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Abstract  This paper presents a model of the penalty-kick game between a soccer goalkeeper and a kicker, in which there 
is uncertainty about the kicker’s type (and there are two possible types of kicker). Both the goalkeeper and the kicker can 
choose among three different strategies (right, left and center). To find a solution for this game we use the concept of 
Bayesian equilibrium. Comparing this equilibrium with the corresponding complete-information Nash equilibria, we find 
that in all cases the expected scoring probability increases (so that, on average, the goalkeeper is worse off under incomplete 
informat ion). The model is also useful to exp lain  why it could be optimal for a goalkeeper never to choose the center of the 
goal (although at the same t ime there are some kickers who always chose to shoot to the center). 
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1. Introduction 
The penalty-kick game, in which  a soccer goalkeeper and 

a kicker face each other, has become an important example 
in the applied game-theory literature to analyze mixed-strat
egy Nash equilibria. The reason of this importance probably 
has to do with the fact that it is a game whose solution 
generates a clear theoretical prediction and, at the same time, 
it is relatively easy to gather data about actual outcomes of 
the game. 

All the game-theoretic literature that we know about 
penalty kicks analyzes this situation as a game of complete 
informat ion, i.e., as a game in which the two players know 
the characteristics of each other, and hence they know the 
expected payoffs that they will receive in the different 
strategy profiles of the game. There is a good reason for this 
assumption, which is the idea that goalkeepers and kickers in 
a professional soccer league are usually  well-known players 
whose main characteristics are recognized by their opponen
ts, and those characteristics are precisely the ones that define 
the parameters which establish the expected payoff of the 
penalty-kick game. Complete-information games, moreover, 
are also easier to solve and, perhaps more importantly, are 
easier to test empirically. This ease is probably the best 
explanation for the success of the penalty-kick game as a 
prominent example in the game-theoretic literature. 

Not  all soccer penalty  kicks , however, are shot  in 
situations in  which it  is reasonable to assume complete 
informat ion. In many cases, especially  in amateur matches 
and in  matches  between teams  that  belong  to  d ifferent 
leagues, it is possible that players do not know each other  
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and,therefore, are uncertain about several important 
characteristics that may influence the outcome of the game. 
It is also possible that the kicker (and, less usually, the 
goalkeeper) is a player who is not the “typical choice” in his 
team, because he is out of the match or because the team has 
decided to change him due to a poor past performance. 
Moreover, as penalty kicks are sometimes used as 
tie-breakers in some tournaments, and this requires that 
several players from each team shoot penalty kicks, it is 
possible that some of the designated kickers do not usually 
shoot penalty kicks in professional matches. This may 
generate a situation in which the goalkeeper is uncertain 
about some of the kicker’s relevant characteristics, changing 
the game into one with incomplete informat ion. 

When we have to analyze a game with incomplete 
informat ion, the main solution concept for games with 
complete information (i.e ., Nash equilibrium) is usually 
unavailable. Since the seminal contribution by Harsanyi[7], 
however, we have an alternative concept to apply in these 
cases, which is the so-called “Bayesian equilibrium”. This 
equilibrium relies on the idea that, under incomplete 
informat ion, players typically have data about the 
probabilit ies of their opponents’ characteristics, and this 
allows them to figure out which are the different “types” of 
opponents that they may face and the probability  associated 
to each type. With that informat ion we can build an 
equilibrium in which each  player’s type plays his best 
response to their opponents’ strategies, taking into account 
the probability of facing each opponent’s type. 

In this paper we will develop a model of a penalty-kick 
game in which there is a single type of goalkeeper and two 
types of kickers. Th is is consistent with several results that 
appear in the literature, in  the sense that professional 
goalkeepers are basically homogeneous in their characteristi
cs as penalty-kick savers, and that the main variation that we 
observe comes from the kickers’ side. 
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In the next section of this paper we will review the main  
literature about the problem. After that, in section 3 we will 
present a model in which we will allow for uncertainty about 
one of the parameters that define the scoring probabilit ies of 
the penalty-kick game. This change, together with the 
inclusion of an additional parameter that defines the 
probability d istribution of the kicker’s types, will generate a 
new game in which the kicker p lays knowing the 
goalkeeper’s characteristics but the goalkeeper plays against 
an uncertain opponent (who may be of two different types). 
We will also compare the solution of this game with their 
complete-information counterparts, i.e., with the Nash 
equilibria of the games in which the goalkeeper alternatively 
faces each of the kicker’s types. 

In the fourth section of the paper, we will include a few 
numerical illustrations of the model. One of them will be a 
theoretical example in which we will explore the equilibria 
when the distribution of kicker’s types change. Following 
that, we will develop an empirical illustration based on data 
from previous studies about the penalty-kick game. Finally, 
the fifth section will be devoted to the conclusions of the 
whole paper. 

2. Review of the Literature 

The seminal work about the penalty-kick game is 
Chiappori, Levitt and Groseclose[3]. In that paper, the 
authors develop a model of a game between a soccer 
goalkeeper and a kicker in which each player can choose 
among three different strategies (left, right and center), and 
find that the complete-informat ion Nash equilibrium of that 
game is unique. They also find, however, that depending on 
the scoring probability associated to shooting to the center of 
the goal, that equilibrium can be of two classes. If that 
scoring probability is relatively low, then the equilibrium is 
what they call a “restricted-randomization equilibrium”, in 
which both the goalkeeper and the kicker randomize between 
left  and right, but they never choose the center. If conversely, 
the scoring probability of shooting to the center of the goal 
(when the goalkeeper chooses one of his sides) is relatively 
large, then we find a “general-randomizat ion equilibrium” 
(in which both the goalkeeper and the kicker randomize 
among left, right and center). 

Different types of kickers also change the Nash 
equilibrium in other versions of the penalty-kick game. In 
Palacios-Huerta[10], for example, both the goalkeeper and 
the kicker choose between two strategies (left and right), but 
the equilibrium mixed strategies are functions of the scoring 
probabilit ies of the four possible strategy profiles. Changing 
one of these parameters, therefore, changes the equilibrium; 
and playing a strategy that is an equilibrium one for a certain 
set of parameters when the set of parameters is d ifferent, 
consequently, implies that the other player’s best response is 
a pure strategy and not a mixed one. 

