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Abstract  The paper proposes a simple method which optimises the design of plane, rigid no sway frame structures based 

on the system buckling load. It is centred on either maximising the buckling load or minimising the weight of the structure, or 

both; and to have all stories buckling at the same time. The approach to calculate the system buckling load is derived and also 

presented. The optimisation method is applied to various frames examples and the results are compared to that obtained from 

a system buckling analysis performed with ANSYS finite element analysis (FEA) software. The proposed optimisation 

procedure proved successful for no sway multi-story rigid frames, as validated by the acceptable percentage differences of 

below 5% from the FEA analysis.  
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1. Introduction 

Buckling is a primary concern for structural design, 

especially, in the design of steel frame structures. For a 

structural system, buckling or loss of stability is a system 

phenomenon. With the advent of being more efficient in 

design, total member capacity utilisation should be achieved 

to prevent over-design of structures and essentially material 

wastage. Current optimisation methods of frame structures 

verify the buckling of a frame by only evaluating a column 

or story as opposed to the entire system. In addition, some 

are laborious and/or complex and require some type of 

software to calculate the buckling load. A simple hand 

method calculation will not only add to the efficiency in 

optimal design, but also provide the design engineer with 

more control over parameters as the calculation can easily 

be done by hand. 

The design methods which utilised optimisation 

techniques such as the genetic algorithm and harmony 

search method by Kameshki & Saka [1], Camp, et al. [2] 

and Saka [3], made use of design constraints based on the 

strength and serviceability requirements outlined in design 

codes. The only provision made for buckling in these 

studies, was the lateral torsional buckling check for 

beam-column members. The main focus of these design 

methods was  to minimise weight  while  constrained to  
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design variables for strength and serviceability. 

Optimisation methods based on the stability criterion all 

considered buckling through different approaches. Pezeshk 

& Hjelmstad [4], proposed a method which only required 

the buckling eigenvalues and eigenvectors of the structure. 

This method also utilised the optimality-criteria method, 

and its designs were constrained to have a constant weight. 

Manickarajah, et al. [5] also made use of the eigenvalue 

problem in its method through the use of finite element 

analysis. Its objective was also based on improving the 

fundamental buckling load by local modification of each 

element after subsequent iterations. It was centred on 

shifting the material from the strongest part of the structure 

to the weakest part. An instability coefficient was 

introduced as a surrogate for the dominant eigenvalue of the 

linearized buckling problem in the method proposed by 

Gil-Martin, et al. [6]. It also used approximate expressions 

of second-order phenomena to identify those components 

that need to be modified after successive iterations. This 

method involved a story-by-story optimisation, yet the 

instability coefficient was calculated for each member in a 

story. 

A simple method was developed to account for the 

system buckling load using story buckling analysis by Li 

[7]. Considering all the current optimisation methods, 

specifically those based on a stability criterion, a gap still 

exists in this field in that none of the methods account for 

buckling of the system in its entirety. Furthermore, these 

methods did not demonstrate that an optimised frame is 

achieved where full member capacity was utilised which 

can address the common practice of over-design and 

subsequent higher costs. Subsequently, this paper presents a 

simple approach to optimisation of frame structures against 
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buckling based on system stability approach, particularly 

the design of plane, rigid no sway frame structures. The 

method is a systematic approach in that optimisation will 

attempt to achieve all stories buckling simultaneously as 

opposed to shifting the critical story or member to a more 

optimal position in the structure. This approach will 

demonstrate utilisation of full member capacity thus 

reducing material wastage. The optimisation method was 

developed by expanding on existing methods, based on a 

system buckling load approach that was derived and is 

presented, and then applied to various frame examples 

presented in the paper. The findings from these applications 

are shown and discussed. 

2. Research Methodology 

2.1. System Buckling Load of a No Sway Frame 

Before an optimisation technique can be derived, a 

method is needed to calculate the system buckling load of no 

sway frames under ‘non-rigid’ beam conditions. 

Li [7] proposed a simple method for the evaluating of 

system buckling load of plane sway frame, which can easily 

be performed by hand. This method is applicable to sway 

frames only, and is based on the assumptions of ‘rigid’ 

beam-column connections and that the beam, compared with 

the column connected to it, can be considered as “rigid”. It is 

clear that most of the structures in engineering practice do 

not meet the requirement set by the second assumption, i.e., 

‘rigid beam’. Essentially, what is obtained with this method 

is the upper-bound of the system buckling load. When the 

beam is not considered as rigid, the real system buckling load 

would be smaller than this upper-bound obtained. Based on 

this method, some further developments were made and the 

new approach is outlined in the next section. 

2.2. Upper-bound of the System Buckling Load of Rigid 

No Sway Plane Frames 

Firstly, the upper-bound system buckling load of a no 

sway frame is found. The ‘bracing’ of the no sway frame is 

first released and a corresponding sway frame, referred    

to as the ‘accompanying sway frame’ is obtained. The 

upper-bound of the system buckling load of the 

accompanying sway frame can be determined with the story 

buckling method as suggested by Li [7]. By a comparative 

study of a single sway column with a single no sway column 

which is the same as this sway column, a modification factor, 

η, was derived. The upper-bound system buckling load of the 

no sway frame can be determined by applying this 

modification factor to the upper-bound of the system 

buckling load of its accompanying sway frame.  

The procedure will be demonstrated with a single    

story multi-bay no sway frame, as shown in Figure 1(a),  

with its loads acting on it. By releasing its bracing, the 

accompanying sway frame is produced, shown in Figure 

1(b). 

The system buckling load of the accompanying sway 

frame can be found as follows [7], under the same 

assumptions as stated in the method: 

 

Figure 1.  One story multi-bay no sway frame with its respective loads (a) 

and its accompanying sway frame (b) 

The horizontal stiffness of the system shown in Figure 1(b) 

before loading (without axial loads) is calculated as: 

𝐾 =  
12𝐸𝑖𝐼𝑖

ℎ3
𝑛
𝑖=1      (1) 

where i refers to the i-th column. 

Considering first the P- effect only, the influence of axial 

loads on horizontal stiffness of the system can be accounted 

for by introducing the following negative stiffness: 

𝐾𝑃 =  
𝑃𝑖

ℎ
=

𝑃

ℎ

𝑛
𝑖=1  𝛾𝑖

𝑛
𝑖=1     (2) 

where 𝛾𝑖 =
𝑃𝑖

𝑃
.  

After loading, the horizontal stiffness of the system 

becomes: 

𝐾𝑚𝑑 = 𝐾 − 𝐾𝑝      (3) 

As the system approaches buckling, the stiffness of the 

system, Kmd, becomes zero;  

𝐾𝑚𝑑 = 𝐾 − 𝐾𝑝 =  
12𝐸𝑖𝐼𝑖

ℎ3
𝑛
𝑖=1 −

𝑃

ℎ
 𝛾𝑖 = 0𝑛

𝑖=1      (4) 

By solving Equation (4), the buckling load of the system, 

P, produced by the first-order analysis above (considering 

P- effect only), can be obtained. 

For a full buckling analysis, the P- effect needs to be 

taken into account and P obtained previously, needs to be 

modified by a factor, . The buckling load of the 

accompanying sway frame can be then be obtained as [6]: 

𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

= 𝛽 × 𝑃     (5) 

where 𝛽 =
𝜋2

12
 is the modification factor. 

