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Abstract  In this paper we consider the social efficiency of the regular R&D network of oligopolistic firms, where every 
firm has the same number o f partners engaged in research activ ities. In the studies conducted by Goyal-Moraga (2003) and 
Korkmaz (2012), the social welfare is maximised at some intermediate and undetermined level of connectivity (degree) if 
the rate of spillovers is higher than an undetermined threshold. In order to analyse the impact of spillovers’ rate on the 
socially desirable level of collaborative research, we p rovide the analytical determination of both optimal degree of R&D 
collaboration and threshold level of spillovers. We find that an increasing number o f firms reduces the threshold level, thus 
making a partial connection more desirab le from a social point of view. We also show that for a s mall rate of spillovers, 
private and social incentives coincide and the efficient network is complete, while for sufficiently high level of spillovers 
firms tend to form too many links. 
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1. Introduction 
Policy-makers have recently shown interest in R&D 

interfirm collaboration, as it encourages research 
investments and facilitates innovation. However, horizontal 
collaborations can hide collusive agreements and lead to 
free-rid ing behaviours: the opportunity to exploit partners’ 
investments discourages the individual effort. Formally, the 
R&D investments are strategic substitutes[2]. In economic 
literature, there is a consolidated tradition of models of R&D 
cooperation ([1],[9]) which interpret the advantage of linking 
to other firms as the possibility to share R&D efforts in order 
to lower marg inal costs of production.  

However, these first studies are limited and only consider 
a duopoly. 

Recent tools provided by Social Network Analysis[7-8], 
make it possible to define research collaborations among 
firms as R&D networks, which have been studied by[3-5].  

This paper falls into the last stream of literature. Given the 
possibility of opportunistic behaviours as well as co llusive 
effects, it  is important to identify the factors which can 
increase welfare resulting from collaboration among firms. 
From the literature on R&D networks[3] and[5] it is ev ident 
that when competition is moderate (à la Cournot) the 
complete network, where each firm is linked  to the others, 
maximises welfare. 

On the contrary, assuming a maximum rate of knowledge  
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spillovers, Goyal and Moraga[4] find that the complete 
network is inefficient and there are intermediate levels of 
research collaboration which  maximise social welfare. 
Recently[10] has generalised the model[4] by relaxing the 
assumption of a maximum rate of spillovers among 
collaborating firms. The author finds that if the spillovers are 
sufficiently low, the complete connection is socially efficient, 
and if not, the social welfare is maximised at some 
intermediate level of research collaboration. However, 
neither[4] nor[10] provide a mathemat ical formulat ion of the 
spillovers’ threshold or optimal degree of connection. In this 
paper, we obtain an explicit formula for both this threshold 
and optimal degree, thus providing a better understanding of 
the factors which make an R&D network (in the class of 
symmetric networks) efficient in terms of social welfare. 

The paper is organised as follows. In Sect ion 2 we present 
the model, whilst Section 3 will showcase and discuss the 
main results.  

Section 4 provides conclusions, after which time Section 5 
provides formal proof o f all propositions. 

2. The Model 
Let 𝐼𝐼 = {1, …𝑁𝑁} denote a set of ex-ante identical firms. 

We shall assume that 𝑁𝑁 ≥ 3 firms are located in a regular 
network 𝑔𝑔𝑛𝑛  of research collaboration, whereby every firm 
has the same number of collaboration links. Formally, each 
firm cooperates in R&D act ivities with 𝑛𝑛 ∈ [0,𝑁𝑁 − 1] 
different firms 1. The parameter 𝑛𝑛 represents the degree of 

                                                                 
1 As observed by [2], [11] a regular network of every degree is possible only if 
the number of nodes is even. In order to analyse how the degree of a regular 



34 Luca Correani et al.:  The Optimal Level of Collaboration in Regular R&D Networks   
 

 

R&D network. The model is a three-stage Cournot oligopoly 
game as developed in[4],[10]. 

In the first stage firms form pair-wise collaboration links. 
In the second stage firms choose their R&D investment 
levels 𝑥𝑥𝑖𝑖  (𝑖𝑖 = 1, … ,𝑁𝑁 ) then, in the third stage, they compete 
in the same market by choosing outputs 𝑞𝑞𝑖𝑖  (𝑖𝑖 = 1, … ,𝑁𝑁 ). In 
order to find the subgame perfect equilibrium (𝑞𝑞𝑖𝑖∗,𝑥𝑥𝑖𝑖∗ ) 
(𝑖𝑖 = 1, … ,𝑁𝑁), we proceed backward from the second stage. 