Another example o f the penalty-kick game literature is 
Jabbour and Minquet[8], where there is an additional 

strategy dimension (the height of the kicker’s shot), and 
shooting high to one of the sides (left or right) assures the 
kicker a certain scoring probability (because the goalkeeper 
cannot save the shot, and his only hope is that the kicker 
shoots outside the goal). In  this case we also have two classes 
of Nash equilibrium, which depend on the scoring 
probability of shooting high: if this probability is relat ively 
small, then the kicker will randomize between shooting 
right-low or left-low (but he will never shoot high); if it  is 
large, then the kicker will strictly prefer to shoot high, and he 
will always choose one of the sides. 

The use of game-theoretic models to analyze the 
interaction among soccer players has also gone beyond the 
penalty-kick situation. In Moschini[9], for example, there is 
a version of a similar game applied to a situation where a 
kicker has to choose between shooting at the near post or the 
far post of a goalkeeper, and the goalkeeper has to choose a 
certain position in  the goal line (closer to the near post or to 
the far post). The Nash equilibrium of this game is also 
constituted by mixed  strategies, so the kicker randomizes 
between the near post and the far post, and the goalkeeper 
chooses an intermediate position between the two posts. 

Different kicker’s strategies have also been considered to 
analyze the scoring probability in penalty kick and other 
shooting situations during a soccer match. In Pollard, Ensum 
and Taylor[11], fo r example, the authors estimate that 
probability as a function of the distance between the kicker 
and the goalkeeper, the angle from the goalpost and, in cases 
where the shots occur during a match, the space from the 
nearest opponent at the time of the shot. 

General kicker’s ability is also another factor that has been 
considered as a possible determinant of the scoring 
probability in a penalty-kick situation, which also has 
implications in the strategy choice. This is basically the point 
made by Bauman, Friehe and Wedow[2], who develop and 
test a game-theoretic model in which they seek to explain 
differences in mixed strategies associated with different 
kicker’s types and the relative performance of those types. 
Using that model they find, fo r example, that more ab le 
kickers show a higher degree of specialization, i.e., they tend 
to choose a particular side more o ften. Following a similar 
line, Coloma[4] has analyzed the difference in scoring 
probabilit ies induced by restricted-randomization and 
general-randomization equilibria, using the same data on 
which[3] is based. 

The literature on penalty kicks has also developed a 
branch which has incorporated elements of psychological 
economics. Dohmen[6], for example, has analyzed the idea 
that the presence of spectators generates some “incentive 
detrimental effects” that reduce the scoring probability in a 
penalty-kick situation. In a similar line, Savage and 
Torgler[12] find that extreme pressure can have either 
positive or negative impacts on the individual kicker’s 
performance, basically depending on the relative advantage 
of the kicker’s team in the situation in which he shoots. 

The most interesting contribution of the psychological 
economics’ literature to the problem analyzed in this paper, 
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however, is probably the one by Bar-Eli et al.[1]. In their 
article, these authors point out a problem of the 
complete-information version of the penalty-kick game, 
concerning the relatively small frequency that goalkeepers 
choose to stay in the center of the goal. This phenomenon is 
seen as a weakness of the game-theoretic approach to penalty 
kicks, and it is exp lained using an alternative approach, 
called  “norm theory”. The essence of that approach is that 
goalkeepers are not actually min imizing an expected scoring 
probability but following a social norm that prescribes a 
certain action (jumping to the right or to the left) instead of a 
situation of “inaction” (i.e., staying in the center of the goal). 

All the contributions of both the game-theoretic and the 
psychological economics’ literature, however, are based on 
models that rely on complete information. We will see that 
when we abandon that complete-informat ion assumption, 
even in a relatively simple fashion, we find new ways of 
explaining some phenomena regarding both the goalkeeper’s 
and the kicker’s strategies in a penalty-kick situation, and 
those ways are able to conciliate some results that come from 
the game-theoretic literature and some others that have been 
pointed out by alternative approaches. 

3. The Model 
3.1. Complete Information 

Following the notation that appears in Coloma[4], we will 
build a game in which the kicker has to choose among his 
natural side (the goalkeeper’s right, if the kicker is 
right-footed, or the goalkeeper’s left, if the kicker is 
left-footed), his opposite side (the goalkeeper’s left, if the 
kicker is right-footed, or the goalkeeper’s right, if the kicker 
is left-footed) and the center of the goal. Similarly, the 
goalkeeper has to choose among the kicker’s natural side 
(NS), the kicker’s opposite side (OS) and the center of the 
goal (C) 1. The probability of scoring if both the kicker and 
the goalkeeper choose NS is PN, while the probability of 
scoring if both the kicker and the goalkeeper choose OS is PO. 
If the kicker chooses NS but the goalkeeper chooses OS or C, 
then the scoring probability is πN, while the scoring 
probability in the case that the goalkeeper chooses NS and 
the kicker chooses OS or C is πO. If the kicker chooses C and 
the goalkeeper chooses NS or OS, then the scoring 
probability is equal to μ, while we will assume that the 
scoring probability is equal to zero  if both the goalkeeper and 
the kicker choose C. 

As this is a constant-sum game in which the kicker wins if 
he scores and the goalkeeper wins if the kicker does not score, 
then the kicker’s expected payoff can be associated to the 
scoring probability and the goalkeeper’s expected payoff can 
be associated to the complement of that probability. As it is a 
simultaneous game, then the kicker’s strategy space consists 
of three strategies (NS, C and OS) and the goalkeeper’s 
                                                                 
1 In fact, this model is basically the same that was originally presented by 
Chiappori, Levitt and Groseclose[3].  

strategy space also consists of three strategies (NS, C and 
OS). 

Both the theoretical and the empirical literature agree that 
the scoring probabilit ies of the penalty-kick game have to be 
defined so that “πN ≥ πO > μ > PN > PO > 0”, and these 
conditions guarantee that the Nash equilibrium of the 
complete-information version of the game is a 
mixed-strategy one, in which  both the kicker and the 
goalkeeper choose NS, C and OS with certain probabilities. 
Let us use the letters n and c to define the p robabilities with 
which the kicker chooses NS and C (so that the probability 
that he chooses OS is “1-n-c”). Correspondingly, let us use 
the letters ν and γ to define the probabilit ies with which the 
goalkeeper chooses NS and C (so that the probability that he 
chooses OS is “1-ν-γ”). 

