coalit ion structure 𝓑𝓑 , ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣) = 𝒞𝒞(𝓑𝓑, 𝑣𝑣) 
whenever 𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅. 

The next theorem states that this result can be extended to 
the objection-free core. 

Theorem 4 For any game (N,v) with less than five players 
and for any coalition structure 𝓑𝓑, ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣) = 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) 
whenever 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅. 

Proof. Suppose that 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅ for a game with at 
most four players. Then by proposition 4, 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) =
𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠  ∅. Since the game has at most four players, 
𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) = ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) . By proposition 6, 𝒞𝒞(𝓑𝓑, 𝑣𝑣𝓑𝓑 ) =
ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣). That is 𝒪𝒪ℱ𝒞𝒞(𝓑𝓑, 𝑣𝑣) = ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣) . 

As mentioned above, the objection-free core is a subset of 
the bargaining set. It may  be a proper subset of the 
bargaining set as it is the case with the fo llowing example 
brought to our attention by Solymosi. 

Example 2 Let N = {1,2,3,4,5} and consider the game 
(N,v) defined as follows: v(S) = 5 if 
𝑆𝑆 ∈ {134,135,145,234,235,245}, v(S) = 6 if | S | = 4, v(S) = 
10 if S = N and  v(S) = 0 otherwise. For the grand coalit ion, 
that is when 𝓑𝓑 = {N}, one can check that x = (2,2,2,2,2) 
belongs to the core (which then coincides with the 
objection-free core) and that (5,5,0,0,0) belongs to the 
bargaining set; but is not a core imputation.  

3.3. The Core and the Bargaining Set 
Let (N,v) be a game and 𝓑𝓑 be a coalit ion structure. Given 

a collection 𝜆𝜆 = (𝜆𝜆 𝑇𝑇 )𝑇𝑇∈𝓑𝓑 of real numbers, define the game 
(N,𝑣𝑣𝓑𝓑,𝜆𝜆 ) as follows: 

𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆) = 𝑣𝑣(𝑆𝑆) + 𝜆𝜆 𝑆𝑆 if 𝑆𝑆 ∈ 𝓑𝓑 and 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆) = 𝑣𝑣(𝑆𝑆) if 𝑆𝑆 ∉
𝓑𝓑. 

Note that the game (N,𝑣𝑣𝓑𝓑,𝜆𝜆 ) is obtained from (N,𝑣𝑣) by 
increasing (or decreasing) only the share of some blocs. 

We prove that when each 𝜆𝜆 𝑆𝑆  for 𝑆𝑆 ∈ 𝓑𝓑  is sufficiently  
large, the core and the bargaining set for the game (N,𝑣𝑣𝓑𝓑,𝜆𝜆 ) 
coincide. This shows that the coincidence of the core and the 
bargaining set of a  game depends on the adequacy of goods 
available in blocs to yield any bargaining set imputation 
without any positive excess. 

Proposition 7 Consider a game (N,v), a  coalition structure 
𝓑𝓑 and a collection 𝜆𝜆 = (𝜆𝜆 𝑇𝑇 )𝑇𝑇∈𝓑𝓑 of real numbers. Assume 
that 𝑣𝑣(𝑇𝑇) ≥ ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝑇𝑇  for any 𝑇𝑇 ∈ 2N. 

If for each 𝐵𝐵 ∈ 𝓑𝓑, for each 𝑇𝑇 ∈ 2N with 𝑇𝑇 ∩ 𝐵𝐵 ≠ ∅ and 
for any 𝑖𝑖 ∈ 𝑇𝑇, 

𝜆𝜆 𝐵𝐵 ≥ |𝐵𝐵|�𝑣𝑣(𝑇𝑇) − ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝑇𝑇\{𝑖𝑖} � − 𝑣𝑣(𝐵𝐵 )      (1) 

then 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � = ℳ1
𝑖𝑖�𝓑𝓑,𝑣𝑣𝓑𝓑,𝜆𝜆 �. 