A collaboration link is a bilateral agreement to jointly  
invest in cost-reducing R&D activity. In other words, 
collaboration allows for firms to share R&D efforts which 
partially lower marginal costs: 

𝑐𝑐𝑖𝑖(𝑔𝑔𝑛𝑛 ) = 𝑐𝑐 − 𝑥𝑥𝑖𝑖 − 𝑙𝑙 ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑖𝑖(𝑔𝑔𝑛𝑛 ) ,         (1) 
where 𝑐𝑐  represents the firm’s marg inal cost when it has no 
links and 𝑁𝑁𝑖𝑖(𝑔𝑔𝑛𝑛 ) denotes the set of partners of firm 𝑖𝑖 in the 
regular network 𝑔𝑔𝑛𝑛 , with #𝑁𝑁𝑖𝑖(𝑔𝑔𝑛𝑛 ) = 𝑛𝑛. 

The exogenous parameter 𝑙𝑙 ∈ [0,1] reflects the level of 
spillover among collaborating firms: it  measures the portion 
of research investment transmitted between partners.  

The inverse demand function is linear, 𝑝𝑝 = 𝑎𝑎 − ∑ 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 

and R&D effo rt implies a quadratic cost function (𝑟𝑟 2⁄ )𝑥𝑥𝑖𝑖2 
which guarantees decreasing returns to R&D and helps to 
convexify the model. By  standard arguments the Cournot 
equilibrium output of firm 𝑖𝑖 is: 

𝑞𝑞𝑖𝑖(𝑔𝑔𝑛𝑛 ) =
𝑎𝑎−𝑁𝑁𝑐𝑐𝑖𝑖(𝑔𝑔𝑛𝑛 )+∑ 𝑐𝑐𝑗𝑗 (𝑔𝑔𝑛𝑛 )𝑗𝑗≠𝑖𝑖

𝑁𝑁+1
 ,           (2) 

and its profits are: 
𝜋𝜋𝑖𝑖(𝑔𝑔𝑛𝑛 ) = 𝑞𝑞𝑖𝑖2 −

𝑟𝑟
2
𝑥𝑥𝑖𝑖2  .             (3) 

The R&D effort  of each firm affects its own cost as well as 
the cost of other 𝑛𝑛 firms (by a factor 𝑙𝑙), hence: 

𝐶𝐶 = ∑ 𝑐𝑐𝑖𝑖(𝑔𝑔𝑛𝑛 )∀ 𝑖𝑖 = 𝑁𝑁𝑁𝑁 − (1 + 𝑛𝑛𝑛𝑛)∑ 𝑥𝑥𝑖𝑖  .∀ 𝑖𝑖     (4) 
It follows that: 

∑ 𝑐𝑐𝑗𝑗 (𝑔𝑔𝑛𝑛 )𝑗𝑗 ≠𝑖𝑖 = 𝐶𝐶 − 𝑐𝑐𝑖𝑖(𝑔𝑔𝑛𝑛 ) .         (5) 
By substituting (5) in equation (2) the profit of the firm is 

given as follows:  
𝜋𝜋𝑖𝑖(𝑔𝑔𝑛𝑛) = 

�
𝛼𝛼+(𝑁𝑁−𝑛𝑛𝑛𝑛)𝑥𝑥𝑖𝑖+(𝑙𝑙(𝑁𝑁−𝑛𝑛+1)−1)∑ 𝑥𝑥𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑖𝑖(𝑔𝑔𝑛𝑛) −(1+𝑛𝑛𝑛𝑛)∑ 𝑥𝑥𝑞𝑞𝑞𝑞∉𝑁𝑁𝑖𝑖(𝑔𝑔𝑛𝑛 )

(𝑁𝑁+1) �
2
− 𝑟𝑟

2 𝑥𝑥𝑖𝑖
2 . (6) 

The first order condition is:2 
2(𝑁𝑁−𝑛𝑛𝑛𝑛) �𝛼𝛼 + (𝑁𝑁−𝑛𝑛𝑛𝑛)𝑥𝑥𝑖𝑖 + (𝑙𝑙(𝑁𝑁−𝑛𝑛 + 1) −1)� 𝑥𝑥𝑗𝑗