Let us now assume that there are two types of kicker 
(kicker 1 and kicker 2) and a single type of goalkeeper. 
Those kickers are characterized by having different values 
for the parameter μ , such that “μ1 < μ2”. The corresponding 
probability matrix, therefore, is the one that appears on table 
1. 

Table 1.  Scoring-probability matrix 

  Goalkeeper 
  NS C OS 

 
Kicker 1 

NS PN πN πN 
C μ1 0 μ1 

OS πO πO PO 

 
Kicker 2 

NS PN πN πN 
C μ2 0 μ2 

OS πO πO PO 

Let us assume, moreover, that the values of μ1 and μ2 are 
such that: 

N O N O
1

N O N O

P P
P P

π ⋅ π − ⋅
µ <

π + π − −
; N O N O

2
N O N O

P P
P P

π ⋅π − ⋅
µ >

π + π − −
   (1) . 

Following Chiappori, Lev itt and Groseclose[3], we know 
that in this case the corresponding complete-information 
Nash equilibria occur when it holds that (game 1): 

O O
1

N O N O

P
n

P P
π −

=
π + π − −

; c1 = 0      (2) ;  

N O
1

N O N O

P
P P

π −
ν =

π + π − −
; γ1 = 0        (3) ; 

and when it holds that (game 2): 
2 O O

2
N N O O 2 N O N O

( P )
n

( P ) ( P ) ( P P )
µ ⋅ π −

=
π − ⋅ π − +µ ⋅ π + π − −

; 

N N O O
2

N N O O 2 N O N O

( P ) ( P )
c

( P ) ( P ) ( P P )
π − ⋅ π −

=
π − ⋅ π − +µ ⋅ π + π − −

   (4) ;  

N O O 2 N O
2

N N O O 2 N O N O

( P ) ( )
( P ) ( P ) ( P P )

π ⋅ π − +µ ⋅ π − π
ν =

π − ⋅ π − +µ ⋅ π + π − −
; 

2 N O N O N O N O
2

N N O O 2 N O N O

( P P ) P P
( P ) ( P ) ( P P )
µ ⋅ π + π − − + ⋅ − π ⋅π

γ =
π − ⋅ π − +µ ⋅ π + π − −

    (5) ;  

where n1, c1, ν1 and γ1 define the strategies that correspond to 
game 1 (i.e., to the game between the goalkeeper and kicker 
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1) and n2, c2, ν2 and γ2 define the strategies that correspond to 
game 2 (i.e., to the game between the goalkeeper and kicker 
2). 

As we see, the fact that μ1 is a relatively small number 
induces kicker 1 not to choose C in any circumstance (i.e., it 
makes C a dominated strategy for kicker 1). Knowing that, 
the goalkeeper never chooses C, either, when facing kicker 1. 
Conversely, as μ2 is relatively large, kicker 2 is willing to 
choose C with some positive probability. Knowing that, the 
goalkeeper sometimes chooses C when facing kicker 2. 
Following the terminology of[3], we will say that the Nash 
equilibrium of the game between kicker 1 and the goalkeeper 
is a “restricted-randomization equilibrium”, while the Nash 
equilibrium of the game between kicker 2 and the goalkeeper 
is a “general-randomizat ion equilibrium”. 

3.2. Incomplete Information 

Let us now turn to an incomplete-information case, in 
which the goalkeeper does not know if he is facing kicker 1 
or kicker 2, but the kicker knows his type (and also the 
unique goalkeeper’s type). Let us assume that there is a 
probability θ that the goalkeeper faces kicker 1, and a 
probability 1-θ that he faces kicker 2. In that case we have to 
look for a Bayesian equilibrium, in which the goalkeeper 
chooses a single strategy and each of the possible kickers 
chooses his own strategy. 

One possible Bayesian equilib rium for this situation (case 
A) occurs when the goalkeeper chooses the same strategy 
that he would choose in a complete-information setting in 
which he were facing kicker 1 (i.e ., νA > 0, γA = 0). Given 
that, kicker 1 is indifferent between choosing NS and OS, 
and kicker 2 is strictly better-off by choosing C, provided 
that the goalkeeper never chooses C in h is equilibrium 
strategy. All these results can be stated as follows: 

O O
1

N O N O

P
n

P P
π −

=
π + π − −

;  c1 = 0         (6) ; 

n2 = 0;  c2 = 1                   (7) ;  

N O
A

N O N O

P
P P

π −
ν =

π + π − −
; γA = 0         (8) . 

Another possible Bayesian equilibrium (case B) occurs 
when the goalkeeper chooses the same strategy that he would 
choose in a complete-informat ion setting in which  he were 
facing kicker 2 (i.e., νB > 0, γB > 0). Given that, kicker 2 is 
indifferent between choosing NS, OS or C, and kicker 1 is 
indifferent between choosing NS or OS2. Th is implies that: 

N O O 2 N O
B

N N O O 2 N O N O

( P ) ( )
( P ) ( P ) ( P P )

π ⋅ π − +µ ⋅ π − π
ν =

π − ⋅ π − +µ ⋅ π + π − −
; 

2 N O N O N O N O
B

N N O O 2 N O N O

( P P ) P P
( P ) ( P ) ( P P )
µ ⋅ π + π − − + ⋅ − π ⋅π

γ =
π − ⋅ π − +µ ⋅ π + π − −

  (9) ; 

                                                                 
2 This last feature has to do with the fact that, in our model, both kickers have 
the same values for “ πN”, “ πO”, “PN” and “ PO”. If there were some differences 
in these values for the two types of kickers, then kicker 1 might strictly prefer 
either NS or OS. 

1 1

N N N2 O O O

N N N NO O 2 O O

SP (NS) SP (OS)
[ ( P ) ( P )]

( P ) ( P ) ( P P )

=
µ ⋅ π ⋅ π − +π ⋅ π −

=
π − ⋅ π − +µ ⋅ π +π − −

  (10) ; 

2 2 2

N N2 O O O O

N N N NO O 2 O O

SP (NS) SP (OS) SP (C)
[ ( P ) ( P )]

( P ) ( P ) ( P P )

= =
µ ⋅ π ⋅ π − +π ⋅ π −=

π − ⋅ π − +µ ⋅ π +π − −

   (11) ;  

where SP1 is the expected scoring probability for kicker 1 
and SP2 is the expected scoring probability for kicker 2. 