Proof. Assume that 𝜆𝜆 satisfies (1). For 𝑇𝑇 = 𝐵𝐵 ∈ 𝓑𝓑 in (1), 
𝜆𝜆 𝐵𝐵 ≥ |𝐵𝐵|�𝑣𝑣(𝐵𝐵) − ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝐵𝐵\{𝑖𝑖 } � − 𝑣𝑣(𝐵𝐵)  for each 𝑖𝑖 ∈ 𝐵𝐵 . 
Writing this inequality for each 𝑖𝑖 ∈ 𝐵𝐵  and summing 
together right-hand terms, we deduce that 

|𝐵𝐵|𝜆𝜆 𝐵𝐵 ≥ ∑ �|𝐵𝐵|�𝑣𝑣(𝐵𝐵) − ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝐵𝐵\{𝑖𝑖} � − 𝑣𝑣(𝐵𝐵)�𝑖𝑖 ∈𝐵𝐵   
 = |𝐵𝐵|�|𝐵𝐵|𝑣𝑣(𝐵𝐵) − ∑ ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝐵𝐵\{𝑖𝑖}𝑖𝑖 ∈𝐵𝐵 � − |𝐵𝐵|𝑣𝑣(𝐵𝐵) 
 = |𝐵𝐵|(|𝐵𝐵| − 1)𝑣𝑣(𝐵𝐵) − (|𝐵𝐵| − 1) ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝐵𝐵  

By d ividing both terms of the latter inequality by |𝐵𝐵|, we 
deduce that 𝜆𝜆 𝐵𝐵 ≥ (|𝐵𝐵| − 1)(𝑣𝑣(𝐵𝐵) − ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝐵𝐵 ) . Since 
𝑣𝑣(𝐵𝐵) − ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖 ∈𝐵𝐵 ≥ 0  by assumption, 𝜆𝜆 𝐵𝐵 ≥ 0  for each 
𝐵𝐵 ∈ 𝓑𝓑 and therefore 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆) ≥ 𝑣𝑣(𝑆𝑆) . 

Consider any imputation 𝑥𝑥 ∈ ℳ1
𝑖𝑖�𝓑𝓑,𝑣𝑣𝓑𝓑,𝜆𝜆 � . Suppose that 

𝑥𝑥(𝑆𝑆) < 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆) for some 𝑆𝑆 ∈ 2N . Note that 𝑆𝑆 ∉ 𝓑𝓑 since x 
is a 𝓑𝓑-imputation and 𝑥𝑥(𝑆𝑆) < 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆). Consider any player 
𝑖𝑖 ∈ 𝑆𝑆 . There exists 𝐵𝐵 ∈ 𝓑𝓑 such that 𝑖𝑖 ∈ 𝐵𝐵 . Denote by j a 
player in 𝐵𝐵 such that 𝑥𝑥𝑗𝑗 = max𝑡𝑡 ∈𝐵𝐵𝑥𝑥𝑡𝑡. Then for all 𝑡𝑡 ∈ 𝐵𝐵, 
𝑥𝑥𝑗𝑗 ≥ 𝑥𝑥𝑡𝑡 . Thus |𝐵𝐵|𝑥𝑥𝑗𝑗 ≥ ∑ 𝑥𝑥𝑡𝑡𝑡𝑡 ∈𝐵𝐵 = 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝐵𝐵) = 𝑣𝑣(𝐵𝐵 ) + 𝜆𝜆 𝐵𝐵 . 
Hence  𝑥𝑥𝑗𝑗 ≥ 𝑣𝑣 (𝐵𝐵)

|𝐵𝐵|
+ 𝜆𝜆𝐵𝐵  

|𝐵𝐵| . 

Suppose that 𝑗𝑗 ∈ 𝑆𝑆.  