Using the analysis outlined above, the upper-bound 

buckling load of a sway column with a fixed base and the 

other end restrained from rotating, as shown in Figure 2, can 

be determined as 𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

=
𝜋2𝐸𝐼

ℎ2 . If this column is braced and 

becomes a no sway column, as shown in Figure 3, the 

buckling load then becomes, 𝑃𝑐𝑟 ,𝑢𝑝𝑝𝑒𝑟 −𝑏𝑜𝑢𝑛𝑑
𝑛𝑜  𝑠𝑤𝑎𝑦

= 𝑃𝑐𝑟    =
4𝜋2𝐸𝐼

ℎ2 . 

Thus, the upper-bound load modification factor, , for a 

column with end conditions as per Figure 3, can be obtained 

as the ratio between these upper-bound solutions: 

𝜂 =
𝑃𝑐𝑟     

𝑃𝑐𝑟
𝑠𝑤𝑎𝑦 = 4     (6) 

Therefore, the upper-bound of the system buckling load of 

the original no sway frame can be obtained as: 

(a) (b) 
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𝑃𝑐𝑟    = 𝜂 × 𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

    (7) 

If one end of the column can rotate such as the free end 

shown in Figure 3, or the case of a pinned/hinged base, the 

system buckling of the sway column becomes, 𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

=
𝜋2𝐸𝐼

4ℎ2 . 

Once it is braced and cannot sway, the system buckling 

load becomes 𝑃𝑐𝑟    =
𝜋2𝐸𝐼

0.49ℎ2 . In this case, the modification 

factor, , for a column with one end free is found to be 

8.1633. 

2.3. System Buckling Load of No Sway Rigid Plane 

Frames 

In order to derive the modification factor to apply to the 

upper-bound system buckling loads, it must be noted that the 

system buckling load of a frame is affected by the load and 

stiffness distribution.  

 

Figure 1.  A sway column with both ends restrained and the no sway 

column 

 

Figure 2.  A sway column with one free end and the no sway column 

A single story no sway frame with the number of bays =b 

and the loads acting on it, are presented in Figure 4. It can be 

seen that all columns, except the two columns at the ends of 

the frame, bear a load of 2P and have a stiffness of I, and the 

beams have a stiffness of nI (n=
IB

IC
 ). 

 

Figure 4.  A single story b bay no sway frame with its load-stiffness pattern 

If the number of bays, b, is singular, the frame shown in 

Figure 4 can be folded into a one bay frame as shown in 

Figure 5 (a); similarly, if the bay number b is even, the one 

bay frame obtained is shown in Figure 5 (b). These frames 

are called the equivalent one bay frame of the original frames. 

It must be noted, that when the multi-bay frame is folded, the 

loads on a column should remain with the column. 

Two theorems are used in the analysis of the system 

buckling load: 

  Theorem 1: The equivalent one bay no sway frame has 

the same system buckling load as that of the original no 

sway frame. 

  Theorem 2: The system buckling load of a no sway 

frame system remains unchanged if the load and 

stiffness of each member in the system is multiplied by 

the same constant.  

 

Figure 3.  Equivalent one bay frame of a frame with b bays 

According to these theorems, the system buckling load of 

a no sway frame is the same as the system buckling load of 

its normalized equivalent one bay frame as shown in Figure 6. 

Two scenarios are considered; namely, when the number of 

bays is singular and even. 

 

Figure 4.  Normalised equivalent one bay frame with b number of bays 

2.3.1. Number of Bays is Singular 

If the number of bays, b, is singular as shown in Figure 6 

(a), and b>1 with a minimum of three, the stiffness of the 

columns 
𝑏+1

2𝑏
𝐼  in the normalised equivalent frames when 

b=3, becomes 
𝑏+1

2𝑏
𝐼 =

3+1

2×3
=

2

3
𝐼. Conversely, as b tends to 

infinity, the limit of the column stiffness 
𝑏+1

2𝑏
𝐼 is 

1

2
𝐼. The 

two frames corresponding to b=3 and b= are shown in 

Figure 7 (a) and (b). 
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Figure 5.  Normalised equivalent one bay frames when b is singular 

System buckling analysis using finite element analysis 

software (FEA) ANSYS, is performed on the frames shown 

in Figure 7 at different beam stiffness’ (values of n) and their 

respective system buckling loads were obtained. 

With the simple approach suggested earlier, the 

upper-bound of the system buckling load of the frame shown 

in Figure 6 (a) can be obtained as follows: 

𝐾 = 2 ×
12𝐸

𝑏+1

2𝑏
𝐼

ℎ3 =
24𝐸𝐼

ℎ3 ×
𝑏+1

2𝑏
   (8) 

𝐾𝑃 = 2 ×
𝑃

ℎ
     (9) 

𝐾 − 𝐾𝑃 =
24𝐸𝐼

ℎ3 ×
𝑏+1

2𝑏
− 2 ×

𝑃

ℎ
= 0   (10) 

𝑃 =
12𝐸𝐼

ℎ2
×
𝑏 + 1

2𝑏
 

Using Equation (5), the upper-bound system buckling load 

of the accompanying sway frame of the frame in Figure 6 (a) 

can be obtained: 

𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

= 𝛽 × 𝑃 =
𝜋2

12
×

12𝐸𝐼

ℎ2
×
𝑏 + 1

2𝑏
=

𝜋2𝐸𝐼

ℎ2
×
𝑏 + 1

2𝑏
 

Therefore, the upper-bound of the system buckling load of 

the no sway frame, Pcr
    , corresponding to 𝐼𝐵 = 𝑛𝐼 = ∞, can 

be obtained with Equations (6) and (7): 

𝑃𝑐𝑟    = 𝜂 × 𝑃𝑐𝑟
𝑠𝑤𝑎𝑦

= 4 ×
𝜋2𝐸𝐼

ℎ2 ×
𝑏+1

2𝑏
  (11) 

In this scenario, Equation (11) indicates that the 

upper-bound of the system buckling load, Pcr
    , is related to 

the number of bays, b; as a result: 

2

2

2

2

8
3

3

2

cr

EI
when b

hP
EI

when b
h






 


 
  


     (12) 

The system buckling load coefficient, , can then be 

defined as the ratio of the system buckling load to its 

upper-bound: 

𝜇 =
𝑃𝑐𝑟

𝑃𝑐𝑟     
      (13) 

On the contrary, when the beam is not ‘rigid’, the length of 

the beam, LB, will affect the restraint from the beam on the 

column. To take this effect into account, the parameter, , is 

introduced: 

𝜆 =
𝐼𝐵𝐿𝐶

𝐼𝐶𝐿𝐵
     (14) 

According to this definition, for the frames shown in 

Figure 7 at LB=1.5h: 

3
2 2

4
1 1 3

3
2

B C

C B

n b
I L nI h b

n
bI L b n b

I L
b




 

     
   

(15) 

Design graphs can now be produced using the results from 

the FEA system buckling analysis, as well as Equations (12), 

(13), and (15). The design graphs shown in Figure 8 indicate 

the relationship between the system buckling load coefficient 

and for the two frames shown in Figure 7, which can now be 

used in further frame analysis. 

 

Figure 6.  Design graph when number of bays is singular 

In Figure 8, it is seen that the two graphs plot close to 

each other and thus it would be reasonable to use the graph 

corresponding to b= for design examples irrespective of 

the number of bays. The value of λ for this frame can be 

easily determined. For a no sway frame where the number 

of bays, b, is between three and infinity, the corresponding 

column stiffness  
𝑏+1

2𝑏
, should lie between 0.5 and 0.6667 

relating to b=3 and b=, respectively. Lastly, using the 

design graph in Figure 8, the system buckling load can be 

easily be evaluated from: 

crP P                    (16) 

2.3.2. Number of Bays is Even 

If the number of bays, b, is even, the normalized 

equivalent one bay frame produced is shown in Figure 6 (b). 