The values for n1 and n2 in this Bayesian equilibrium, 
however, are indeterminate, since what we need is that, on 
average, they equate the value that n2 has in the 
corresponding complete-information Nash equilibrium. The 
equilibrium value for c2, conversely, is a function of the 
parameter θ. Indeed: 

1 2

2 O O

N N N NO O 2 O O

n (1 ) n
( P )

( P ) ( P ) ( P P )

θ⋅ + −θ ⋅
µ ⋅ π −

=
π − ⋅ π − +µ ⋅ π +π − −

 (12) ;  

N N O O
2

N N N NO O 2 O O

( P ) ( P )(1 ) c ( P ) ( P ) ( P P )
π − ⋅ π −

−θ ⋅ =
π − ⋅ π − +µ ⋅ π +π − −

⇒ 

N N O O
2

N N N NO O 2 O O

( P ) ( P )c (1 ) [( P ) ( P ) ( P P )]
π − ⋅ π −

=
−θ ⋅ π − ⋅ π − +µ ⋅ π +π − −

 (13). 

For these strategy profiles to be Bayesian equilibria, 
however, some additional conditions have to be fulfilled. 
Under case A, for example, we need that the goalkeeper be 
indifferent between choosing NS and OS, and strictly 
better-off by choosing any of those strategies than by 
choosing C. Let us now define the corresponding expected 
scoring probabilities induced by the three possible 
goalkeeper strategies (NS, OS and C) in the fo llowing way: 

NG 1 1 O 2

N NO O
2

N NO O

SP (NS) [n P (1 n ) ] (1 )
( P P ) (1 )

P P

= θ⋅ ⋅ + − ⋅π + −θ ⋅µ
θ⋅ π ⋅π − ⋅= + −θ ⋅µ
π +π − −

  (14); 

NG 1 1 O 2

N NO O
2

N NO O

SP (OS) [n (1 n ) P ] (1 )
( P P ) (1 )

P P

= θ⋅ ⋅π + − ⋅ + −θ ⋅µ
θ⋅ π ⋅π − ⋅= + −θ ⋅µ
π +π − −

  (15); 

NG 1 1 O

N N NO O O

N NO O

SP (C) [n (1 n ) ] (1 ) 0
(2 P P )

P P

= θ⋅ ⋅π + − ⋅π + −θ ⋅
θ⋅ ⋅π ⋅π −π ⋅ −π ⋅=

π +π − −
  (16) . 

As we see, the equilibrium values found for n1 and c2 
imply  that in  this case SPG(NS) and SPG(OS) are equal, so the 
goalkeeper is actually indifferent between choosing NS and 
OS. We will also need that, in this equilibrium, SPG(NS) and 
SPG(OS) are greater than SPG(C), but this only occurs for a 
set of values of the parameter θ, as the following proposition 
shows. 

Proposition 1 : If the Bayesian equilibrium of the case A 
incomplete-in formation game exists, then it should hold that 
“θ > μ2∙(πN+πO-PN-PO)/[(πN-PN)∙(πO-PO)+μ2∙(πN+πO-PN-PO)]”. 

Proof: Under the Bayesian equilibrium of case A, the 
goalkeeper should strictly prefer to play both NS and OS 
with a positive probability, instead of C. Therefore it should 
hold that: 

G G GSP (C) SP (NS) SP (OS)> = ⇒ 
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N N NO O O

N NO O

N NO O
2

N NO O

(2 P P )
P P

( P P ) (1 )P P

θ⋅ ⋅π ⋅π −π ⋅ −π ⋅
>

π +π − −
θ⋅ π ⋅π − ⋅

+ −θ ⋅µ
π +π − −

 ⇒  

2 N O N O

N N O O 2 N O N O

( P P )
( P ) ( P ) ( P P )

µ ⋅ π + π − −
θ >

π − ⋅ π − +µ ⋅ π + π − −
 q.e.d. 

On the other hand, for a case B equilibrium to exist, it is 
important that n1, n2 and c2 take some values that are not 
inconsistent with their status as probability values. In 
particular, we need that c2 is not greater than one, and this 
also occurs for a particular set of values of the parameter θ. 
This is the theme of proposition 2. 

Proposition 2: If the Bayesian equilibrium of the case B 
incomplete-information game exists, then it should hold that 
“θ < μ2∙(πN+πO-PN-PO)/[(πN-PN)∙(πO-PO)+μ2∙(πN+πO-PN-PO)]”. 

Proof: Under the Bayesian equilibrium of case B, kicker 2 
should choose C with a certain p robability (c2) that 
guarantees that the goalkeeper is indifferent between 
choosing NS, OS and C. But this can only be feasible if the 
required equilibrium value for c2 is less than one. Therefore 
it should hold that: 

N N O O
2

N N N NO O 2 O O

( P ) ( P )c 1(1 ) [( P ) ( P ) ( P P )]
π − ⋅ π −

= <
−θ ⋅ π − ⋅ π − +µ ⋅ π +π − − ⇒ 

N N O O

N N N NO O 2 O O

( P ) ( P )1
( P ) ( P ) ( P P )

π − ⋅ π −
−θ >

π − ⋅ π − +µ ⋅ π + π − −  ⇒  

2 N O N O

N N O O 2 N O N O

( P P )
( P ) ( P ) ( P P )

µ ⋅ π + π − −
θ <

π − ⋅ π − +µ ⋅ π + π − −
 q.e.d. 

Note that propositions 1 and 2 imply that case A and case 
B equilibria cannot exist at the same time. Indeed, fo r any 
particular value o f θ, only one o f these equilibria can  occur, 
being case A equilibrium the chosen one when θ is relat ively 
large, and case B equilibrium the chosen one when θ is 
relatively small. 

Another set of restrictions on parameter θ can be found if 
we analyze the possible values of n1 and n2 under a case B 
equilibrium3. Recall that, from equation 12, we know that n1 
and n2 have to be such that, on average, they are equal to 
μ2∙(πO- PO)/[(πN-PN)∙(πO-PO)+μ2∙(πN+πO-PN-PO)]. But the 
possible combinations of n1 and n2 that satisfy that equation 
are also limited by the conditions that “0 ≤ n1 ≤ 1”, and “0 ≤ 
n2 ≤ 1-c2”. In  the particular cases where one of these 
constraints holds as an equality, then the other strategy 
coefficient adopts a determinate value. But this value is also 
constrained by some restrictions, and this imposes additional 
limits on the possible values for the parameter θ. 

