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Abstract  The triple friction pendulum is a promising approach towards isolators with adaptive behaviour. In general, its 

friction and stiffness properties depend on bearing displacement and sliding regime, respectively, whereby also its isolation 

performance in terms of absolute structural acceleration depends on sliding regime and consequently on peak ground 

acceleration of the considered accelerogram. This paper therefore investigates the isolation performance of the triple friction 

pendulum as function of various peak ground accelerations ranging from very small values up to the maximum value at which 

the full displacement capacity of the pendulum is used. The results are compared to those of the conventional double friction 

pendulum with same curvature and same displacement capacity. The comparative study shows that the triple friction 

pendulum a) performs better at small peak ground accelerations (<20% of its maximum) thanks to the low friction of the 

articulated slider assembly that triggers relative motion in the bearing even at very low shaking level, b) generates slightly 

worse isolation when sliding regimes II to IV are activated, and c) evokes a strongly deteriorated isolation when sliding 

regime V is triggered due to its increased stiffness and reduced friction properties. It is also found that the combination of 

increased stiffness and reduced friction cannot reduce the displacement capacity of the triple friction pendulum because the 

beneficial effect of increased stiffness is offset by the reduced friction of sliding regime V. The paper is closed by the 

numerical study of a pendulum whose friction coefficient is controlled in proportion to the bearing displacement amplitude. 

This promising approach can be seen as objective function for the future development of adaptive friction pendulums. 
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1. Introduction 

The base isolation of civil engineering structures is the 

common countermeasure against hazardous structural 

vibrations due to earthquake excitation [1-4]. Various types 

of elastomeric bearings and spherical friction pendulums 

(FP) belong to the class of passive isolators that exert the 

superposition of a stiffness force and damping force [5-11]. 

For minimum structural response the stiffness is designed to 

significantly increase the fundamental period of the isolated 

structure [12] with the constraint of the re-centring 

condition [13, 14] and the friction is tuned to add damping 

to the structure at isolation frequency [15, 16]. This design 

is made by the structural engineer for the given elastic 

response spectrum with associated ground acceleration [17] 

corresponding to the design basis earthquake (DBE) or the 

maximum considered earthquake (MCE). Due to the 

constant friction and stiffness parameters of non-adaptive 

FPs, these devices can only be optimally tuned to one of the  
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aforementioned earthquake scenarios. This trade-off 

problem may be solved by the rather costly combination of 

lubricated spherical surfaces and external viscous dampers 

with properly tuned  exponent. Another but also expensive 

approach represent active, semi-active and  hybrid 

isolation systems based on controlled hydraulic actuators 

[18], variable orifice dampers [19], variable stiffness 

devices [20, 21], shape memory alloys [22], 

electrorheological dampers [23] and magnetorheological 

dampers [24-26] due to their ability to emulate controllable 

stiffness and damping forces [27, 28]. 

The economic disadvantages of the above mentioned 

solutions triggered the development of so-called adaptive 

FPs which are purely passive devices but their stiffness and 

friction properties depend on the displacement amplitude at 

which the FP is operated. This can be achieved by different 

radii and/or friction coefficients of modified single and 

double FPs and triple FPs [29-40] of which especially the 

triple FP has attracted the attention of many researchers and 

engineers as these devices exhibit significant adaptability. A 

thorough description of the theoretical functioning of triple 

FPs for kinematic excitation can be found in [30, 31]. Based 

on this description the triple FP is modelled by a series 

arrangement of spring, Coulomb friction and gap elements. 
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The experimental validation of this modelling approach is 

described in [32-35] and an improved modelling approach is 

presented in [36]. 

According to [15, 16, 31] the triple FP is conceptualized to 

produce low friction at high stiffness for small bearing 

motion amplitudes and peak ground acceleration (PGA) 

values, respectively, generate increasing friction at 

significantly reduced stiffness for medium bearing 

displacement amplitudes and PGA values, respectively, due 

to DBE, evoke further augmented friction at even lower 

stiffness for large bearing displacement amplitudes and PGA 

values, respectively, due to MCE, and exhibit stiffening 

behaviour for bearing displacement amplitudes and PGA 

values, respectively, resulting from earthquakes beyond 

MCE. This adaptive behaviour of the friction and stiffness 

properties implies that the isolation performance of the triple 

FP has to be assessed as function of various PGA values to 

ensure that the triple FP is operated within all its sliding 

regimes. A first approach towards this goal is presented in 

[41] where several earthquakes are scaled to two PGA values; 

however, the triggered sliding regimes are not given 

whereby the obtained isolation performance results are 

difficult to interpret. 