The number of bays can be between two and infinity. At  

the lower end, b=2, 
𝑏+2

2𝑏
=

2+2

2×2
= 1, and at the higher end, as 

b goes to infinity, 
𝑏+2

2𝑏
,  goes to ½ . The two frames 

corresponding to these column stiffness’ are presented in 

Figure 9 (a) and (b). 

The design graphs for this case were produced using the 

same procedure when the number of bays are singular, and is 

shown in Figure 10.  

It must be noted however, that the determination of the 

upper-bound of the system buckling load of the frame shown 

in Figure 9 (a) corresponding to b=2, is calculated by taking 
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into consideration the column with the lower stiffness of 
1

2
I. 

For this no sway frame, the buckling of the system is ‘local’, 

since the column with stiffness  
1

2
I  will reach buckling 

before the other column. In addition, the upper-bound 

solution of this frame can easily be determined as 

22crP  . 

 

Figure 7.  Normalised equivalent one bay frames when the number of bays 

is even 

 

Figure 8.  Design graph when number of bays is even 

From the design graphs produced in Figure 8 and 10, it is 

evident that only two design graphs are required in the 

evaluation of the buckling load of all multi-story frames, that 

being the graph corresponding to b=2 and b=.  

The method proposed in this section can be also extended 

to multi-story frames as seen in the application examples 

presented in the paper. This can be attributed to the fact that 

there is no beam shear in no sway frames hence the influence 

of the adjacent stories on the system buckling load is 

minimal. This was also established by Li et al. [8] when 

demonstrating their method for stability analysis of 

multi-story frames, where it was found that in no sway 

rigid-base frames, the error produced from their method had 

no correlation to the number of stories hence no influence on 

the buckling load. Furthermore, in the normalised frames 

presented, the load arrangements on the frames are either 2P 

or P, but a FEA analysis performed in ANSYS on a single 

bay single story frame where the loads were increased to 5P, 

indicated that the influence of an increase in loads on the 

value of  is minimal. Thus the design graphs derived in 

Figure 8 and 10 for a single story single bay frame can be 

applied to multi-story single bay frames. 

2.4. Optimisation Procedure 

2.4.1. Assumptions and Design Criteria 

The following assumptions and design criteria were 

applied in the development of the optimisation method: 

i.  The connections between the column and beams are 

rigid, 

ii.  Only plane no sway frames are considered and are 

fully braced out-of-plane, 

iii. The same section properties are applied within a story, 

and 

iv.  The optimised section found will not be selected  

from a database of existing commercially available 

sections, but rather expressed as a stiffness. The 

sectional properties obtained can then be used to 

select a commercially available section with the 

closest properties to this optimised stiffness. 

2.4.2. Optimisation Objectives 

The proposed optimisation method attempts to achieve the 

following: 

i.  The main goal of the optimisation is to have all 

stories buckling at the same time and to ensure the 

full member capacity is utilised- this could be 

demonstrated through the buckled shape of the frame 

obtained from FEA. 

ii.  To minimise the weight of the structure or maximise 

the critical buckling load. 

iii.  To ensure the method encompasses, to the greatest 

degree, the factors affecting stability of a structure. 

iv.  To ensure that it is simple to implement. 

v.  To apply the method to various load cases and 

structural design. 

2.4.3. Optimisation Method 

The method presented develops on the first-order analysis 

optimal design proposed by Gil-Martin, et al. [6] by 

incorporating the story buckling method from Li [7] and the 

method to obtain the ‘real’ system buckling load as outlined 

previously.  

The optimisation process is as follows: 

1.  Select initial section stiffness’ for each story for the 

first iteration, k, where its stiffness values are 

expressed in relation to the stiffness of the first story. 

The same section stiffness must be used within a story. 

2.  Calculate the upper-bound system buckling load for 

each story i, Pcr,I
      using Equation (7). 

3.  Modify Pcr
     to account for non-rigid beams and 

calculate the story buckling load, Pcr,I, for each story 

using Equation (16) and the design graphs in Figure 8. 

4.  Identify the critical story; the one with the minimum 

buckling load, Pcr, min. 

5.  The ratio of the each stories’ buckling load, Pcr to the 

minimum buckling load, Pcr, min, is calculated, namely 

the story buckling ratio, i, for each story, where 
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αi=
Pcr,min

Pcr,i
. 

6.  Determine the new section stiffness for the columns 

and beams, Ib and Ic, of each story for the next iteration, 

k=2, based on αI and the previous stiffness as follows: 

Beam/Column stiffness k=2,i = αI ×  Beam/Column 

stiffness k=1,i 

7.  Repeat the optimisation procedure (step 2-5) until   

0.9 for all stories; at this point the optimisation process 

is complete. 

For ease of computation, the optimisation process was 

programmed using MATLAB software. The method is 

applied to frames of various loading arrangements and 

geometry, and the results are compared to that obtained from 

a system buckling analysis performed with FEA software, as 

it is common in the design practice to use software to 

compute the system buckling loads of frames. The FEA 

software used in the analysis was ANSYS Mechanical 

APDL. An Eigenvalue Buckling Analysis (linear behaviour) 

was performed using a 3D 2-node line with 6 degrees of 

freedom at each node. All frame elements were modelled 

with this line element. This type of analysis yields the 

theoretical buckling strength (bifurcation point) of a 

structure [9]. The FEA model used a square bar section with 

a Young’s Modulus, E of 200 GPa. The difference between 

the results obtained from the method and FEA will then 

illustrate the validity of the method and the extent to which 

the hypothesis is met. Furthermore, the buckled shape 

obtained from FEA is examined to: i) verify that all stories 

buckle under the first mode and, ii) evaluate the deviation of 

the members from a straight line in the deflected shape to 

indicate that full member capacity is being utilised. The 

weight of the frames before and after optimisation was 

compared and was calculated using a steel square bar section 

of density 7800 kg/m3. 

3. Application Examples 

3.1. No Sway Analysis 

3.1.1. Example 1: 2 Story 1 Bay Frame 

A two story one bay frame and with its loading 

arrangement as shown in Figure 11, was optimised with all 

columns initially having a stiffness of I and all beams having 

a stiffness of 0.5I.  

The system buckling load of the original frame is first 

determined to obtain the story with the minimum story 

buckling load, from which the other stories can be optimised 

from.  

The accompanying sway frame can be obtained by 

releasing the bracing of the no sway frame, as described 

before. For the accompanying sway frame, it is easy to find 

that the frame will buckle at the bottom story. The 

upper-bound story buckling load, Pcr
    , can be found for this 

frame using the method outlined by Li [7] for sway frames 

under ‘rigid’ beams condition. 

The horizontal stiffness of this story before loading: 

𝐾1 = 2 ×
12𝐸𝐼

ℎ3
 

The negative stiffness caused by the axial loads on this 

story, given that the loads from the upper story are 

transmitted to this story: 

𝐾𝑝1 = 2 ×
3𝑃

ℎ
=

6𝑃

ℎ
 

After loading, the horizontal stiffness of the story 

becomes: 

𝐾 − 𝐾𝑝 =
24𝐸𝐼

ℎ3
−

6𝑃

ℎ
= 0 

Solving this equation, one can obtain: 

𝑃1 =
4𝐸𝐼

ℎ2
 

 

Figure 9.  A two story one bay frame 

Taking P- effect into account, the system buckling load 

of the accompanying sway frame then becomes: 

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

4𝐸𝐼

ℎ2
=

𝜋2𝐸𝐼

3ℎ2
 

Applying the relationship previously shown between the 

upper-bound system buckling loads of sway and no sway 

frames, the upper-bound system buckling load, 

corresponding to Ib=nI=, of the original no sway frame 

shown in Figure 11 can be obtained: 

𝑃𝑐𝑟 ,1
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

4𝜋2𝐸𝐼

3ℎ2
 

Accounting for the non-rigid beams in the original no 

sway frame, the real system buckling load can be determined 

by considering the equivalent normalised one bay frame. 