3.3. Average Scoring Probabilities 

An additional group of results that we can find using our 
incomplete-in formation model has to do with the idea that 
the average scoring probabilit ies are h igher under incomplete 
                                                                 
3 In the working-paper version of this article (Coloma[5]) we have included a 
detailed description of these restrictions. That working-paper version also 
includes a simplified two-strategy version of the penalty-kick model. 

informat ion than under complete information. In order to 
show this, it is useful to prove first (lemma 1) that under 
complete info rmation the expected scoring probability is 
smaller for game 1 than for game 2. Th is has to do with the 
fact that we are assuming that “μ1 < μ2” (and all the other 
parameters are the same for the two types of kicker). 

Lemma 1 : Under complete information, the expected 
scoring probability for kicker 1 is smaller than the expected 
scoring probability for kicker 2. 

Proof: Substituting the complete-information equilibrium 
values of ν1, ν2 and γ2 into the expected scoring probabilities 
of kickers 1 and 2 when they either choose NS, OS or C, we 
can write that: 

N O N O
1 1

N O N O

P P
SP (NS) SP (OS)

P P
π ⋅π − ⋅

= =
π + π − −

 ; 

2 2 2

N N N2 O O O

N N N NO O 2 O O

SP (NS) SP (OS) SP (C)
[ ( P ) ( P )]

( P ) ( P ) ( P P )

= =
µ ⋅ π ⋅ π − +π ⋅ π −

=
π − ⋅ π − +µ ⋅ π +π − −

 . 

If we assumed that “SP1(CI) > SP2(CI)”, then it should 
hold that: 

N NO O

N NO O

N N N2 O O O

N N N NO O 2 O O

P P
P P

[ ( P ) ( P )]
( P ) ( P ) ( P P )

π ⋅π − ⋅
>

π +π − −
µ ⋅ π ⋅ π − +π ⋅ π −

π − ⋅ π − +µ ⋅ π +π − −

 ⇒  

N N N NO O O O

N N N N2 O O O O

( P P ) ( P ) ( P )
( P P ) ( P ) ( P )

π ⋅π − ⋅ ⋅ π − ⋅ π −
>µ ⋅ π +π − − ⋅ π − ⋅ π −

 

⇒ N O N O
2

N O N O

P P
P P

π ⋅π − ⋅
µ <

π + π − −
 ; 

but this is a contradiction with the assumption stated in 
equation 1. Therefore it holds that “SP1(CI) < SP2(CI)”, 
q.e.d. 

Having found that “SP1(CI) < SP2(CI)”, it is now 
straightforward to observe that kicker 1 obtains a higher 
scoring probability under incomplete informat ion than under 
complete in formation if the incomplete-information 
Bayesian equilibrium is a case B equilibrium. Th is is because 
SP1(IB) (i.e., the scoring probability of kicker 1 under a case 
B equilibrium) is equal to SP2(CI), as we can see from 
observing equation 10. 

Another case in which a kicker’s type obtains a strictly 
higher scoring probability under incomplete in formation is 
the one of kicker 2 under a case A equilibrium. This is 
formally proven in lemma 2. 

Lemma 2: Under case A Bayesian equilibrium with 
incomplete information, the expected scoring probability for 
kicker 2 is greater than the one that he obtains under 
complete information. 

Proof: Suppose instead that “SP2(CI) > SP2(IA)”. Then it 
should hold that: 

2
2

2

2 2

( )
[ ( ) ( )]

( ) ( ) ( )
( )

N N NO O O

N N N NO O O O
SP CI P P

P P P P
SP IA

µ π π π π
π π µ π π

µ

=
⋅ ⋅ − + ⋅ −

>
− ⋅ − + ⋅ + − −

=

. 

But if this is so, then it should also hold that: 
2

2 N O N O 2 N O N O( P P ) ( P P )µ ⋅ π ⋅π − ⋅ > µ ⋅ π + π − −  ⇒  
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N O N O
2

N O N O

P P
P P

π ⋅π − ⋅
µ <

π + π − −  . 
As we know from equation 1 that this last result is not true, 

then this is a contradiction. Therefore, “SP2(CI) < SP2(IA)”, 
q.e.d. 

With these results at hand, it is straightforward  to prove 
that the average expected scoring probability is always 
higher under incomplete informat ion, provided that “0 < θ < 
1”. That is the theme of proposition 3. 

Proposition 3: If “0 < θ < 1”, then the average expected 
scoring probability is greater under incomplete information 
than under complete information. 

Proof: Recall that the expected scoring probabilit ies for 
the two types of kickers under the different analyzed cases 
are the following: 

N O N O
1 1

N O N O

P P
SP (CI) SP (IA)

P P
π ⋅ π − ⋅

= =
π + π − −

 ; 2 2SP (IA) = µ  ; 

2 2 1

N N N2 O O O

N N N NO O 2 O O

SP (CI) SP (IB) SP (IB)
[ ( P ) ( P )]

( P ) ( P ) ( P P )

= =
µ ⋅ π ⋅ π − +π ⋅ π −

=
π − ⋅ π − +µ ⋅ π +π − −

 . 

Let us now define the average expected scoring 
probabilit ies in the following way: 

N NO O

N NO O

N N N2 O O O

N N N NO O 2 O O

P PASP(CI)
P P

[ ( P ) ( P )](1 )
( P ) ( P ) ( P P )

π ⋅π − ⋅
= θ⋅ +

π + π − −
µ ⋅ π ⋅ π − + π ⋅ π −

−θ ⋅
π − ⋅ π − +µ ⋅ π + π − −

 ; 

N O N O
2

N O N O

P P
ASP(IA) (1 )

P P
π ⋅π − ⋅

= θ ⋅ + − θ ⋅µ
π + π − −

; 

2

2

( )
[ ( ) ( )]

( ) ( ) ( )
N N NO O O

N N N NO O O O

ASP IB
P P

P P P P
µ π π π π

π π µ π π

=
⋅ ⋅ − + ⋅ −

− ⋅ − + ⋅ + − −

. 