This paper aims at filling this gap by the following 

consecutive steps: 

1.  Assessing the force displacement trajectories of the 

triple FP in terms of cycle energy equivalent friction 

and elastic energy equivalent stiffness coefficients [42] 

as function of bearing displacement amplitude, 

2.  Quantifying the isolation performance of the triple FP 

in terms of absolute acceleration and drift of the 

isolated structure as function of various PGA values 

ranging from 0.5 m/s2 to the maximum value at which 

the full displacement capacity is used whereby the 

isolation performance is assessed as function of the 

bearing displacement and different sliding regimes, 

respectively, and 

3.  Finally, an adaptive FP based on controlled friction 

damping is presented as objective function for the 

future development of adaptive FPs. 

The studies 1 and 2 are based on the triple FP as designed 

in [31, 32] in order to guarantee that the triple FP is designed 

according to the published design philosophy. 

The structure of the paper is as follows: Section 2 

describes the triple FP under consideration and the double FP 

that is used as non-adaptive benchmark. Section 3 derives the 

cycle energy equivalent friction and elastic energy 

equivalent stiffness coefficients of the triple FP for kinematic 

excitation of the bearing and for force excitation due to 

ground acceleration when the bearing is installed underneath 

the isolated structure. The isolation performances due to the 

triple FP for several PGA-scaled measured earthquake 

acceleration time histories are presented in section 4 and 

compared to the results obtained from the double FP. The 

potential of a pendulum with real-time controlled friction 

damping is described in section 5. Section 6 closes the paper 

by a summary and conclusions. 

2. Friction Pendulums under 
Consideration 

 

 

Figure 1.  Sketches of (a) triple friction pendulum and (b) non-adaptive double friction pendulum with structure simplified as single degree-of-freedom 

system (1-dof) 
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2.1. Triple Friction Pendulum 

The triple FP is composed of the two concave steel plates 

0 and 4 and the articulated slider assembly in between with 

the rigid slider and the two concave slide plates 1 and 3 

(Figure 1(a)). The surfaces of the slide plates 1 and 3 that are 

in contact with the concave steel plates 0 and 4 and both 

surfaces of the slider are coated with a non-metallic sliding 

material. The design parameters of triple FP are therefore: 

  the four effective radii iii,eff hRR   where iR  

and ih , respectively, are the geometric radius of 

surface i  and the radial distance of surface i  to the 

pivot point of the articulated slider, respectively, 

  the four friction coefficients i , and 

  the four displacement capacities id . 

The associated four relative motions are 1u  of plate 1 

relative to plate 0, 12 uu   of the slider relative to plate 1, 

23 uu   of plate 3 relative to the slider and 34 uu   of 

plate 4 relative to plate 3 whereby the total bearing 

displacement becomes 4tot uu  .  

The vertical load smgW   ( g : acceleration of gravity, 

sm : structural mass) on the bearing is assumed to be 

constant and uniformly distributed on concave plate 4 to 

guarantee proper functioning of the kinematics of the triple 

FP. The variations of the vertical load due to the small 

vertical acceleration of the building when the slider moves 

towards one side of the bearing are neglected as the focus of 

the study under consideration is the isolation assessment of 

the isolator in horizontal direction. 

The usual design of the triple FP according to [31, 32]   

is given by 3,eff2,eff4,eff1,eff RRRR   and 

4132    in order to ensure that relative motion 

initiates on surfaces 2 and 3 with low friction which is 

followed by increasing friction characteristics when sliding 

also occurs on surfaces 1 and 4 and is finalized by a 

stiffening effect at reduced friction when concave slide 

plates 1 and 3 contact the restrainers of concave plates 0 and 

4 whereby only the articulated slider assembly works. This 

behaviour is achieved when the design of the triple FP 

satisfies the conditions 2,eff212 R)(d   , 

3,eff343 R)(d    and 1,eff141 R)(d   . 

2.2. Properties of Triple Friction Pendulum 

The aim of the present study is to assess the isolation 

performance of the triple FP as it is originally designed and 

published in the literature [31, 32]; the friction coefficients 

used in the present study represent the average values of the 

identified values given in [32]. This triple FP represents a 

mock-up triple FP whereby the effective radii 1 and 4 and 

consequently the isolation time period are rather small. In 

order to guarantee a fair comparison with the non-adaptive 

double FP, the effective radii 1 and 2 of the double FP and 

consequently its isolation time period are equal those of the 

triple FP. Table 1 shows the relevant parameters including 

the total displacement capacity 4321tot ddddd   

(without the small influence of rotation). The vertical load 

W =112 kN on the bearing due to the structure also 

corresponds to that given in [32] that leads to a surface 

pressure of 54.83 MPa on the slider which represents a 

common value. 