Since the number of bays in the frame is one; b=1; there is no 

need for an equivalent frame, thus: 𝜌 =
𝑏+1

2𝑏
= 1  and 

 =
𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.5𝐼×ℎ

𝐼×1.5ℎ
= 0.333. 

The design graph when b = was used to obtain the value 

of , as it was determined before that when the column 

stiffness is the same, the value of  does not differ 

significantly. From the graph in Figure 8, for a  value of 

0.3333, = 0.5588. 

Thus the final story buckling load can be obtained: 
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𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,1
      = 0.5588 ×

4𝜋2𝐸 × 𝐼

3ℎ2
= 7.354

𝐸𝐼

ℎ2
 

The same process is applied to the second story of the 

frame. For the first iteration of the original un-optimised 

frame, the story buckling loads and the total weight of the 

frame is summarised in Table 1.  

Table 1.  Iteration 1 of the Optimisation Procedure of Example 1 

Story 

number, i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 24 6 4/3 0.333 0.558 7.354 1 

2 24 2 4 0.333 0.558 22.02 0.33 

Weight of frame 4.77kg 

Critical story 1 

From Table 1, it can be seen that the critical story, the 

story with the minimum story buckling load, was found to be 

story 1. The story buckling load ratio  is obtained for each 

story. Optimisation is reached when  is greater than 0.9 for 

all stories hence the frame has not been optimised. 

A second iteration is performed where the new column 

and beam stiffness is reduced by the story load ratio  

determined before. For example, the new column stiffness 

for iteration second iteration of story 2 is given as follows: 

Story 2 column stiffnessk=2=Column stiffnessk=1 

=I0.333=0.333I. 

The same procedure is applied on the frame using the new 

column and beam stiffness’ with the results summarised in 

Table 2. 

Table 2.  Iteration 2 of the Optimisation Procedure of Example 1 

Story 

number, i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 24 6 4/3 0.333 0.558 7.354 1 

2 7.92 2 4/3 0.333 0.558 7.354 1 

Weight of frame 3.76kg 

Critical story All stories 

From the results of the second iteration shown in Table 2, 

it can be seen that optimisation has been reached as all story 

ratios  are equal to one. The weight of the frame has 

reduced by 21%. Previously the frame would have reached 

buckling dictated by the story with the lowest buckling load, 

that being the first story, and after optimisation, all stories 

have the same buckling load. The final optimised frame and 

its buckled shape is shown in Figure 12. When the optimised 

frame was analysed in ANSYS, a system buckling load of 

5.61
𝐸𝐼

ℎ2 was obtained, resulting in a 31% smaller difference 

than the result obtained from the proposed method. The 

percentage difference could be attributed to the fact that the 

stiffness of the second story in the optimised frame is 

considerably lower than the first story- a third of the stiffness. 

As a result, this story would buckle at a lower load than 

calculated and an earlier failure would cause the bottom 

story to buckle at this lower load as well. It is noted that 

when the upper-bound buckling load obtained from FEA and 

the proposed method was compared, the difference between 

these values was minimal. Furthermore, it was seen from the 

buckled shape of the frame, under rigid beams, that only the 

first story buckled at this load. This could indicate that the 

upper-bound load used to determine the system buckling 

load of the frame during optimisation, may have been 

overestimated as it did not account for the lower stiffness of 

the second story. The percentage difference for the system 

buckling load, if the FEA result is accepted as correct, is 

unacceptable and would need to be improved. However, one 

bay multi-storey frames are not often designed and found in 

practice and thus it would not deem necessary to improve 

this result for the purposes of this research at hand. 

 

Figure 10.  Optimised two story one bay frame and its buckled shape as 

obtained from FEA 

3.1.2. Example 2: 4 Story 3 Bay Frame 

A four story three bay frame and the corresponding loads 

as shown in Figure 13, was optimised with all columns and 

beams initially having a stiffness as indicated. 

 

Figure 11.  A four story three bay no sway frame 

The upper-bound story buckling load of the accompanying 

sway frame, 𝑃𝑐𝑟    , can be found as before. 

𝐾1 = 4 ×
12𝐸𝐼

ℎ3    

𝐾𝑝1 = 2 ×
10𝑃

ℎ
+ 2 ×

20𝑃

ℎ
=

60𝑃

ℎ
  

𝐾 − 𝐾𝑝 =
48𝐸𝐼

ℎ3 −
60𝑃1

ℎ
= 0  
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𝑃1 =
4𝐸𝐼

5ℎ2  

Taking P- effect into account, the system buckling load 

of the accompanying sway frame can be obtained: 

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

4𝐸𝐼

5ℎ2 =
𝜋2𝐸𝐼

15ℎ2  

𝑃𝑐𝑟 ,1
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

4𝜋2𝐸𝐼

15ℎ2   

For the frame shown in Figure 13, the equivalent one bay 

frame for the first story, when the frame is ‘folded’ into the 

middle bay, is shown in Figure 14. 

 

Figure 12.  Normalised equivalent one bay frame for first story of frame in 

Example 2 

For the frame in Figure 14, the value of  =
𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.5𝐼×ℎ
2

3
𝐼×1.5ℎ

=0.5. The design graph in Figure 8 when b = was 

used to obtain the value of , thus for a  value of 0.5, = 

0.5818. 

∴ 𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,1
      = 0.5818 ×

4𝜋2𝐸×
1

2
𝐼

15ℎ2 = 0.766
𝐸𝐼

ℎ2  

Note that the stiffness of the column was reduced by the 

value of  when b= as the value of  was taken from the 

design graph for this equivalent frame. 

The same process is applied to the remaining three stories 

of the frame. The story buckling load ratio  is obtained for 

each story after the first iteration and it was found that the 

frame has been not been optimised as all values are not 

greater than 0.9 and the critical story was found to be story 1. 

Another iteration is performed where the previous column 

and beam stiffness is reduced by the story load ratio . The 

results of the first and second iteration are summarised in 

Table 3. From the results, it can be seen that the weight of 

the frame has reduced by 34%. When the optimised frame 

was analysed in ANSYS, a system buckling load of 

0.807 
𝐸𝐼

ℎ2 was obtained, resulting in a 5% larger difference. 

The buckled shape of the frame obtained from FEA is 

shown in Figure 15. The percentage difference could be 

attributed to the load arrangement of the frame. The fourth 

story (top story) has a lower load applied to it and thus the 

initial system buckling load was considerably higher than 

the other stories as seen in Table 3. 