𝑗𝑗∈𝑁𝑁𝑖𝑖 (𝒈𝒈𝒏𝒏)

−  (1 +𝑛𝑛𝑛𝑛) � 𝑥𝑥𝑞𝑞
𝑞𝑞∉𝑁𝑁𝑖𝑖 (𝒈𝒈𝒏𝒏)

� −𝑟𝑟(𝑁𝑁+ 1)2𝑥𝑥𝑖𝑖 = 0 

where 𝛼𝛼 = 𝑎𝑎 − 𝑐𝑐  represents the size of market. 
Invoking symmetry, i.e. 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑘𝑘 = 𝑥𝑥  and solving 

for 𝑥𝑥  we obtain the optimal level of R&D investment of 
each firm: 

𝑥𝑥∗(𝑔𝑔𝑛𝑛 ) = 2𝛼𝛼 (𝑁𝑁−𝑛𝑛𝑛𝑛)

𝑟𝑟 (𝑁𝑁+1)2−2(𝑁𝑁−𝑛𝑛𝑛𝑛) (1+𝑛𝑛𝑛𝑛)
.          (7) 

Plugging (7) in (1) and then in (2) we find the output of 
each firm in equilibrium: 

                                                                                                             
network affects strategies and social wel fare, we implicitly assume that 𝑁𝑁 is 
even. 
2 In order to satisfy second order conditions and thus assure interior solutions, 

we shall assume that: 𝑟𝑟 > 𝑀𝑀𝑀𝑀𝑀𝑀 ��𝑁𝑁−𝑛𝑛𝑛𝑛
𝑁𝑁+1

�
2

; �𝑁𝑁−𝑛𝑛𝑛𝑛
𝑁𝑁+1

��𝑁𝑁+1−𝑛𝑛 (1−𝑙𝑙)
𝑁𝑁+1

��. 

𝑞𝑞∗(𝑔𝑔𝑛𝑛 ) = 𝛼𝛼𝛼𝛼 (𝑁𝑁+1)

𝑟𝑟(𝑁𝑁+1)2−2(𝑁𝑁−𝑛𝑛𝑛𝑛) (1+𝑛𝑛𝑛𝑛)
 .          (8) 

Using (7) and (8) the industry-profit is: 

𝜋𝜋∗(𝑔𝑔𝑛𝑛 ) =
𝑁𝑁�𝛼𝛼𝛼𝛼 (𝑁𝑁+1)�2−2𝑁𝑁𝑁𝑁𝛼𝛼2 (𝑁𝑁−𝑛𝑛𝑛𝑛)2

[𝑟𝑟 (𝑁𝑁+1)2−2(𝑁𝑁−𝑛𝑛𝑛𝑛) (1+𝑛𝑛𝑛𝑛)]2  .      (9) 

In order to analyse the implicat ions of the model in  terms 
of social efficiency we define social welfare 𝑊𝑊(𝑔𝑔𝑛𝑛 ) by 
summing aggregate profits (9) and consumer surplus 
 𝐶𝐶𝐶𝐶 = 0,5[𝑁𝑁𝑞𝑞∗(𝑔𝑔)]2 : 

𝑊𝑊(𝑔𝑔𝑛𝑛 ) =
𝑟𝑟𝛼𝛼2𝑁𝑁�𝑟𝑟 (𝑁𝑁+1)2�𝑁𝑁

2 +1�−2(𝑁𝑁−𝑛𝑛𝑛𝑛) 2�

[𝑟𝑟 (𝑁𝑁+1)2−2(𝑁𝑁−𝑛𝑛𝑛𝑛) (1+𝑛𝑛𝑛𝑛)]2 .      (10) 

3. The Welfare-Maximising Degree of a 
Regular Network 

As widely d iscussed in[4] and[10], the R&D investment 
of a firm decreases with the degree of network: a g reater 
connection implies that all firms collaborate with more 
competitive partners and research investments, both among 
partners and non-partners, become strategic substitutes. On 
the other hand, firms engaged in relatively larger 
connections benefit from reducing their marginal costs. An 
additional link cuts firms’ R&D efforts but at the same time 
increases the number of partners from which to absorb 
knowledge. Since the network is not too dense, the second 
effect dominates the first and firms become more efficient. 