Table 1.  Properties of Triple and Double Friction Pendulums 

Triple FP Double FP 

 4,eff1,eff RR 0.435 m 

 3,eff2,eff RR 0.053 m 

 2,eff1,eff RR 0.435 m 

1 3.1% 

 32  1.75% 

4 11.4% 

21    (reasonable value) 

 41 dd 0.064 m 

 32 dd 0.019 m 

totd 0.166 m 

 21 dd 0.083 m 

 

totd 0.166 m 

 41 RR 0.473 m 

 32 RR 0.076 m 

 41 hh 0.038 m 

 32 hh 0.023 m 

 21 RR 0.473 m 

 

 21 hh 0.038 m 

2.3. Non-Adaptive Double Friction Pendulum 

The non-adaptive double FP consists of two concave steel 

plates and the rigid slider in between which is coated with a 

non-metallic sliding material (Figure 1(b)). The motion of 

the slider relative to the plate 0 is denoted as 1u  and 

between plate 2 and slider is 12 uu   whereby the total 

bearing motion becomes 2tot uu   (without small 

influence of rotation). In order to secure a fair comparison of 

the isolation performances resulting from the triple and 

double FPs, the isolation frequency of the double FP is 

selected to be equal the lower isolation frequency of the 

triple FP. Hence, the effective radii of the double FP 1,effR  

and 2,effR  are equal the effective radii of the two concave 

plates 0 and 4 of the triple FP (Table 1). Furthermore, total 

bearing displacement 21tot ddd   of the double FP is 

equal to totd  of the triple FP to guarantee equal 

displacement capacities. The friction coefficients of the 

double FP are assumed to be equal, i.e. 21   , whereby 

the results due to the double FP are also valid for a single FP 

with double effective radius. 
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3. Equivalent Friction and Stiffness 
Coefficients 

3.1. Kinematic Excitation 

3.1.1. Force Displacement Trajectories 

The horizontal bearing force Hf  of the triple FP is the 

sum of the forces due to friction, effective radius and 

restrainer deformation. This force resulting from kinematic 

excitation at the fundamental frequency of the structure sfr  

is calculated adopting the formulas for all five sliding 

regimes as described in [31]. The computation of Hf  is not 

only made for the maximum displacement amplitudes 

j,totU  ( j 1,...,5) of the five sliding regimes but for 

various total amplitudes totU  with )Umin( tot =1 mm, 

increment  2 mm and 5,tottot U)Umax(  . The force 

displacement trajectories resulting from the maximum 

displacement amplitudes i,totU  of sliding regime i  are 

depicted in Figures 2(a-e) by the thick lines in grey; the thin 

dashed lines in red, green and blue represent the force 

displacement trajectories due to three selected totU  that are 

smaller than j,totU  of the corresponding sliding regime. 

For the sake of completeness, the force displacement 

trajectory for 0.5 mm restrainer deformation, i.e. 

 5,tottot UU 0.5 mm, is also shown (Figure 2(f)). Notice 

that the force displacement trajectories plotted in Figure 2 

slightly differ from those depicted in figure 4 of [32] because 

the force displacement trajectories shown figure 4 of [32] are 

computed with 1 , 2 , 3  and 4  identified for each 

sliding regime itself which yields different 1 , 2 , 3  

and 4  for the five ( j 1,...,5) sliding regimes. It is also 

underlined that the force displacement trajectories depicted 

in Figure 2 differ from those shown in [31] because the force 

displacement trajectories of [31] are computed for 

4,eff1,eff RR   and 3,eff2,eff RR  . 

3.1.2. Equivalent Friction and Stiffness Coefficients 

From the force displacement trajectories resulting from all 

considered totU  ( )Umin( tot =1 mm, increment  2 mm, 

5,tottot U)Umax(  ) the equivalent friction coefficient 

equiv  is numerically computed from the cycle energy of 

Hf  [27, 42] 


fr/1

0
totH

tot
equiv dtuf

UW4

1
        (1) 

where fr  denotes the frequency of totu  and totu  is the 

total bearing velocity; the equivalent stiffness coefficient 

equivk  is numerically derived from the elastic energy of 

Hf  [27, 42] 









  
tot

tot

U

0

0

U
totHtotH2

tot

equiv dufduf
U

1
k   (2) 

 

 

Figure 2.  Force displacement trajectories resulting from kinematic excitation 
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Figure 3.  (a) Cycle energy equivalent friction coefficient and (b) elastic energy equivalent stiffness coefficient as function of total displacement amplitude 

identified from kinematic excitation 

3.1.3. Discussion 

The obtained energy equivalent coefficients are plotted in 

Figures 3(a, b) versus the total amplitudes totU  of all 

computed force displacement trajectories. The following 

observations can be made (readers are referred to [31] for 

detailed description of the sliding regimes of the triple FP): 

  Sliding regime I: relative motion only occurs on sliding 

surfaces 2 and 3 with equal radii and friction 

coefficients (Figure 2(a)) [31]. This explains the 

findings 32equiv   , ,2/equiv effk W R 

,3/ effW R . 