 

Table 3.  First and Second Iteration of Optimisation Procedure of Example 
2 

Iteration 1 

Story 

number, 

i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 48 60 4/15 0.5 0.581 0.766 1 

2 48 36 4/9 0.5 0.581 1.276 0.6 

3 48 18 8/9 0.5 0.581 2.552 0.3 

4 48 6 2.67 0.5 0.581 7.656 0.1 

Weight of frame 22.4kg 

Critical story 1 

Iteration 2 

1 48 60 4/15 0.5 0.581 0.766 1 

2 28.8 36 4/15 0.5 0.581 0.766 1 

3 14.4 18 4/15 0.5 0.581 0.766 1 

4 4.8 6 4/15 0.5 0.581 0.766 1 

Weight of frame 14.8kg 

Critical story All 

As a result, the story buckling load ratio, , for this story 

is lower and the final stiffness calculated, contributed to a 

lower buckling load being obtained. Furthermore, from the 

buckled shape in Figure 15, it is noted that the end columns 

of the first story did not buckle as extensively as the inner 

bays. This can be an indication that the full member 

capacity of these columns had not been reached and hence 

the buckling load was found to be higher as per the FEA 

result. However, this percentage difference is an acceptable 

estimate for the purposes of an estimated simple method to 

optimise frame structures.  

The optimisation resulted in a frame with a lower weight 

under the same system buckling load found before 

optimisation. If the initial objectives that were set out are 

considered, namely that the buckling load increases whilst 

the weight of the frame reduces, the frame in Figure 13 

could be optimised once more in an attempt to achieve this 

outcome. The results of frame buckling loads from the first 

iteration in Table 3 are referred to, but the story buckling 

ratio, , is recalculated. If the story with the next lowest 

buckling load is selected as critical, that being story 2 in this 

frame, then the new  ratios and results of the optimisation 

is shown in Table 4. The results from the two optimisation 

analyses done are summarised in Table 5. It is noticed that 

when the second story was selected as critical, the buckling 

load of the frame increased by 67% and the weight reduced 

by 15%. This may not be the optimal solution, as a lighter 

frame was achieved in the first frame, yet with a lower 

buckling load. This would be the lower-bound design of the 

frame seeing that the minimum buckling load possible 

under this configuration was achieved. This then leads to 

the fact that the designer will need to initially outline their 

objectives that the frame optimisation should achieve. 

Nevertheless, the objective of increasing the buckling load 

whilst minimising the weight of the frame was met. 
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Figure 15.  Buckled shape of the optimised 4 story 3 bay no sway frame 

Table 4.  Iteration 1 and 2 of the Optimisation Procedure of Example 2 with 
Story 2 Selected as Critical 

Iteration 1 

Story 

number, i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 48 60 4/15 0.5 0.581 0.766 1.67 

2 48 36 4/9 0.5 0.581 1.276 1 

3 48 18 8/9 0.5 0.581 2.552 0.5 

4 48 6 2.67 0.5 0.581 7.656 0.167 

Weight of frame 22.4kg 

Critical story 2 

Iteration 2 

1 80 60 4/9 0.5 0.581 1.276 1 

2 48 36 4/9 0.5 0.581 1.276 1 

3 24 18 4/9 0.5 0.581 1.276 1 

4 8 6 4/9 0.5 0.581 1.276 1 

Weight of frame 19.1kg 

Critical story All stories 

FEA result of optimised frame, Pcr 1.349
EI

h2
 

3.1.3. Example 3: 5 Story 5 Bay Frame 

A five story five bay frame and the loads, adapted from an 

example in Mahfouz [10], as shown in Figure 16, was 

optimised with all members initially having a stiffness as 

indicated. All heights and lengths are in metres. Optimisation 

of the frame was done as performed in the previous examples 

and the results of the first iteration and the weight of the 

frame are summarised in Table 6.  

The weight of the frame has reduced by 26% and a system 

buckling load of 0.7
𝐸𝐼

ℎ2 was obtained in ANSYS, resulting in 

a 3% smaller difference and is acceptable for the purposes of 

a simple method to optimise frame structures. 

The buckled shape of the frame obtained from the FEA 

showed that all stories buckle under the first mode and all 

members have deflected, thus leading to the fact that the full 

member capacity was utilised. 

The five story frame was re-optimised in an attempt to 

increase the buckling load, as done in the frame of Example 2. 

The results of the two optimisations performed, are 

summarised in Table 7. It is seen that in that latter 

optimisation analysis, where the second story was selected as 

critical, the buckling load of the frame increased by 29% and 

the weight reduced by 17%. The resulting frame is heavier 

and has stiffer members than that of the first optimised frame. 

Nevertheless, the objective of increasing the buckling load 

whilst minimising the weight of the frame was achieved.  

 

Figure 13.  A five story five bay no sway frame 

Table 5.  Optimisation of Two Frames in Example 2 

 Before optimisation After optimisation 

Critical 

story of 

Frame 

System 

buckling 

load, Pcr 

(
𝐸𝐼

ℎ2
)= Pcr,min 

Weight 

of 

frame 

(kg) 

System 

buckling 

load, Pcr 

(
𝐸𝐼

ℎ2
) 

Weight 

of 

frame 

(kg) 

FEA 

result of 

optimised 

frame, 

(
𝐸𝐼

ℎ2
) 

1 0.766 22.4 0.766 14.8 0.807 

2 0.766 22.4 1.276 19.1 1.349 

Table 6.  Iteration 1 and 2 of the Optimisation Procedure of Example 3 

Iteration 1 

Story 

number

, i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 72 90 4/15 0.26 0.55 0.722 1.00 

2 72 70 12/35 0.26 0.55 0.929 0.78 

3 60 50 33/83 0.31 0.56 1.091 0.66 

4 60 30 55/83 0.31 0.56 1.819 0.40 

5 60 10 2 0.31 0.56 5.457 0.13 

Weight of frame 88 476kg 

Critical story 1 

Iteration 2 

All      0.722 1 

Weight of frame 65 678kg 

3.1.4. Example 4:10 Story 4 Bay Frame 

A ten story four bay frame and the loads as adapted from 

an example in Mahfouz [10], shown in Figure 18, was 

optimised. All heights and lengths are in metres. All stories 

have the same height in the frame example. As before, the 

upper-bound story buckling load, Pcr
    , of the accompanying 

sway can be found using the method outlined by Li [7] for 

sway frames. 
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Table 7.  Optimisation of the Two frames in Example 3 

 Before optimisation After optimisation 

Critical 

story of 

Frame 

System 

buckling 

load, Pcr 

(
𝐸𝐼

ℎ2
)= Pcr,min 

Weight 

of 

frame 

(kg) 

System 

buckling 

load, Pcr 

(
𝐸𝐼

ℎ2
) 

Weight 

of 

frame 

(kg) 

FEA 

result of 

optimise

d frame, 

(
𝐸𝐼

ℎ2
) 

1 0.722 88.4 0.722 65.6 0.807 

2 0.722 88.4 0.929 74.4 0.900 

 

𝐾1 = 5 ×
12𝐸𝐼

ℎ3   

𝐾𝑝1 = 2 ×
19𝑃

ℎ
+ 3 ×

38𝑃

ℎ
=

152𝑃

ℎ
  

𝐾 − 𝐾𝑝 =
60𝐸𝐼

ℎ3 −
152𝑃

ℎ
= 0  

𝑃1 =
15𝐸𝐼

38ℎ2  

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

15𝐸𝐼

38ℎ2 =
5𝜋2𝐸𝐼

152ℎ2  

∴ 𝑃𝑐𝑟 ,1
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

5𝜋2𝐸𝐼

38ℎ2   

 

The equivalent one bay frame for the first story, when the 

frame is folded into one of the middle bays, is shown in 

Figure 17.  

For the frame in Figure 17, it is reasonable to see that the 

buckling of the system is localised, since the column with 

lower stiffness of 
1

2
𝐼 will buckle before the other column in 

the story. 