Compared to the empty network, with no links, the 
network of collaborations is socially desirable, but to what 
extent is this true? What is the optimal degree of network?  

With this aim in mind  we switch focus to the analytical 
determination of the optimal degree of the network 
(proposition 1) and its relationship with the spillovers’ rate 
(propositions 2 and 3). 

Proposition 1. Let 𝑛𝑛𝑊𝑊∗  be the level of research 
collaboration maximising social welfare, then: 

𝑛𝑛𝑊𝑊∗ = 1
3𝑙𝑙
𝑓𝑓(𝑁𝑁, 𝑟𝑟). 

Proof. See the Appendix. 
We find that the degree of the network which maximises 

social welfare (10) depends on the rate of spillover l, the cost 
of R&D 𝑟𝑟, and the number of competing firms 𝑁𝑁, while it is 
not affected by the size of market 𝛼𝛼. 

Note that the degree of network enters into (10) 
throughout the rate of spillovers. It  follows that, all 
conditions being equal, the optimal social degree of network 
scales down with the absorptive capacity of firms. In[10] it is 
proven that the optimal degree of network is intermediate, 
that is 𝑛𝑛𝑊𝑊∗ < 𝑁𝑁 − 1 , for an undetermined high level of 
spillovers’ rate 𝑙𝑙, while for 𝑙𝑙 ≤ 0.5 social welfare increases 
in the level of collaborative activity. The following 
proposition gives the exact value of spillovers’ threshold 𝑙𝑙. 

Proposition 2. Social welfare is maximised at 
intermediate levels of research collaboration, i.e. 𝑛𝑛𝑊𝑊∗ <
𝑁𝑁 − 1, iff 𝑙𝑙 > 𝑙𝑙 > 1/2 , with: 

𝑙𝑙 = 𝑁𝑁−1
2𝑁𝑁−3

 . 

Proof. See the Appendix. 
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The threshold decreases with the number of firms; when 
the market includes many (few) firms, then intermediate 
(total) research collaboration becomes more socially 
desirable. 

Finally, in line with[4] and[10], whenever the spillovers’ 
rate is greater than 0.5, private and socially -desirable levels 
of R&D co llaboration generally differ. Specifically, if 𝑙𝑙 > 𝑙𝑙, 
then industry profits are maximised at an intermediate level 
of collaboration which, from a welfare point of view, is 
excessive. On the contrary, for small values of l, private and 
social incentives coincide. This is formally  established by 
the following proposition. 

Proposition 3. Let 𝑛𝑛𝐼𝐼∗  be the degree of network 
maximising industry profit. When 𝑙𝑙 < 0.5  aggregate 
industry profits as well as social welfare are highest under 
complete network, that is 𝑛𝑛𝐼𝐼∗ = 𝑛𝑛𝑊𝑊∗ = 𝑁𝑁 − 1. If 𝑙𝑙 > 𝑙𝑙, then: 

𝑁𝑁 − 1 > 𝑛𝑛𝐼𝐼∗ > 𝑛𝑛𝑊𝑊∗ . 
Proof. See the Appendix. 

4. Conclusions 
This paper aims to investigate the extent to which R&D 

inter-firm collaboration is socially desirable (in the class of 
symmetric networks). In line with[10] we generalise the 
model[4] where firms first choose their R&D investment 
level and then compete in the same market by choosing 
outputs. Firms are located in a regular network o f research 
collaboration and the number of links is exogenous. 
Collaboration allows firms to share R&D efforts which 
partially lower the marg inal costs of production, according to 
a spillovers’ rate. In[4] and[10] the social efficiency of the 
R&D network is obtained at some undetermined level of 
connectivity (optimal degree) if the rate of spillovers is 
higher than an unknown threshold level; if not, it is the 
complete network (where each firm is linked to all others) 
which is the most efficient. 

The main  contribution of our article to this literature is to 
determine a mathemat ical expression of both the optimal 
level of network degree and threshold level of spillovers. 
We show that the optimal degree depends on the rate of 
spillover l, the cost of R&D 𝑟𝑟, and the number of competing 
firms 𝑁𝑁, while it is not affected by the size of market 𝛼𝛼. The 
threshold level of spillovers only depends on the dimension 
of the network (i.e. the number o f firm): in other words, an 
increasing number of firms reduces the threshold level 
making an intermediate level of connection more desirab le 
from a social point of v iew. We also show that for sufficient 
high level of spillovers firms  tend to an excessive level of 
R&D co llaboration. 