  Sliding regime II: relative motion occurs on surfaces 1, 

2 and 3 (Figure 2(b)) [31]. The resulting equiv  which 

can be interpreted as an “average” friction coefficient is 

therefore greater than 32    but smaller than 1  

while equivk  is dominated by 1,effR/W  due to 

,1 ,2 ,3eff eff effR R R  . 

  Sliding regime III: besides sliding on surfaces 1, 2 and 3 

sliding is also triggered on surface 4 [31]. The resulting 

force displacement trajectory is dominated by 

simultaneous sliding on surfaces 1, 2 and 3 with slope 
1

3,eff2,eff1,eff )RRR(   and all surfaces 1 to 4 

with slope 
1

4,eff3,eff2,eff1,eff )RRRR(   

(Figure 2(c)). equiv  turns out to be significantly 

smaller than 4  because the entire sliding motion is 

split into simultaneous sliding on surfaces 1, 2 and 3 

and simultaneous sliding on all surfaces 1 to 4. 

Therefore equivk  is between ,1 ,2/ ( eff effW R R 

,3)effR  and ,1 ,2 ,3 ,4/ ( )eff eff eff effW R R R R   . 

  Sliding regime IV: sliding on surface 1 is stopped by its 

restrainer which evokes a stiffening effect in the force 

displacement trajectory for 3,tottot Uu   (Figure 2(d)) 

whereby the decreasing trend of equivk  levels off 

(Figure 3(b)) [31]. Since simultaneous sliding on 

surfaces 1 and 4 dominates the force displacement 

trajectory of sliding regime IV (Figure 2(d)), equiv  

increases within sliding regime IV towards 4  but is 

significantly smaller than 4  because of 41    

(Figure 3(a)). 

  Sliding regime V: sliding on surfaces 1 and 4 are 

stopped by their restrainers while sliding continuous on 

sliding surfaces 2 and 3. This evokes the stiffening 

behaviour at very small friction for 4,tottot Uu   

(Figure 2(e)). As a result, equivk  increases while 

equiv  decreases in sliding regime V. 

3.2. Force Excitation 

In order to compute the energy equivalent friction and 

stiffness coefficients for force excitation, first, the coupled 

equations of motion of the isolated structure and all bearing 

plates of the triple FP for ground acceleration input are 

derived (section 3.2.1), then the input acceleration is 

described (section 3.2.2) and, finally, the obtained results are 

discussed (section 3.2.3). 

3.2.1. Coupled Non-Linear Equations of Motion 

The equation of motion of the structure with ground 

acceleration gu  as excitation input becomes 

    gs4ss4ssss umuukuucum    (3) 

where su  denotes the relative structural acceleration, 
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g/Wms   is the modal mass ( g  acceleration of gravity), 

ssss mk2c   is the viscous damping coefficient with 

damping ratio s =1%, sk  is the stiffness coefficient, and 

4s uu   and 4s uu   , respectively, represent the relative 

displacement and relative velocity, respectively, between the 

structure and concave plate 4 of the triple FP (Figure 1(a)). 

The excitation force due to the ground acceleration gu  is 

given by the d‟Alembert term gs um   on the right side of 

(3) whereby the total acceleration of the structure becomes 

gs uu   . The structural stiffness s
2

ss m)fr2(k   is 

selected such that the fundamental frequency sfr  of the 

non-isolated structure is two times higher than the lower 

isolation frequency of the triple FP 

4,eff1,eff
isolation

RR

g

2

1
fr





      (4) 

isolations fr2fr               (5) 

Equation (4) yields sfr =1.069 Hz representing a typical 

value of non-isolated structures that require base isolation. 

All relevant structural properties are given in Table 2 where 

the given mass corresponds to the mass of the structure 

supported by one pendulum. 