 

Figure 14.  Equivalent one bay frame for the first story of frame in 

Example 4 

Therefore, the upper-bound system buckling load needs to 

be re-calculated to account for this. 

K1 =
12E ×

1
2

I

h3
  

Kp1 =

76
4

P

h
  

K − Kp =
6EI

h3
−

76
4

P

h
= 0  

P1 =
6EI

19h2
  

Pcr ,sway = β × P =
π2

12
×

6EI

19h2
=

π2EI

38h2
  

∴ Pcr ,1
     = η × Pcr ,sway = 4 × Pcr ,sway =

2π2EI

19h2
  

The design graphs in Figure 10 when b =2 and b = was 

used to interpolate the value of  when b =4. For the less stiff 

column,  =
𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.27𝐼×3
1

2
𝐼×4

=0.405. 

From the graph in Figure 10, using =0.405: 

When b =2, 1= 0.6372 for 1=1, and 

When b =, 2= 0.5677 for 2=0.5. 

Therefore, the value of  for b=4 (=0.75) can be 

interpolated as follows: 

𝜇 = 𝜇2 +
𝜇1 − 𝜇2

𝜌1 − 𝜌2
×  𝜌 − 𝜌2  

= 0.5677 +
 0.6372−0.5677 

1−0.5
×  

3

4
− 0.5 = 0.6024     

Thus, the final story buckling load for first story can be 

obtained: 

𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ,1 = 0.6024 ×
2𝜋2𝐸×

1

2
𝐼

19ℎ2
= 0.313

𝐸𝐼

ℎ2
   

The same process is applied to the less stiff columns of the 

remaining stories of the frame and optimisation was 

performed based on the critical story found. The story 

buckling loads for Iteration 1 and the total weight of the 

frame for Iteration 1 and 2 is summarised in Table 8. 

 

Figure 15.  A ten story four bay no sway frame 
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Table 8.  Iteration 1 and 2 of the Optimisation Procedure of Example 4 

Iteration 1 

Story 

number, 

i 

Ki 

(
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 6.00 19 2/19 0.41 0.60 0.313 0.966 

2 6.00 17 2/17 0.41 0.60 0.350 0.865 

3 6.00 15 2/15 0.41 0.60 0.396 0.763 

4 3.69 13 7/74 0.66 0.65 0.302 1.000 

5 3.69 11 1/9 0.66 0.65 0.357 0.846 

6 3.69 9 3/22 0.66 0.65 0.437 0.692 

7 3.69 7 13/74 0.66 0.65 0.562 0.538 

8 3.06 5 11/54 0.80 0.67 0.673 0.450 

9 3.06 3 18/53 0.80 0.67 1.121 0.270 

10 3.06 1 1.02 0.17 0.55 2.780 0.109 

Weight of frame 154 101.5kg 

Critical story 4 

Iteration 2 

All      0.313 1 

Weight of frame 123 380kg 

The optimised frame resulted in the members having 

stiffness’ as indicated in Table 9. 

Table 8.  Member Stiffness of Optimised Frame in Example 4 

Story number Beam Stiffness (I) Column Stiffness (I) 

1 0.27 1.00 

2 0.24 0.89 

3 0.21 0.79 

4 0.28 0.64 

5 0.24 0.54 

6 0.19 0.44 

7 0.15 0.34 

8 0.13 0.24 

9 0.08 0.14 

10 0.01 0.06 

It was noted from Table 8, that the critical story was found 

to be story 4, and not the first story as initially assumed. In 

the original frame shown in Figure 18, the story stiffness 

reduced after the fourth story, yet the lower stories still 

experience higher cumulative loads. Even though the fourth 

story was found to be critical, the value of  for the first story 

is certainly close to one. The weight of the frame has reduced 

by 20% and all stories have the same buckling load which 

has increased by 4%. It was noted from Table 9 that the beam 

stiffness of the optimised frame did not reduce with story 

number at story four (beam four). 

When the optimised frame was analysed in FEA software 

ANSYS, a system buckling load of 0.32
𝐸𝐼

ℎ2  was obtained, 

resulting in a 2.2% larger difference. The percentage 

difference could be attributed to the fact that the fourth 

story’s beam stiffness was not reduced, leading to a localised 

rigid region or zone within the frame. The optimisation 

procedure reduces all of the stories stiffness’ such that it has 

the same buckling load as that of the critical story. If the 

critical storey was initially situated and found in the fourth 

story of a frame as in this instance, all other storey stiffness’ 

would be reduced by the ratio  premised on this critical 

story, which led to the critical storey having a higher beam 

stiffness Ib than the stories below it. However, this 

percentage difference is an acceptable result for the purposes 

of a simple method to optimise frame structures. The buckled 

shape of the optimised frame indicated that all stories buckle 

under the first mode and all members have deflected. 

The results presented indicate the norm in design of using 

stiffer columns for the lower stories of a frame, as was the 

case of the original frame adapted from the literature. Yet 

this may not be the ‘optimal’ design in terms of member 

capacity, and thus a scenario was investigated where the 

design engineer could choose to not select any or know 

which initial sections to use for the frame and all stories were 

given the same initial stiffness.  

The original ten story four bay frame with its loads as 

shown in Figure 18, was used except all columns have a 

stiffness of I and all beams have a stiffness of 0.27I. The 

frame will be referred to as Frame B. The final system 

buckling load and weight of this frame was examined. The 

system buckling loads and weights of the two frames before 

and after optimisation are presented in Table 10. Upon 

comparison, it was seen that both frames have the same final 

system buckling with Frame B only weighing 2% less, thus 

initial sections can be selected before optimisation or the 

user may have all initial sections with the same stiffness. 

This will yield an optimised frame with the same final 

system buckling load as was demonstrated by the two 

frames. 

In consideration of the results found for the two frames, 

the optimisation procedure was applied to the actual frame 

with the different story height, as it appears in the example 

from the literature [10] to investigate the effect on the system 

buckling load. The frame was referred to as Frame C. The 

frame had all beams with a stiffness of 0.27I except for the 

last story which was 0.06I. The stiffness of the columns of 

the first three stories was 0.62I, for stories four to seven was 

0.62I and for last three stories 0.51I. The first story had a 

different height of 5m whilst the remaining stories were 3m 

in height. 

Table 9.  Final System Buckling Loads and Frame Weights of the Two Ten 
Story Four Bay Frames 

 Before optimisation After optimisation 

Frame 

System 

buckling 

load, Pcr 

(
EI

h2
)= 

Pcr,min 

Weight 

of 

frame 

(kg) 

System 

buckling 

load, Pcr 

(
EI

h2
) 

Weight 

of 

frame 

(kg) 

FEA 

result of 

optimise

d frame, 

(
EI

h2
) 

Fig.18 0.302 154 0.313 123 0.32 

B 0.313 177 0.313 121 0.32 

The upper-bound story buckling load of the accompanying 

sway frame, accounting for the localised buckling of the 
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column with stiffness of 
1

2
𝐼 in the equivalent frame since it 

is an even bay number frame; 

𝐾1 =
12𝐸×

1

2
𝐼

ℎ3 , where h is the height of the first story. 

𝐾𝑝1 =
76

4
𝑃

5
  

𝐾 − 𝐾𝑝 =
6𝐸𝐼

ℎ3 −
76

4
𝑃

ℎ
= 0  

𝑃1 =
6𝐸𝐼

19ℎ2  

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

6𝐸𝐼

19ℎ2 =
𝜋2𝐸𝐼

38ℎ2  

𝑃𝑐𝑟 ,1
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

2𝜋2𝐸𝐼

19ℎ2   

The design graphs in Figure 10 when b=2 and b= was 

used to interpolate the value of  when b=4. For the less stiff 

column,  =
𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.27𝐼×5
1

2
𝐼×4

= 0.677 and the value of  for b 

= 4 ( = 0.75) was interpolated as 0.6503. 