Appendix 
Proposition 1. Proof 

Suppose 𝑛𝑛  and 𝑁𝑁  are continuous variables. Let 𝑙𝑙 > 𝑙𝑙. 
After some simple algebraic manipulations of the FOC: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 , 

we obtain that the optimal degree of network 𝑛𝑛𝑊𝑊∗ ∈ (0,𝑁𝑁 − 1) 
is a solution of the following equation: 

𝑦𝑦3 − 3𝑁𝑁𝑦𝑦2 + 𝑦𝑦�
6𝑁𝑁2 −𝑟𝑟(𝑁𝑁+ 1)2(3 +𝑁𝑁)

2
� 

+ 𝑟𝑟(𝑁𝑁+ 1)2 �3𝑁𝑁+𝑁𝑁2 −2

4
� −𝑁𝑁3            (11) 

where, for simplicity, we define 𝑛𝑛𝑛𝑛 = 𝑦𝑦. The equation is a  
3rd degree equation with real coefficients, and therefore we 
can provide an analytical solution. Equation (11) can be 
easily rewritten as: 

𝑦𝑦3 + 𝐴𝐴𝑦𝑦2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 , 
where: 

𝐴𝐴 = −3𝑁𝑁 , 

𝐵𝐵 = �
−𝑟𝑟(𝑁𝑁 + 1)2(3 + 𝑁𝑁) + 6𝑁𝑁2

2
� , 

𝐶𝐶 = 𝑟𝑟(𝑁𝑁 + 1)2 �
3𝑁𝑁 + 𝑁𝑁2 − 2

4
� − 𝑁𝑁3 , 

are the real coefficients. Note that 𝐴𝐴 < 0,𝐵𝐵 < 0 and 𝐶𝐶 > 0. 
Setting the change of variable 𝑥𝑥 = 𝑦𝑦 + 𝐴𝐴/3 one obtains: 

𝑥𝑥3 + 𝐷𝐷𝐷𝐷 + 𝐸𝐸 = 0 ,               (12) 
with: 

𝐷𝐷 = 𝐵𝐵 −
𝐴𝐴3

3
 , 

𝐸𝐸 =
2𝐴𝐴3

27
−
𝐴𝐴𝐴𝐴
3

+ 𝐶𝐶 . 

Using the expressions for A, B, C: 

𝐷𝐷 = −
(3 + 𝑁𝑁)𝑟𝑟(𝑁𝑁 + 1)2

2
 , 

𝐸𝐸 =
4
3
𝑁𝑁3 −

𝑟𝑟(𝑁𝑁 + 1)2(𝑁𝑁2 + 3𝑁𝑁 + 2)

4
 . 

It is easy to derive that both D and E are negative. We can 
solve the equation (12) using Cadorna’s formula: 

𝑥𝑥 = �−
𝐷𝐷
2 + �𝐷𝐷

2

4 +
𝐸𝐸 3

27

3

+ �−
𝐷𝐷
2 −

�𝐷𝐷
2

4 +
𝐸𝐸 3

27 ,
3

 

where: 
𝐷𝐷2

4
+
𝐸𝐸3

27
= ∆ , 

represents the discriminant. We can distinguish several 
possible cases using the discriminant: 
• if Δ < 0, then the equation has three distinct real roots; 
• if Δ = 0, then the equation has a mult iple root and all its 

roots are real; 
• if Δ > 0, then the equation has one real root and two non 

real complex conjugate roots. 
Numerical simulations allow us to say that Δ < 0. 3 

Therefore the three roots are real and distinct: 

𝑥𝑥1 = 2�−
𝐷𝐷
3 cos �

𝜃𝜃
3� , 

𝑥𝑥2 = 2�−
𝐷𝐷
3 cos �

𝜃𝜃 + 2𝜋𝜋
3 � , 

                                                                 
3 The simulations are implemented with Mathematica software. The findings 
are available from the authors on request.  
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𝑥𝑥3 = 2�−
𝐷𝐷
3 cos �

𝜃𝜃 + 4𝜋𝜋
3 � , 

with: 

𝜃𝜃 = tan−1�
−2√−∆

𝐸𝐸 � . 