Table 2.  Structural properties 

sm  (kg) sfr  (Hz) s  (%) 

11417 1.069 1.0 

The formulation of the equation of motion for concave 

plate 4 with mass 4m  yields (Figure 1(a)) 

 

  g44ss4ss

4,r34
4,eff

4,h44

umuuk)uu(c

...fuu
R

W
fum








     (6) 

where 4u  denotes the relative acceleration of 4m , 4,hf  

represents the friction force of surface 4, 4,effR/W  is the 

stiffness due to the effective radius of concave plate 4 and 

4,rf  is the restrainer force of concave plate 4. 4,hf  is 

modelled by the hysteretic friction force model where the 

pre-sliding regime is modelled by a stiffness force [43, 44] 

 
 









sliding:uusgnW

slidingpre:uuk
f

344

344,h
4,h 

  (7) 

The pre-sliding stiffness 4,hk  is selected to be 5e2 times 

greater than the stiffness due to the effective radius, i.e. 

4,eff4,h R/W2e5k  , sgn  represents the signum 

function and 34 uu    is the relative velocity between the 

plates 4 and 3. The force of the restrainer is modelled as a 

linear stiffness force that is only triggered when plate 3 is in 

contact with the restrainer of plate 4 

   











434

434344344,r

4,r

duu:0

duu:uusgnduuk

...f

 (8) 

where the restrainer stiffness 4,rk  is selected to be 1e2 

times greater than 4,effR/W . For the concave slide plate 3 

with mass 3m , the equation of motion is 

 

  g34,r34
4,eff

4,h

3,r23
3,eff

3,h33

umfuu
R

W
f

...fuu
R

W
fum









   (9) 

where 3u  is the relative acceleration of 3m  and 3,hf  and 

3,rf , respectively, represent the hysteretic friction force and 

restrainer force, respectively, that are formulated 

analogically with equations (7, 8). The equation of motion 

for the slider mass 2m  has the same form as for 3m  

 

  g23,r23
3,eff

3,h

2,r12
2,eff

2,h22

umfuu
R

W
f

...fuu
R

W
fum









 (10) 

where 2u  denotes the relative acceleration of the slider and 

2,hf  and 2,rf , respectively, are given analogically with 

equations (7, 8). The equation of motion of concave plate 1 

with mass 1m  and relative acceleration 1u  becomes 

  g12,r12
2,eff

2,h

1,r1
1,eff

1,h11

umfuu
R

W
f

...fu
R

W
fum









   (11) 

where 1,hf  and 1,rf , respectively, are given as follows 

 

 


sliding:usgnW

slidingpre:uk
f

11

11,h
1,h 

      (12) 

   










11

111111,r
1,r

du:0

du:usgnduk
f    (13) 

because 1u  is the displacement of plate 1 relative to plate  

0 (Figure 1(a)). It must be added that 

4,h3,h2,h1,h kkkk   and 4,r3,r2,r1,r kkkk   

are assumed and that the values of 1m , 2m , 3m  and 4m  
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are calculated based on the geometrical data given in [32] 

assuming steel as material. 

3.2.2. Dynamic Simulation 

The coupled non-linear differential equations of motion 

are solved in the time domain in Matlab/Simulink®  using the 

solver ode15s(stiff/NDF) with maximum relative tolerance 

of 1e-3 and variable step size with upper bound of 1e-5 s. 

3.2.3. Ground Acceleration 

In order to trigger all sliding regimes of the triple FP under 

force excitation step by step, the ground acceleration is 

assumed to be a sinusoidal function with linearly increasing 

amplitude and frequency sfr  (Figure 4(a)). The resulting 

relative displacements show that the restrainer of plate 0 is 

first triggered, then the restrainers of plate 0 and 4 are 

triggered during one cycle of vibration and finally all four 

restrainers of plates 0, 1, 3 and 4 are triggered during one 

cycle of vibration (Figure 4(b)). Then, the simulation is 

stopped because the full displacement capacity of the bearing 

is depleted. 

3.2.4. Discussion 

The horizontal forces Hf  of masses 1, 2, 3, 4 and the 

visco-elastic structural force are equal at every time instant 

t  

 

 

 

   )t(u)t(uk)t(u)t(uc

...)t(f

...)t(f)t(u)t(u
R

W
)t(f

...)t(f)t(u)t(u
R

W
)t(f

...)t(f)t(u)t(u
R

W
)t(f

...)t(f)t(u
R

W
)t(f

...)t(f

4ss4ss

s

4,r34
4,eff

4,h

3,r23
3,eff

3,h

2,r12
2,eff

2,h

1,r1
1,eff

1,h

H

















  (14) 

The corresponding force displacement trajectories are not 

congruent, see Figure 5(a), because of the different relative 

displacements 1u , 12 uu  , 23 uu  , 34 uu   and 

4s uu   (see also Figure 4(b)). Figure 5(b) plots Hf  

versus the total bearing displacement which can be compared 

with the force displacement trajectories from kinematic 

excitation (Figure 2). The main difference observed is that 

when sliding is also triggered on surface 4 ( t >5.8 s, see 

Figure 4(b)), simultaneous sliding takes place on all four 

sliding surfaces which is confirmed by the slope of the   

force displacement trajectory (normalized by W ) of 
1

4,eff3,eff2,eff1,eff )RRRR(  . 