Then 𝑥𝑥(𝑆𝑆) = 𝑥𝑥𝑗𝑗 + 𝑥𝑥(𝑆𝑆\𝑗𝑗) ≥ 𝑣𝑣 (𝐵𝐵)
|𝐵𝐵|

+ 𝜆𝜆𝐵𝐵  
|𝐵𝐵| + 𝑥𝑥(𝑆𝑆\𝑗𝑗). Since x  

is an imputation, for each 𝑡𝑡 ∈ 𝑆𝑆\𝑖𝑖 , 𝑥𝑥𝑡𝑡 ≥ 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑡𝑡) ≥ 𝑣𝑣(𝑡𝑡) . 
Then 𝑥𝑥(𝑆𝑆) ≥ 𝑣𝑣 (𝐵𝐵)

|𝐵𝐵|
+ 𝜆𝜆𝐵𝐵  

|𝐵𝐵| + ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝑆𝑆\{𝑖𝑖 } . By assumption on 𝜆𝜆, 
𝜆𝜆𝐵𝐵  
|𝐵𝐵| ≥ 𝑣𝑣(𝑆𝑆) − ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡 ∈𝑆𝑆\{𝑖𝑖 } − 𝑣𝑣(𝐵𝐵 )

|𝐵𝐵|
. Therefore  𝑥𝑥(𝑆𝑆) ≥ 𝑣𝑣(𝑆𝑆). 

A contradiction arises. 
Therefore 𝑗𝑗 ∉ 𝑆𝑆 and (S,y) is an objection of i against j 

over x where 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝑣𝑣 (𝑆𝑆)−𝑥𝑥𝑡𝑡
|𝐵𝐵| . But 𝑥𝑥 ∈ ℳ1

𝑖𝑖�𝓑𝓑,𝑣𝑣𝓑𝓑,𝜆𝜆 � . Then 
there exists a counter-objection (T,z) against the objection 
(S,y) of i  against j over x. By definit ion of a counter-objection, 
𝑗𝑗 ∈ 𝑇𝑇 , 𝑧𝑧(𝑇𝑇) ≤ 𝑣𝑣(𝑇𝑇)  and 𝑧𝑧𝑡𝑡 ≥ 𝑥𝑥𝑡𝑡  for all 𝑡𝑡 ∈ 𝑇𝑇 . Then 
𝑧𝑧(𝑇𝑇) ≥ 𝑥𝑥(𝑇𝑇) . Note that as 𝑗𝑗 ∉ 𝑆𝑆 , by defin ition of j, 
𝑥𝑥𝑗𝑗 > 𝑣𝑣 (𝐵𝐵)

|𝐵𝐵|
+ 𝜆𝜆𝐵𝐵  

|𝐵𝐵| . As shown for 𝑆𝑆, one can easily check that 

𝑥𝑥(𝑇𝑇) > 𝑣𝑣(𝑇𝑇) as 𝑗𝑗 ∈ 𝑇𝑇 . Then 𝑧𝑧(𝑇𝑇) ≥ 𝑥𝑥(𝑇𝑇) > 𝑣𝑣(𝑇𝑇)  and a 
contradiction arises. Therefore there exists no 
counter-objection to (S,y). 
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We have shown that if 𝑥𝑥(𝑆𝑆) < 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆), then there exists a 
justified objection of a player against a patner over x. This is 
clearly a contradiction since 𝑥𝑥 ∈ ℳ1

𝑖𝑖�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � . In 
conclusion, 𝑥𝑥(𝑆𝑆) ≥ 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑆𝑆)  for any 𝑆𝑆 ∈ 2𝑁𝑁 . Therefore 
𝑥𝑥 ∈ 𝒞𝒞�𝓑𝓑,𝑣𝑣𝓑𝓑,𝜆𝜆 �. Hence ℳ1

𝑖𝑖�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � ⊆ 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � and then 
ℳ1

𝑖𝑖�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � = 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 �.  
Proposition 8  Consider a game (N,v) with at most four 

players and a coalition structure 𝓑𝓑 such that 𝒳𝒳(𝓑𝓑 , 𝑣𝑣) ≠ ∅ . 
If 𝒞𝒞(𝓑𝓑, 𝑣𝑣) = ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣)  then 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � = ℳ1
𝑖𝑖�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � 

for all co llect ion 𝜆𝜆 = (𝜆𝜆 𝑇𝑇 )𝑇𝑇∈𝓑𝓑  of real numbers such that 
𝜆𝜆 𝑇𝑇 ≥ 0, 𝑇𝑇 ∈ 𝓑𝓑. 