Since 𝐸𝐸 < 0  then 𝜃𝜃 > 0 ; moreover the arctangent is 
defined everywhere on real axis and its codomain is limited 
to the range �– 𝜋𝜋/2, 𝜋𝜋/2� . It fo llows that 𝜃𝜃 ∈ [0, 𝜋𝜋/2] . 
Considering that 𝑥𝑥 = 𝑦𝑦+ 𝐴𝐴/3 , the three solutions of 
equation (12) are: 

𝑦𝑦1 = 2�−
𝐷𝐷
3

cos �
𝜃𝜃
3
�+ 𝑁𝑁 , 

𝑦𝑦2 = 2�−
𝐷𝐷
3

cos �
𝜃𝜃 + 2𝜋𝜋

3
� + 𝑁𝑁 , 

𝑦𝑦3 = 2�−
𝐷𝐷
3

cos �
𝜃𝜃 + 4𝜋𝜋

3
� + 𝑁𝑁 . 

Finally, considering that 𝑦𝑦 = 𝑛𝑛𝑛𝑛 , the three degrees of 
connection as roots of (11) are: 

𝑛𝑛1 =
𝑦𝑦1

𝑙𝑙
 , 

𝑛𝑛2 =
𝑦𝑦2

𝑙𝑙
 , 

𝑛𝑛3 =
𝑦𝑦3

𝑙𝑙
 , 

The cosin function is positive in [0, 𝜋𝜋/2] ∪ [3𝜋𝜋/2,2𝜋𝜋]. 
Remember that 𝜃𝜃 ∈ [0, 𝜋𝜋/2]; it can be noted that: 

�
𝜃𝜃
3
� ∈ �0,

𝜋𝜋
6
� , 

�
𝜃𝜃 + 2𝜋𝜋

3
� ∈ �

2
3
𝜋𝜋,

5
6
𝜋𝜋� , 

�
𝜃𝜃 + 4𝜋𝜋

3
� ∈ �

4
3
𝜋𝜋,

3
2
𝜋𝜋� , 

hence: 
cos �

𝜃𝜃
3� > 0 , 

cos �
𝜃𝜃 + 2𝜋𝜋

3 � < 0 , 

cos �
𝜃𝜃 + 4𝜋𝜋

3 � ≤ 0 , 

Note that 𝑦𝑦1 > 𝑁𝑁. We can rule out the first solution 𝑛𝑛1  
because it is greater than 𝑁𝑁, since 𝑙𝑙 < 1. 

Let 𝑘𝑘2  (𝑘𝑘3) be the absolute value of the cosin function in  
𝑛𝑛2  (𝑛𝑛3 ). The remain ing solutions 𝑛𝑛2  and 𝑛𝑛3  are positive 
only if: 

2�−
𝐷𝐷
3
𝑘𝑘𝐼𝐼 + 𝑁𝑁 > 0                       𝐼𝐼 = 2,3 

that is if: 
𝑘𝑘𝐼𝐼 < 3

2
𝑁𝑁 1

�3𝑟𝑟(𝑁𝑁+1)2(3+𝑁𝑁 )+6𝑁𝑁2−54𝑁𝑁3

2

      (13) 

The threshold in (13) exceeds ½. It is easily verified that 
𝑘𝑘2 ≥ 1/2, while 𝑘𝑘3 ≤ 1/2. Thus 𝑛𝑛2 < 0 and we can also 
rule out this root; the solution of (11) is the third root 𝑛𝑛3 > 0: 

𝑛𝑛𝑊𝑊∗ = 𝑛𝑛3 =
1
3𝑙𝑙
𝑓𝑓(𝑁𝑁 , 𝑟𝑟), 

with: 
𝑓𝑓(𝑁𝑁,𝑟𝑟) = 3𝑁𝑁+ 

2√3(𝑁𝑁+ 1)�(3+𝑁𝑁) 𝑟𝑟

2
cos�1

3
�4π+ tan−1 �

�−27 (2+𝑁𝑁) 2+16 (3+𝑁𝑁) 3𝑟𝑟
2

3√3(2+𝑁𝑁)
���. 