This observation reveals that the triple FP installed 

between foundation and structure and excited by ground 

acceleration behaves different than for kinematic excitation 

as described in [31]. In order to double-check this finding, 

half a cycle from sliding start to sliding stop is investigated in 

detail. Figure 6(a) depicts the four relative bearing 

displacements as function of time that are normalized when 

sliding initiates on surfaces 2 and 3. The corresponding force 

displacement trajectories of the same time interval are 

plotted in Figure 6(b). When sliding only occurs on  

surfaces 2 and 3, their horizontal forces are balanced      

by the pre-sliding stiffness forces )t(uk 11,h  and 

 )t(u)t(uk 344,h  , respectively, of surfaces 1 and 4, 

respectively. Sliding on surface 1 initiates when the relative 

motions )t(u)t(u 12   and )t(u)t(u 23  , respectively, 

are that large that the sum of increased stiffness forces due to 

the effective radii of surfaces 2 and 3 and the constant 

friction force balance the friction force of surface 1, that is 

 

))t(usgn(W))t(u)t(usgn(W

...)t(u)t(u
R

W

111kkk

1kk
k,eff

  






  (15) 

where k =2 for the slider and k =3 for concave plate 3, 

which is highlighted by the circle symbol in Figures 6(a, b). 

With further increased relative motions )t(u1 , 

)t(u)t(u 12   and )t(u)t(u 23  , respectively, the 

friction force ))t(u)t(usgn(W 344    is balanced by 

the sum of the stiffness force due to k,effR  and friction 

force of surface k  ( 3,...,1k  ) whereby sliding starts on 

surface 4 (diamond symbol in Figures 6(a, b)). All relative 

motions stop at the same time instant when all four hysteretic 

friction forces get back into their pre-sliding regimes (star 

symbol in Figures 6(a, b)).  

Comparing the equivalent friction and stiffness 

coefficients due to forced excitation (Figures 7(a, b)) with 

those resulting from kinematic excitation (Figures 3(a, b)) 

shows: 

  j,totU : The total displacement amplitudes of sliding 

regimes I to V are shifted to greater values; notice that 

j,totU  for the computation of the force displacement 

trajectories due to kinematic excitation (section 3.1) 

correspond to those given in [31]. 

  equiv : The values of equiv  are almost the same as 

resulting from the force displacement trajectories due 

to kinematic excitation but are shifted to larger totU  

for the reason mentioned above and also significantly 

decreases when sliding regime V is activated. 

  equivk : The softening effect of equivk  is slightly 

bigger due to the simultaneous sliding on all four 

surfaces whereby )kmin( equiv  gets close to 

)RRRR/(W 4,eff3,eff2,eff1,eff   and the 
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stiffening effect due to sliding regime V is less 

pronounced. 

 

 

Figure 4.  Behaviour of triple FP under force excitation: (a) introduced ground acceleration, (b) relative bearing displacements 

 

Figure 5.  Behaviour of triple FP under force excitation: (a) horizontal force versus relative displacements of triple FP and primary structure, (b) horizontal 

force versus total displacement 

 

Figure 6.  Simultaneous sliding on surfaces 1, 2, 3 and 4: (a) relative displacements as function of time and (b) horizontal force versus relative 

displacements 
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Figure 7.  (a) Cycle energy equivalent friction coefficient and (b) elastic energy equivalent stiffness coefficient depending on total displacement amplitude 

and due to force excitation 

 

4. Isolation Performance 

Section 4 compares the isolation performance of the triple 

FP with that of the non-adaptive double FP with equal radii 

and equal friction coefficients. To guarantee a fair 

comparison the effective radii of the double FP are equal 

those of concave plates 0 and 4 of the triple FP (Table 1). 

Since the equivalent friction and stiffness coefficients of the 

triple FP depend on the bearing displacement amplitude, the 

isolation performance of the triple FP is assessed for various 

PGA values of several earthquakes to operate the triple FP 

within all its sliding regimes (section 4.1). The equal friction 

coefficients of the double FP are selected so that the 

restrainer deformation of the double FP at maximum PGA 

value is approx. equal that of the triple FP at maximum PGA 

value (section 4.2). The simulations are evaluated in terms of 

extremes of absolute acceleration and drift of the structure 

(section 4.3) and discussed in section 4.4. 