As we know (from lemma 2) that “SP2(IA) > SP2(CI)”, 
then we also know that “ASP(IA) > ASP(CI)”. And as we 
know (from lemma 1) that “SP2(CI) = SP1(IB) > SP1(CI)”, 
then we also know that “ASP(IB) > ASP(CI)”. Combining 
both results, it holds that, for any value of θ such that “0 < θ 
< 1”, it is true that “ASP(II) > ASP(CI)”, q.e.d. 

4. Numerical Illustration 

4.1. Theoretical Example 

The results that we have obtained in section 2 can be 
illustrated for a particular set of parameters. Using the 
estimates that appear in[4], we will assume that “πN = 0.98”, 
“πO = 0.94”, “μ = 0.88”, “PN = 0.68” and “PO = 0.48”. This 
implies that, under complete in formation, the equilibrium 
values for n1, ν1, n2, c2, ν2 and γ2 are the following: 

1
0.94 0.48n 0.6053

0.98 0.94 0.68 0.48
−

= =
+ − −

 ; 

1
0.98 0.48 0.6579

0.98 0.94 0.68 0.48
−

ν = =
+ − −

 ; 

2
0.88 (0.94 0.48)n 0.5017

(0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)
⋅ −= =

− ⋅ − + ⋅ + − −
; 

2
(0.98 0.68) (0.94 0.48)c 0.1710

(0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)
− ⋅ −

= =
− ⋅ − + ⋅ + − −

; 

2
0.98 (0.94 0.48) 0.88 (0.98 0.94) 0.6024

(0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)
⋅ − + ⋅ −

ν = =
− ⋅ − + ⋅ + − −

; 

2
0.88 (0.98 0.94 0.68 0.48) 0.68 0.48 0.98 0.94 0.0917

(0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)
⋅ + − − + ⋅ − ⋅

γ = =
− ⋅ − + ⋅ + − −

 

Given th is, we can  now calculate the expected scoring 
probabilit ies for these complete-informat ion games, which 
are the following: 

1
0.98 0.94 0.68 0.48SP (CI) 0.7826

0.98 0.94 0.68 0.48
⋅ − ⋅

= =
+ − −

; 

2
0.88 [0.98 (0.94 0.48) 0.94 (0.98 0.68)] 0.7993

(0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)

SP (CI)
⋅ ⋅ − + ⋅ −

=
− ⋅ − + ⋅ + − −

=  . 

As we see, these results satisfy lemma 1, under which 
“SP2(CI) > SP1(CI)”. 

If we now turn to the incomplete-information  situation, we 
have two possible cases depending on the fact that θ is either 
greater than or less than 0.82895. When “θ > 0.82895” (case 
A) 4, it will hold that: 

1
0.94 0.48n 0.6053

0.98 0.94 0.68 0.48
−

= =
+ − −

  ; 

A
0.98 0.48 0.6579

0.98 0.94 0.68 0.48
−

ν = =
+ − −

  ; 

2n 0= ; 2c 1= ; A 0γ = ; 
whereas, if “θ < 0.82895” (case B), it will hold that: 

2
(0.98 0.68) (0.94 0.48)

(1 ) (0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48)
0.1710
1

c − ⋅ −
=

− θ ⋅ − ⋅ − + ⋅ + − −

=
− θ

; 

B 0.6024ν =  ; B 0.0917γ = ; 

1 2n (1 ) n 0.5017θ⋅ + − θ ⋅ = . 
Besides, as we know from the results obtained in section 2, 

“SP1(IA) = SP1(CI) = 0.7826”, “SP1(IB) = SP2(IB) = SP2(CI) 
= 0.7993” and “SP2(IA) = μ2 = 0.88”. This implies that the 
average expected scoring probabilit ies under complete 
informat ion and under the two incomplete-informat ion cases 
are the following: 

ASP(CI) 0.7826 (1 ) 0.7993= θ⋅ + − θ ⋅  ; 
ASP(IA) 0.7826 (1 ) 0.88= θ⋅ + − θ ⋅ ; ASP(IB) 0.7993= . 
As we can see from the formulae, the 

incomplete-in formation cases produce some results that 
depend on the value of θ, that is, on the proportion of type 1 
kickers that we have in the population under analysis. Figure 
1 depicts the values of c2 and γM that we obtain as equilibrium 
values for all possible levels of θ, and in that figure we can 
see that c2 tends to its complete-information level when θ 
tends to zero, and becomes equal to  one if “θ ≥ 0.82895”. 
The value of γM, correspondingly, jumps from a value equal 
to the strategy chosen for a complete-informat ion situation 

                                                                 
4 This number comes from substituting the values of πN, πO, PN, PO and μ2 into 
the formula found in propositions 1 and 2, which are the ones that define the 
range of values of θ for which case A and case B equilibria can occur.  
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where the goalkeeper faces kicker 2 (γM = 0.0917) to a value 
equal to zero, and this also occurs when “θ ≥ 0.82895”. 

 
Figure 1.  Equilibrium strategies under incomplete information 

Correspondingly, figure 2 depicts the average scoring 
probability under complete and incomplete information for 
all possible levels of θ. In it we see that, unless “θ = 0” or “θ 
= 1”, the average scoring probability is higher under 
incomplete informat ion. We also see that, when θ increases, 
the average scoring probability under complete information 
decreases (since “SP1(CI) < SP2(CI)”, and the average 
scoring probability is equal to “θ∙SP1(CI) + (1-θ)∙SP2(CI)”). 
The average scoring probability is also decreasing in θ under 
incomplete informat ion if “θ > 0.82895”, but for the levels of 
θ that are below that threshold it is constant and equal to the 
maximum possible average scoring probability (i.e., “ASP(II)  
= 0.7993”). 

 
Figure 2.  Average scoring probabilit ies 

4.2. Empirical Application 

The numerical examples that we have built in the previous 
section, although based on parameter values estimated using 
real data, are not a true empirical illustration of our 
incomplete-in formation models, since they just try to find 
out the equilibrium values for those models under certain 
assumptions. In this section we will get closer to an empirical 
application of the models using some data reported in four 
empirical studies about the penalty-kick game, and we will 
try to see if the use of an incomplete-information approach 

can be helpful to improve the results of an equilibrium 
estimation. The exercise, however, will fall short of an actual 
empirical estimation of an incomplete-informat ion model, 
basically because we will not use the original data which are 
the source of the empirical studies, but only some descriptive 
statistics that we will take as estimates of the underlying 
strategies and parameters of the model. The aim of this 
illustration, therefore, will not be to test an 
incomplete-in formation model but simply to show a possible 
approach to the problem of estimat ion of such a model in 
four particular situations. 