Proposition 2. Proof 
High spillovers (𝑙𝑙 > 1/2) assure the concavity of welfare 

(10). However this is the only necessary condition to assure 
that the optimal degree o f connection is intermediate. Indeed, 
social welfare can reach its maximum value at a point 
between 𝑁𝑁 − 2 and 𝑁𝑁 − 1. A similar reasoning concerns 
the empty network in the region between 𝑛𝑛 = 0 and 𝑛𝑛 =1. 
In line with[4],[10], to  rule out the extremes networks 
(empty and complete) we have only to prove that: 

𝑊𝑊(𝑁𝑁 − 1) > 𝑊𝑊(0)  ,             (14) 
and 

𝑊𝑊(𝑁𝑁 − 2) > 𝑊𝑊(𝑁𝑁 − 1) ,           (15) 
Let 𝑊𝑊1  (𝑊𝑊2 ) be the numerator (denominator) of welfare 

(10). Condition (14) establishes that the complete network is 
socially desirable and it is satisfied if: 

𝑊𝑊1(𝑁𝑁 − 1) 𝑊𝑊2 (0) −𝑊𝑊1(0)  𝑊𝑊2 (𝑁𝑁 − 1)
𝑊𝑊2 (𝑁𝑁 − 1) 𝑊𝑊2 (0)

> 0 . 

Since 𝑊𝑊1  is positive and increases for 𝑛𝑛 ∈ [0,𝑁𝑁 − 1]  
then:  

𝑊𝑊1(𝑁𝑁 − 1) > 𝑊𝑊1 (0) . 
Moreover: 

𝑊𝑊2 (0) −𝑊𝑊2 (𝑁𝑁 − 1) = 𝑙𝑙(1 − 𝑙𝑙)(𝑁𝑁2 − 2𝑁𝑁 + 1), 
is positive for 𝑙𝑙 ∈ (0,1) and 𝑁𝑁 ≥ 3; hence, condition (14) is 
satisfied. Using the expressions of 𝑊𝑊1  and 𝑊𝑊2  we can write 
condition (15) as: 

2𝑁𝑁(1 − 𝑙𝑙) + 3𝑙𝑙 < 2(1 − 𝑁𝑁 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙)𝑅𝑅 ,   (16) 
with: 
𝑅𝑅 = [𝑟𝑟(𝑁𝑁+ 1)2 − (𝑁𝑁 − 𝑁𝑁𝑁𝑁)(2 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙) − 𝑙𝑙(3 + 3𝑁𝑁𝑁𝑁 − 5𝑙𝑙)] , 
which is positive since 𝑟𝑟 > 2 and 𝑁𝑁 ≥ 3. Note that the left  
member of (16) is positive; therefore, inequality is satisfied 
if: 

(1 − 𝑁𝑁 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙) > 0 , 
that is: 

𝑙𝑙 > 𝑙𝑙 = 𝑁𝑁−1
2𝑁𝑁−3

 .                 (17) 
We can easily note that 𝑙𝑙 ≥ 1/2 since we assume 𝑁𝑁 > 3. 

Furthermore: 
𝑟𝑟 > 

2(1 − 𝑁𝑁 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙)[(𝑁𝑁 − 𝑁𝑁𝑁𝑁)(2 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙) + 𝑙𝑙 (3 + 3𝑁𝑁𝑁𝑁 − 5𝑙𝑙 )] + 2𝑁𝑁(1 − 𝑙𝑙) + 3𝑙𝑙
2 (𝑁𝑁 + 1)2(1 − 𝑁𝑁 + 2𝑁𝑁𝑁𝑁 − 3𝑙𝑙)

 , 

that is satisfied since 𝑟𝑟 > 2. It follows that (15) is satisfied if 
and only if (17) is valid.  

Proposition 3. Proof 
1) First we prove that 𝒏𝒏𝑰𝑰∗ = 𝒏𝒏𝑾𝑾∗ = 𝑵𝑵 − 𝟏𝟏 if 𝒍𝒍 < 0.5.  
Parameter 𝒍𝒍  enters social welfare (10) and aggregate 

profits (9) via the degree 𝒏𝒏. We make the change of variable: 
𝑛𝑛𝑛𝑛 = 𝑛𝑛� . 

Let 𝑛𝑛�∗ maximise social welfare, that is: 
𝑛𝑛�∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛�  𝑊𝑊(𝑛𝑛�). 

This value depends on the exogenous parameters of the 
model: 

𝑛𝑛� ∗ = 𝑛𝑛�∗(𝑁𝑁,𝑟𝑟 ,𝛼𝛼) . 
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All conditions being equal, if the spillovers’ rate increases, 
the optimal degree of connection must also decrease so that 
𝑛𝑛�∗ holds steady.  