4.1. PGA-scaled Ground Acceleration Time Histories 

The simulations are performed with the ground 

acceleration time histories of the El Centro North-South (NS) 

earthquake, the El Centro East-West (EW) earthquake, the 

Loma Prieta earthquake, the Kobe earthquake and the 

Northridge earthquake. In order to operate the triple FP 

within all its sliding regimes the ground acceleration time 

histories are scaled by the following PGA-values in m/s2 

]PGA...,,2,1,5.0[PGA max         (16) 

where the maximum PGA value maxPGA  is chosen so that 

the maximum restrainer deformation of the triple FP is less 

than 1 mm. Due to the different frequency contents of the 

considered earth-quakes maxPGA  becomes 7.8 m/s2 for the 

El Centro NS earthquake, 4.9 m/s2 for the El Centro EW 

earthquake, 3.2 m/s2 for the Loma Prieta earthquake, 3.82 

m/s2 for the Kobe earthquake and 6.45 m/s2 for the 

Northridge earthquake. 

4.2. Friction Coefficient of Double Friction Pendulum 

The friction coefficients 21    of the double FP are 

selected so that the restrainer deformation of the double FP is 

less than 1 mm at maxPGA . This ensures that displacement 

capacities of both the double and triple FPs are fully depleted 

at maxPGA . The resulting friction coefficients are 

 21  6.0% for the El Centro NS earthquake, 

 21  6.5% for the El Centro EW earthquake, 

 21  4.5% for the Loma Prieta earthquake, 

 21  5.5% for the Kobe earthquake and  21 

4.5% for the Northridge earthquake. In addition, all 

simulations are also performed with  21  6.5% 

assuming a double FP with one friction coefficient. 

4.3. Evaluation Criteria 

The isolation performance is assessed by the commonly 

adopted two criteria [24, 26]: 

  extreme of the absolute structural acceleration 

 gs uumax   , and 

  extreme of the structural drift  tots uumax   where 

4tot uu   for the triple FP and 2tot uu   in case of 

the double FP (Figures 1(a, b)). 

4.4. Results 

4.4.1. Simulation Tool 

For the simulations of the structure with triple FP the 

coupled non-linear differential equations de-scribed in 
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section 3.2.1 are solved in Matlab/Simulink®  (solver 

ode15s(stiff/NDF), maximum relative tolerance 1e-3, 

variable step size with upper bound of 1e-5 s) for the 

PGA-scaled ground accelerations of the five considered 

earthquakes. For the simulations of the structure with double 

FP, the equations of motion are reformulated for the two 

degrees of freedom 1u  and 12 uu   of the double FP. 

4.4.2. Absolute Acceleration and Drift of Structure 

The simulation result of |)uumax(| gs    and 

|)uumax(| tots   for the El Centro NS earthquake are 

depicted in Figures 8(a, b). It is observed that 

|)uumax(| gs    and |)uumax(| tots   show the same 

trend as function of PGA which also applies to the simulation 

results of the other four earthquakes. This is explained by the 

fact that the structure is modelled as a single 

degree-of-freedom system which is the common approach 

when the isolation frequency is significantly below the 

natural frequency of the structure [45, 46] (Fig. 1). Therefore, 

Figures 9(a, b) and 10(a, b) only depict |)uumax(| gs    

resulting from the simulations of the El Centro EW, the 

Loma Prieta, the Kobe and the Northridge earthquake. 

4.4.3. Triple Friction Pendulum Compared with Double 

Friction Pendulum 

The numerical results of all considered earthquakes and 

PGA values reveal: 

  The triple FP performs better at small the PGA values: 

PGA<2.2 m/s2 for the El Centro NS, PGA<1.46 m/s2 

for El Centro EW, PGA<0.85 m/s2 (<1.12 m/s2 for 

 21  6.5%) for the Loma Prieta, PGA<0.59 m/s2 

(<0.63 m/s2 for  21  6.5%) for the Kobe and 

PGA<1.12 m/s2 (<1.83 m/s2 for  21  6.5%) for 

the Northridge earthquake. 

  The double FP outperforms the triple FP for PGA 

values greater than the values given above. 

  The isolation performances of both FPs at maxPGA  

are almost equal because maxPGA  triggers approx. 

the same restrainer deformation (see section 4.1). 