The empirical studies that we will use as a source fo r our 
illustrations will be the already cited papers by Chiappori, 
Levitt  and Groseclose[3], Palacios-Huerta[10], Bar-Eli et 
al.[1] and Baumann, Friehe and Wedow[2]. The first two of 
those studies give strong evidence in favor of the reasonable
ness of the complete-in formation Nash equilibrium as a 
solution for the penalty-kick game, while the third one 
questions that evidence. The study by Baumann, Friehe and 
Wedow, finally, does not test the complete-information 
model but presupposes its validity. 

Table 2.  Information from penalty-kick studies 

Concept CLG PH BEA BFW 
Average n 0,4488 0,4980 0,3917 0,4374 
Average c 0,1721 0,0750 0,2867 0,1582 
Average ν 0,5665 0,5310 0,4441 0,5435 
Average γ 0,0240 0,0170 0,0629 0,0110 
Implied πN 0,9437 0,9648 1,0000 1,0000 
Implied πO 0,8992 0,9443 1,0000 1,0000 
Implied μ 0,8418 0,8820 0,9304 0,6537 
Implied PN 0,6320 0,7120 0,7460 0,4922 
Implied PO 0,4400 0,5520 0,7040 0,3569 

Average Scoring Rate 0,7490 0,8010 0,8530 0,7357 

On table 2 we present a few data gathered from these four 
studies, which have been “translated” into our terminology 
of strategies (n, c, ν, γ) and scoring probabilit ies (πN, πO, μ, PN, 
PO)5. Of course, the numbers reported are not necessarily the 
actual strategies and probabilit ies but the average 
frequencies with which the players have chosen the different 
options (NS, OS and C) and the average scoring rates that 
occurred under the different combinations of those options. 
We also report the aggregate average scoring rates that 
correspond to the samples used in each of the studies. As the 
reader can imagine, “CLG” means Chiappori, Lev itt and 
Groseclose, “PH” means Palacios-Huerta, “BEA” means 
Bar-Eli et al., and “BFW” means Baumann, Friehe and 
Wedow. 

Using the scoring rates that appear on table 2, it is 
relatively simple to calculate which would be the average 
Nash equilibrium strategies that players would have chosen 
if they had played in a complete-informat ion environment. 

                                                                 
5 In three of the four cases the calculations were rel atively easy, because the 
studies reported either the actual frequencies and rates or the actual number of 
shots needed to calculate those rates. For the case of[2], conversely, we had to 
apply a very indirect method to detect the implied scoring rates in each of the 
strategy profiles.  
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These are the ones predicted by equations 2, 3, 4 and 5, 
depending on the fulfillment of equation 1. To check this last 
condition it is necessary to calculate what we can call a 
“critical μ”, which is the maximum level of μ for which we 
can expect the occurrence of a restricted-randomization 
equilibrium. The first rows of table 3 show those 
complete-information equilibrium strategies implied by the 
four studies under analysis, together with the corresponding 
critical μ and the implied average scoring probability (ASP). 

Table 3.  Equilibrium results under complete and incomplete information 

Concept CLG PH BEA BFW 
Complete information     

Critical μ 0,7400 0,8030 0,8633 0,7163 
Implied n 0,4881 0,5178 0,4692 0,5588 
Implied c 0,1807 0,1484 0,1281 0,0000 
Implied ν 0,5943 0,5936 0,5043 0,5588 
Implied γ 0,0991 0,0762 0,0629 0,0000 

Implied ASP 0,7584 0,8148 0,8719 0,7163 
Incomplete 
information     

Estimated θ 0,9367 0,9725 0,8347 0,8418 
Implied n1 0,4791 0,5121 0,4692 0,5196 
Implied n2 0,0000 0,0000 0,0000 0,0000 
Implied c1 0,1162 0,0489 0,1455 0,0000 
Implied c2 1,0000 1,0000 1,0000 1,0000 
Implied ν 0,6391 0,6296 0,5043 0,5588 
Implied γ 0,0240 0,0170 0,0629 0,0000 

Implied ASP 0,7578 0,8102 0,8719 0,7064 

If we now compare the complete-information equilibrium 
results from table 3 with the information reported on table 2, 
we can  see some striking similarit ies but also some important 
differences, which may cast some doubts about the ability of 
the complete-information model to explain the players’ 
behavior. The implied average scoring probabilities, for 
example, are very similar to the actual average scoring rates 
in the four cases. The implied values of c for the CLG study, 
of n for the PH study, and of γ for the BEA and BFW studies 
are also extremely  similar to  the average values reported on 
table 3. Conversely, we can see that the calculated 
complete-information equilib rium predicts implied values 
for the parameters that are very different to the reported 
average values for the cases of the parameters n and c in both 
the BEA and BFW studies, for the parameters c, ν and γ in 
the PH study, and also for the parameter γ in the CLG study. 
Moreover, the complete-informat ion model predicts that the 
equilibrium in the BFW study should be one of restricted 
randomizat ion (since the crit ical μ is larger than the 
parameter μ implied by the data), but we nevertheless 
observe a relatively large fract ion of kicks that were actually 
shot to the center of the goal by the kickers in that sample. 

Some of these divergences can be partially explained 
using a few easy incomplete-informat ion assumptions like 
the ones made to calculate a new set of implied parameters 
(which are the ones that appear in the last rows of table 3). 
For the CLG case, for example, we have assumed two types 
of kickers: type-2 kickers strictly prefer to shoot to the center 
of the goal, while type-1 kickers choose a mixed strategy that 

combines NS, OS and C with positive probability. To match 
the data on the observed choices of NS, we had to assume a 
certain distribution of the types (the “estimated θ”), and 
based on that we also estimated a certain value for the 
implied parameter c1. The parameter γ, conversely, was 
supposed to be equal to the observed average value for that 
parameter, while ν was estimated as the value that made 
type-1 kickers indifferent between choosing NS, OS and C. 