∴ 𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ,1 = 0.6503 ×
2𝜋2𝐸×

1

2
𝐼

19ℎ2 =

0.338
𝐸𝐼

ℎ2     

The same process is applied to the less stiff columns of the 

remaining stories of the frame. For story number two, the 

upper-bound system buckling load is calculated; 

𝐾2 =
12𝐸×

1

2
𝐼

 0.6ℎ 3   𝐾𝑝2 =
68

4
𝑃

0.6ℎ
   

𝐾 − 𝐾𝑝 =
6𝐸𝐼

 0.6ℎ 3 −
68

4
𝑃

0.6ℎ
= 0  

𝑃2 =
6𝐸𝐼

17× 0.6ℎ 2  

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

6𝐸𝐼

17× 0.6ℎ 2 =
𝜋2𝐸𝐼

34× 0.6ℎ 2  

𝑃𝑐𝑟 ,2
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

50𝜋2𝐸𝐼

153ℎ2   

For the less stiff column,  =
𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.27𝐼×3
1

2
𝐼×4

= 0.405 and 

the value of  was interpolated as 0.6024. 

∴ 𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,2
      = 0.6024 ×

50𝜋2𝐸×
1

2
𝐼

153ℎ2 = 0.972
𝐸𝐼

ℎ2   

Optimisation was performed on the frame with the results 

shown in Table 11. The weight of the frame had reduced by 

43%.  

In the final optimised frame, it was noted that the beam 

stiffness in the optimised frame did not reduce at the fourth 

story. Since the column stiffness of the initial frame from the 

literature, reduced from I to 0.62I in story 4, the story 

buckling load would reduce and increase the  ratio at this 

story. Hence the final beam stiffness was higher at this story, 

as all beams initially had a stiffness of 0.27I except for the 

last story. A system buckling load of 0.35
𝐸𝐼

ℎ2 was obtained in 

ANSYS, resulting in a 3.4% smaller difference. In addition, 

the buckled shape showed that all members deflected. The 

percentage difference could be attributed to the fact that the 

stiffer beam in the fourth leading to a localised rigid region 

or zone within the frame. However, this percentage 

difference leads to an acceptable estimate of the buckling 

load. Nevertheless, from a design aspect, this may not be 

practical to have one story with a higher beam stiffness and a 

suggestion can be made to choose initial sections for the 

beam members that reduce in stiffness with story number as 

well or to use the same column and beam stiffness across the 

frame. The same results were found in a five story four bay 

frame with a different height for the first story. When the 

frame was optimised again using the same initial column 

stiffness’ (Frame C), as opposed to initially having different 

column stiffness as in the first optimisation, it was seen that 

both frames yielded the same final system buckling load, 

determined by the proposed method, with the second frame 

optimisation weighing 42% less. 

 

Table 11.  Iteration 1 and 2 of the Optimisation Procedure of the Literature Example [10] 

Iteration 1 

Story number, i Ki (
EI

h
3 ) Kpi (P/h) Pcr

     (
π2EI

h
2 )   

IbLc

IcLb

  μ Pcr,i (
EI

h
2 )  

1 6.00 19 2/19 0.68 0.65 0.338 1.000 

2 6.00 17 0.327 0.41 0.60 0.972 0.348 

3 6.00 15 0.370 0.41 0.60 1.101 0.307 

4 3.69 13 0.263 0.66 0.65 0.840 0.402 

5 3.69 11 0.311 0.66 0.65 0.993 0.340 

6 3.69 9 0.380 0.66 0.65 1.213 0.278 

7 3.69 7 0.488 0.66 0.65 1.560 0.217 

8 3.06 5 0.566 0.80 0.67 1.869 0.181 

9 3.06 3 0.944 0.80 0.67 3.115 0.108 

10 3.06 1 2.83 0.17 0.55 7.722 0.044 

Weight of frame 161 696kg 

Critical story 1 

Iteration 2 

All      0.338 1 

Weight of frame 92 507kg 

Note: h is the height of the first story. 
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The difference between the system buckling loads for 

Frame C from FEA was greater than the first frame. The first 

story was found to be critical in both frames. The frames both 

had the same initial stiffness of I for the first story and as a 

result, were centred on optimising the frame by the same 

theoretical system buckling load governed by this stiffness. 

Yet, the optimisation of Frame C resulted in a ‘lighter’ frame 

with less stiff members, thus leading to the lower buckling 

load being obtained in FEA for this frame and the greater 

percentage difference in results. 

3.1.5. Example 5:4 Story 2-3 Bay Frame 

A four story frame with different number of bays and its 

loads is shown in Figure 19. All heights and lengths are in 

metres. The frame was taken from an example in Li [7]. 

The system buckling load of the frame is first determined 

to obtain the story with the minimum story buckling load.  

𝐾1 = 4 ×
12𝐸𝐼

ℎ3   

𝐾𝑝1 =
10𝑃

ℎ
+

20𝑃

ℎ
+

18𝑃

ℎ
+

8𝑃

ℎ
=

56𝑃

ℎ
  

𝐾 − 𝐾𝑝 =
48𝐸𝐼

ℎ3 −
56𝑃

ℎ
= 0  

𝑃1 =
6𝐸𝐼

7ℎ2  

𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 𝛽 × 𝑃 =
𝜋2

12
×

6𝐸𝐼

7ℎ2 =
𝜋2𝐸𝐼

14ℎ2  

∴ 𝑃𝑐𝑟 ,1
      = 𝜂 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

2𝜋2𝐸𝐼

7ℎ2   

For the equivalent frame of the first story, the value of 

𝜌 =
2

3
 and  =

𝐼𝑏𝐿𝑐

𝐼𝑐𝐿𝑏
=

0.25𝐼×4
2

3
𝐼×5

= 0.3. 

The design graph when b = was used to obtain the value 

of , thus from the graph in Figure 8, = 0.5539. 

∴ 𝑃𝑐𝑟 ,1 = 𝜇 × 𝑃𝑐𝑟 ,1
      = 0.553857 ×

2𝜋2𝐸 ×
1
2
𝐼

7ℎ2
= 0.781

𝐸𝐼

ℎ2
 

 

Figure 16.  A four story no sway frame with different bay numbers 

The same process is applied to the remaining three stories 

of the frame.  

During the optimisation process, it is noted that for the 

fourth (top) story, thus the value of  is calculated in 

consideration of it having two bays, whilst the other stories 

are taken from the graph when bay number b is equal to 3; 

thus: 

Story 1 and 2,  =
0.25𝐼×4

2

3
×𝐼×5

= 0.3 →  𝜇 = 0.5539 when b=3  

Story 3,  =
0.12𝐼×4

2

3
×0.23𝐼×5

= 0.6 →  𝜇 = 0.5918 when b=3 

Story 4,  =
0.05𝐼×4

1

2
×0.09𝐼×5

= 0.8 →  𝜇 = 0.6682 when b=2   

(note =
1

2
) 

The results of the optimisation of the frame is summarised 

in Table 12. The weight of the frame has reduced by 14%. 