Proof. Suppose that (N,v) is a game with at most four 
players and let 𝓑𝓑  be a coalit ion structure such that 
𝒳𝒳(𝓑𝓑 , 𝑣𝑣) ≠ ∅ .  Assume that 𝒞𝒞(𝓑𝓑, 𝑣𝑣) = ℳ1

𝑖𝑖(𝓑𝓑, 𝑣𝑣) . Now 
consider any collection λ = (λ𝑇𝑇 )𝑇𝑇 ∈𝓑𝓑 of real numbers such 
that λ𝑇𝑇 ≥ 0, 𝑇𝑇 ∈ 𝓑𝓑.  

Since 𝒳𝒳(𝓑𝓑, 𝑣𝑣) ≠ ∅, then ℳ1
𝑖𝑖(𝓑𝓑 ,𝑣𝑣) ≠ ∅ by theorem 2. 

But 𝒞𝒞(𝓑𝓑, 𝑣𝑣) = ℳ1
𝑖𝑖(𝓑𝓑, 𝑣𝑣) . Hence 𝒞𝒞(𝓑𝓑, 𝑣𝑣) ≠ ∅ . Consider 

any imputation 𝑥𝑥 ∈ 𝒞𝒞(𝓑𝓑 , 𝑣𝑣) and define 𝑥𝑥′ as follows: 

𝑥𝑥′
𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝛼𝛼𝑖𝑖  where 𝛼𝛼𝑖𝑖 = λ𝑇𝑇

|𝑇𝑇|   whenever 𝑖𝑖 ∈ 𝑇𝑇 ∈ 𝓑𝓑. 

Note that 𝑥𝑥′ (𝑇𝑇) = 𝑥𝑥(𝑇𝑇) + λ𝑇𝑇 = 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑇𝑇) for each 𝑇𝑇 ∈ 𝓑𝓑. 
Thus 𝑥𝑥′ ∈ 𝒳𝒳�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 �. Moreover, for any coalition S that is 
not a bloc, 𝑥𝑥′ (𝑆𝑆) = 𝑥𝑥(𝑆𝑆) +  α(𝑆𝑆). Since 𝑥𝑥 ∈ 𝒞𝒞(𝓑𝓑, 𝑣𝑣)  and 
α(𝑆𝑆) = ∑ α𝑖𝑖 ≥ 0𝑖𝑖 ∈𝑆𝑆 , then 𝑥𝑥′ (𝑆𝑆) ≥ 𝑥𝑥(𝑆𝑆) ≥ 𝑣𝑣(𝑆𝑆) = 𝑣𝑣𝓑𝓑,𝜆𝜆 (𝑇𝑇). 
This proves that 𝑥𝑥′ ∈ 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 �. Hence 𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � ≠ ∅. 

Recall that there are at most four p layers. Since 
𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � ≠ ∅ , we conclude by theorem 3 that 
𝒞𝒞�𝓑𝓑, 𝑣𝑣𝓑𝓑,𝜆𝜆 � = ℳ1

𝑖𝑖�𝓑𝓑,𝑣𝑣𝓑𝓑,𝜆𝜆 �. 

4. Conclusions 
Theorem 4 is an improvement of an earlier result due to[5]. 

It enlarges the family of games with a tractable bargaining 
set. The core is nonempty only for some efficient coalition 
structures for which the game is balanced. Our result is still 
valid for some non efficient coalition structures and it is 
equivalent to Solymosi's result for efficient coalit ion. 
Moreover, we show that the core and the bargaining set 

coincide as soon as we sufficiently en large the gain of blocs. 
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