The same methodology for defining the two types of 
kickers were used to match the data reported in the PH and 
BEA studies. For the BFW  study, however, we had to use a 
different approach to conciliate the prediction o f the 
complete-information model (that on average it was not 
optimal for the kickers to choose C) with the data that show 
that 15.82% of the kicks were actually shot to the center of 
the goal. In order to solve that puzzle, we assumed that in this 
case type-1 kickers were p layers who never chose C and 
type-2 kickers were p layers who always shot to the center of 
the goal6. These assumptions allowed us to estimate a certain 
value for θ, but obliged us to assume that the implied value 
for γ was equal to zero. This last feature does not exactly 
match the data (since the average γ in the BFW study is 
0.011), but it helps us to explain how it is possible that there 
is such a large fraction of kickers that choose C in 
equilibrium while almost no goalkeeper is willing  to stay in 
the center of the goal. 

5. Conclusions 
The main conclusions of this paper have to do with the 

idea that, in some cases, the outcomes of a situation in which 
a soccer goalkeeper faces a kicker at a penalty kick can be 
better explained as the result of an incomplete-information 
game. In those cases, the relevant solution concept is no 
longer the mixed-strategy Nash equilibrium of the game but 
the corresponding Bayesian equilibrium, since at least one of 
the players (e.g., the goalkeeper) is facing uncertainty about 
his opponent’s type. 

In the simplified model that we presented, we see that, 
under incomplete information, the typical situation is that 
one of the kicker’s types is responding to a strategy that the 
goalkeeper has designed for a different type of opponent. 
Being unable to distinguish among the different types, the 
goalkeeper has to play the same strategy against every 
opponent, and this is why some types of kickers may prefer a 
pure strategy. When we mix the strategies played by the 
different kickers, however, we end up with a sort of “average 
kicker strategy” with different probabilit ies for the availab le 
pure strategies, and this average strategy has to be such that 
the goalkeeper is indifferent between playing the pure 
strategies that he mixes when he chooses his own best 
response to the “expected kicker”. 
                                                                 
6 Of course, this implies assuming that type-2 kickers are players whose scoring 
probabilities when shooting NS or OS are complet ely different (lower) than the 
ones associated to type-1 kickers. These lower scoring probabilities are never 
observed, since type-2 kickers always choose C instead of NS or OS. 
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We have also found cases in which one of the kicker’s 
types plays a “restricted mixed strategy” (e.g., one that 
randomizes between NS and OS) while the other type plays a 
“full mixed  strategy” (i.e., one that randomizes among NS, 
OS and C). Moreover, we can also end up in a situation in 
which one of the kicker’s types plays a restricted mixed 
strategy and the other one plays a pure strategy, and the 
goalkeeper chooses a restricted mixed strategy himself 
(which  is the best response to the kicker who plays the 
restricted mixed strategy). This last case produces the 
apparently paradoxical situation that, in equilibrium, the 
goalkeeper never chooses the center of the goal while one of 
the kicker’s types always shoots to that place. 

The relative lack of informat ion that the goalkeeper faces 
in a situation of incomplete information makes the average 
scoring probability higher than under a situation of complete 
informat ion, which is equivalent to say that, on average, the 
kicker is better off under incomplete information and the 
goalkeeper is worse off. This feature can therefore be used to 
find the “value of information” in  this game. As goalkeepers’ 
payoffs are the complements of the scoring probabilit ies, the 
value of knowing the true characteristics of a kicker can be 
measured as the difference between the expected scoring 
probability under complete and incomplete in formation. This 
difference is s maller if we are in a situation in which 
uncertainty is small (i.e., when the parameter θ, which 
measures the distribution of the kicker’s types, is very close 
to zero or to one) and becomes larger when we approach the 
level of θ where the Bayesian equilib rium of the game 
changes from case A to case B. The difference will also be 
larger if the different types of kickers are “more different” 
among themselves. 

Another virtue that the incomplete-information approach 
could have is to solve some puzzles that the empirical 
literature on penalty kicks has discovered. Indeed, we have 
seen on section 4 that the Nash equilibrium concept performs 
quite well to explain some phenomena observed in a number 
of empirical studies about penalty kicks, but that some other 
features are hard to exp lain using a complete-information 
approach. This is particularly true for the relat ively 
widespread fact that concerns shots to the center of the goal, 
which are typically more common than what a 
complete-information Nash equilibrium predicts. This 
feature of the complete-information model has been 
criticized by Bar-Eli et al.[1] as a weakness of the 
game-theoretic approach, and it  has been explained by those 
authors using norm theory. 

By introducing incomplete informat ion, however, the 
situation described in  the previous paragraph can be 
explained as the result of a game-theoretic equilibrium. 
Without recurring to psychological arguments, we have seen 
that it can be optimal for a goalkeeper to randomize between 
NS and OS although he knows that a group of kickers will 
always choose C, provided that such a group of kickers is 
relatively small. We have also seen that it is possible to think 
of certain Bayesian equilibrium solutions in which the 
goalkeeper randomizes among NS, OS and C, and the 

different types of kickers choose more restricted mixes (e.g., 
between NS and OS) or even pure strategies. 

The main  analytical problem of introducing incomplete 
informat ion into the penalty-kick game may perhaps be its 
extreme capacity to match the data. Indeed, if we build a 
game of incomplete informat ion that postulates more than 
two types of players and we arbitrarily use different 
probabilit ies for those types, then we could probably explain 
any dataset on penalty kicks as a result of a particular 
Bayesian equilibrium. If that is the case, then many of the 
empirical tests that the game-theoretic penalty-kick literature 
has designed could become useless, since it would actually 
be impossible to distinguish between a Bayesian equilibrium 
and a situation in  which the players are not choosing their 
strategies rationally. 

We nevertheless believe that the Bayesian equilibrium 
concept also opens the door for new possible empirical 
estimations of the penalty-kick game, especially in cases in 
which it is not clear whether the goalkeepers know their 
opponents’ types. This is particularly true for situations in 
which the expected incomplete-information solution is 
marked ly different from the expected complete-information 
solution, and especially when we can somehow div ide a 
sample o f penalty kicks into different types of kickers 7. In 
those cases, it could be possible to contrast the predictions of 
the complete-in formation Nash equilibrium concept with the 
ones of the incomplete-informat ion Bayesian equilibrium 
concept, and also with  other alternative concepts that are 
foreign to the game-theoretic approach. 
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