Table 12.  Iteration 1 and 2 of the Optimisation Procedure of Example 5 

Iteration 1 

Story 

number

, i 

Ki (
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 48 56 0.286 0.3 0.554 0.781 1.000 

2 48 33 0.485 0.3 0.554 1.325 0.589 

3 24 14 0.571 0.6 0.592 1.669 0.468 

4 18 4 1.500 0.8 0.668 4.946 0.158 

Weight of frame 8 758kg 

Critical story 1 

Iteration 2 

All      0.781 1 

Weight of frame 7 479kg 

The final optimised frame and its buckled shape is shown 

in Figure 20. The system buckling load obtained in ANSYS 

was 0.719
𝐸𝐼

ℎ2 , resulting in a 9% smaller difference. This 

percentage difference indicates the influence of frame 

geometry on the system buckling load; the fourth story had 

one less bay than the rest of the frame. Furthermore, the 

upper-bound system buckling load, Pcr
     , calculated from the 

proposed method, was found to be higher than the result 

given from FEA. From the buckled shape, it can be seen that 

the entire frame did not ‘fully’ buckle as not all of the 

members deflected, as indicated by the straight lines of the 

end columns in third bay of the frame. In addition, the higher 

stories buckled more under this buckling load of 0.719
𝐸𝐼

ℎ2. 

Thus, stories with reduced number of bays could be seen to 

influence the behaviour of the frame and may have 

experienced ‘localised’ buckling which would need to be 

accounted for. This concept was then explored. 

Using its equivalent one bay frame for the fourth story of 

the initial frame in Figure 19: 

𝐾4 =
12𝐸×

1

2
×0.5𝐼

ℎ3   
 𝐾𝑝4 =

4𝑃

ℎ
×

1

2
=

2𝑃

ℎ
 

𝑃4 =
3𝐸𝐼

2ℎ2  𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 ,4 = 𝛽 × 𝑃 =
𝜋2

12
×

3𝐸𝐼

2ℎ2 =
𝜋2𝐸𝐼

8ℎ2   

𝑃𝑐𝑟 ,4
      = 4 × 𝑃𝑐𝑟 ,𝑠𝑤𝑎𝑦 =

𝜋2𝐸𝐼

2ℎ2       

      =
𝐼𝑏𝐿𝑐
𝐼𝑐𝐿𝑏

=
0.25𝐼 × 4

1
2 × 0.5𝐼 × 5

= 0.8 → 𝜇 = 0.6682 

∴ 𝑃𝑐𝑟 ,4 = 0.6682 ×
𝜋2𝐸×

1

2
𝐼

2ℎ2 = 2.467
𝐸𝐼

ℎ2     
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Figure 17.  Optimised four story 2-3 bay no sway frame and its buckled 

shape from FEA 

The results for the first iteration and second of 

optimisation, considering the above, are summarised in 

Table 13. The weight of the frame has reduced by 10.3% 

with a system buckling load obtained from ANSYS of 

0.785
𝐸𝐼

ℎ2, yielding a 0.55% smaller difference. 

The percentage difference from FEA has reduced 

significantly thus demonstrating the effect of the number of 

bays on the system buckling load. The ‘local’ buckling 

experienced in frames with even bay numbers, should be 

accounted for in all frames that have different number of 

bays.  

Table 10.  Iteration 1 and 2 of the Optimisation Procedure of Example 5 
Considering the Local Buckling of Story 4 

Iteration 1 

Story 

number

, i 

Ki (
EI

h
3 ) 

Kpi 

(P/h) 

Pcr
     

(
π2EI

h
2 ) 

 

 
IbLc

IcLb

  
μ 

Pcr,i 

(
EI

h
2 ) 

 

1 48 56 0.286 0.3 0.554 0.781 1.000 

2 48 33 0.485 0.3 0.554 1.325 0.589 

3 24 14 0.571 0.6 0.592 1.669 0.468 

4 3 2 1.500 0.8 0.668 2.467 0.474 

Weight of frame 8 758kg 

Critical story 1 

Iteration 2 

All      0.781 1 

Weight of frame 7 796kg 

4. Summary and Discussion 

The application examples presented for no sway frames 

demonstrate the validity of the proposed optimisation 

method that can be easily implemented in a design 

environment- acceptable percentage differences below 5% 

from the FEA analysis. The objectives initially set out were 

achieved namely, all stories buckled at the same time as 

indicated by the buckled shape of all stories under the first 

buckling mode and, the weight of the frame was minimised 

under a given system buckling load as shown by the decrease 

in weight of the optimised frames. This indicates that the 

same theoretical system buckling load, as determined by the 

proposed method, can be obtained from a ‘lighter’ frame and 

material wastage can be reduced, achieving another goal of 

the optimisation, as all members are engaged in the buckling. 

Furthermore, the savings in material wastage was 

demonstrated by the reduction in the stiffness of the stories 

after optimisation resulting in smaller cross-sectional 

properties required for members to achieve system buckling. 

For instance, for Iteration 1 of Example 2 shown in Table 3, 

the fourth story’s buckling load was approximately ten times 

greater than that of the critical story, that being the first story. 

The frame has globally failed in buckling if it reaches this 

critical buckling load, even though the fourth story still has 

buckling capacity. In Iteration 2, all stories have buckled 

under this load and for the fourth story, a stiffness of 0.1I, as 

opposed to I initially, was needed to achieve system buckling 

hence the material reduction for the story was 
𝐼−0.1𝐼

𝐼
×

100 = 90% .Varying reductions in story stiffness after 

optimisation was found across the examples presented in the 

paper. 

The findings from the analysis of the frames in Example 2 

and 3, where the buckling load was increased whilst the 

weight of the frame reduced, indicated that this objective can 

be met by the optimisation method suggested. This may not 

led to the optimal solution in terms of weight, yet a more 

‘efficient’ frame can be produced with greater structural 

capacity. 

The optimisation procedure was adapted for multi-story 

frames with even number of bays to account for the effect of 

localised buckling experienced by the column in the 

equivalent one bay frames with the lower stiffness. The 

results confirmed that the system optimisation method 

suggested still holds for such frames. For tall frame buildings, 

no sway, the proposed method can be easily performed by 

hand for these high-rise buildings, proving its efficiency,   

as demonstrated by the 10 story frame in Example 4. The 

method can be further modified to apply to irregular no sway 

frames or no sway non-rigid frames and shouldn’t be applied 

directly. 

The optimisation method is however limited in its 

application to multi-story rigid sway frames. Specifically, 

the methods attempted in the research, not presented in the 

paper, for the calculation of the system buckling load of such 

frames was not successful. Some of the findings included; 

the method adopted for the analysis of no sway single story 

frames, of using normalised equivalent one bay frames, was 

found to have worked when obtaining the buckling load of 

single story sway frames however, it resulted in large errors 

when applied to multi-story sway frames. Current techniques 

in literature to determine the buckling load of these frames 

were based on isolated member analysis and thus led to the 

significant differences when applied to a global analysis of 

frames. Ultimately, further studies are needed in this area 

before an optimisation method can be derived for the 

multi-story sway frames and as such, the proposed method in 

the paper can be developed on. 
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List of Symbols 

λ  beam to column restraint parameter 

Pcr critical buckling load of the frame system 

ρ  equivalent column stiffness ratio 

n  ratio of beam stiffness to column stiffness 

h  height of a story in a frame 

k   iteration number of the optimisation method 

β  modification factor for P-δ effect 

η  modification factor for the upper-bound  

  solution of sway to no sway frames 

b  number of bays in a frame 

s   number of stories in a frame 

I  second moment of area 

γ  story load to unit load ratio 

i  story number 

α  story Pcr ratio 

μ  system buckling load coefficient 

K  system stiffness 

E  young’s modulus 
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