In order to determine the optimal degree of network, we 
first verify the concavity of welfare. Let us suppose 𝑛𝑛 and 
𝑁𝑁 are continuous variables. For the sake of simplicity, we 
denote the numerator of welfare (10) as 𝑊𝑊1  and the 
denominator as 𝑊𝑊2 . 

It is straightforward to note that: 
• 𝑊𝑊1  is positive and increases with decreasing rates fo r 

𝑛𝑛 ∈ [0,𝑁𝑁 − 1]; 
• 𝑊𝑊2  is positive and has a min imum point at 𝑛𝑛 = 𝑁𝑁−1

2𝑙𝑙
. If 

𝑙𝑙 ≤ 1/2, we have: 
𝑁𝑁 − 1

2𝑙𝑙
≥ 𝑁𝑁 − 1 , 

hence 𝑊𝑊2  decreases for 𝑛𝑛 ∈ [0,𝑁𝑁 − 1]. It follows that the 
welfare increases in the degree of connection so that it 
reaches its maximum value at 𝑛𝑛𝑊𝑊∗ = 𝑁𝑁 − 1. Moreover, the  
denominator of aggregate profits (9) is equal to 𝑊𝑊2  and the 
numerator exh ibits behaviour identical to that of 𝑊𝑊1 . 

It follows that if 𝑙𝑙 ≤ 1/2  the degree of connection 
maximis ing profits is 𝑛𝑛𝐼𝐼∗ = 𝑁𝑁 − 1.  

2) Finally we prove that 𝑁𝑁 − 1 > 𝑛𝑛𝐼𝐼∗ > 𝑛𝑛𝑊𝑊∗  if 𝑙𝑙 > 𝑙𝑙. 
Assume that 𝑙𝑙 > 𝑙𝑙; then, by proposition 2, 𝑛𝑛𝑊𝑊∗ < 𝑁𝑁 − 1. 

Let 𝑊𝑊1  be the numerator and 𝑊𝑊2  the denominator of 
welfare (10), as well as 𝜋𝜋1  and 𝜋𝜋2  for the aggregate profits 
(9). We see that the denominator of aggregate profits is equal 
to the denominator of welfare; moreover: 

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑊𝑊1
𝜕𝜕𝜕𝜕

= 4𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼2(𝑁𝑁 − 𝑛𝑛𝑛𝑛)  ,         (18) 
The optimal degree of connection is such that social 

welfare is maximised, that is, the following derivative: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑊𝑊1
𝜕𝜕𝜕𝜕 𝑊𝑊2−𝑊𝑊1

𝜕𝜕𝑊𝑊2
𝜕𝜕𝜕𝜕

𝑊𝑊2
2   ,                 (19) 

is equal to 0 at the value 𝑛𝑛 = 𝑛𝑛𝑊𝑊∗ . We know that 𝑊𝑊1  is 
positive and an increasing function; 𝑊𝑊2 is positive and has a 
minimum point at 𝑛𝑛 = (𝑁𝑁 − 1)/2𝑙𝑙. Such reasoning implies 
that (19) can be 0 only to  the right of the minimum point of 
𝑊𝑊2 , i.e . 𝑛𝑛𝑊𝑊∗ > (𝑁𝑁 − 1)/2𝑙𝑙. The level of collaboration which 
maximises profits is such that: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕 𝜋𝜋2 − 𝜋𝜋1

𝜕𝜕𝜋𝜋2
𝜕𝜕𝜕𝜕

𝜋𝜋2
2 = 0 , 

Using (15) and considering that 𝜋𝜋2 = 𝑊𝑊2  we obtain: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑊𝑊1
𝜕𝜕𝜕𝜕 𝑊𝑊2−𝜋𝜋1

𝜕𝜕𝑊𝑊2
𝜕𝜕𝜕𝜕

𝑊𝑊2
2   ,               (20) 

Compare (20) with (19). Since 𝜋𝜋1 < 𝑊𝑊1  for every 𝑛𝑛 then, 
at 𝑛𝑛𝑊𝑊∗ , (20) is strictly positive. It follows that 𝑛𝑛𝑊𝑊∗ > 𝑛𝑛𝐼𝐼∗ . 
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