  The double FP with 6.5% friction (plotted in green) 

performs best because the higher friction reduces the 

bearing relative motion whereby restrainers are not 

triggered at maxPGAPGA  . 

4.4.4. Triple Friction Pendulum with Different Friction 

Coefficients 

The fact that the double FPs perform significantly better 

for most PGA values than the triple FP with 1 3.1% and 

4 11.4% may be caused by suboptimal tunings of 1  

and 4  of the triple FP; notice that 1 3.1% and 4

11.4% represent the experimentally identified mean values 

presented in [32]. Since the good results of the double FPs 

for the El Centro NS earthquake are obtained with 

significantly greater friction coefficients than 3.1%, two 

other triple FPs with increased friction coefficients, i.e. 

1 4% and 4 13% and 1 5% and 4 15%, are 

also computed. The results, which are included in Figures 

8(a, b), demonstrate that increased friction coefficients 1  

and 4  do hardly improve the isolation performance of the 

triple FP for most PGA values except in the vicinity of 

maxPGA  due to the greater friction coefficients that reduce 

the total bearing motion whereby the restrainer deformation 

becomes smaller in case of 1 =4% and 4 =13% and 

becomes zero for 1 =5% and 4 =15%. It should be added 

that increased friction coefficients in case of the double FP 

would also avoid the activation of the restrainers whereby 

also the isolation results of the double FP at PGA values 

close to maxPGA  would be improved. 

4.4.5. Impact of Sliding Regime V 

The results depicted in Figures 8(a, b)-10(a, b) clearly 

point out that the isolation performance of the triple FP 

deteriorates in the vicinity of maxPGA . The double-check 

of all force displacement trajectories of all simulations 

reveals that this coincides with the activation of sliding 

regime V (Figures 11(a, b, c)) that is characterized by 

significantly increased stiffness and significantly reduced 

friction. The combination of increased stiffness and reduced 

friction: 

1. evokes the deterioration of the isolation because 

increased stiffness is equivalent to reduced isolation 

time period which would require increased friction to 

compensate for the isolation deterioration, and 

2. cannot reduce the bearing displacement capacity 

demand since the stiffening behaviour is offset by the 

reduced friction which is confirmed by the equal 

restrainer deformations at maxPGA  of the triple and 

double FPs with equal to totd  (Figures 11(d, e, f)). 

In contrast to sliding regime V sliding regime IV does not 

lead to a deterioration of the isolation performance despite 

the small stiffening effect of sliding regime IV as observed in 

Figure 12(a) because the activation of sliding regime 

generates a further increase of the equivalent friction 

coefficient as depicted in Figures 3(a) and 7(a). Figures 

12(b-f) show that the force displacement trajectories of the 

triple FP at medium to small PGA values is dominated by 

sliding regimes II and III while sliding regime I is only 

relevant at PGA=0.5 m/s2 which is also seen from the values 

of equiv  and equivk  in Figures 3(a, b) and 7(a, b). 
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Figure 8.  (a) Extreme of absolute acceleration of structure and (b) extreme of total drift of structure due to triple FP, double FP and without isolator due to 

El Centro NS earthquake 

 

Figure 9.  Extreme of absolute acceleration of structure due to triple FP, double FP and without isolator due to (a) El Centro EW and (b) Loma Prieta 

earthquakes 

 

Figure 10.  Extreme of absolute acceleration of structure due to triple FP, double FP and without isolator due to (a) Kobe and (b) Northridge earthquakes 
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Figure 11.  Horizontal force versus total displacement of triple FP due to El Centro NS for (a) PGA=7.8 m/s2, (b) PGA=7.4 m/s2, (c) PGA=7.0 m/s2 and of 

double FP due to El Centro NS for (d) PGA=7.8 m/s2, (e) PGA=7.4 m/s2 and (f) PGA=7.0 m/s2 

 

 

Figure 12.  Horizontal force versus total displacement of triple FP due to El Centro NS for (a) PGA=6.0 m/s2, (b) PGA=4.0 m/s2, (c) PGA=3.0 m/s2, (d) 

PGA=2.0 m/s2, (e) PGA=1.0 m/s2 and (f) PGA=0.5 m/s2 
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5. Friction in Proportion to 
Displacement Amplitude 

5.1. Adaptive Friction? 

As demonstrated in section 2 the equivalent friction 

coefficient of the triple FP increases with increasing bearing 

relative motion within sliding regimes II to IV which 

primarily determine the dynamic behaviour of the triple FP 

(Figure 3(a)). Also within sliding regimes II to IV the 

equivalent stiffness coefficient shows a decreasing trend 

(Figure 3(b)). Both adaptive behaviours are commonly 

considered to improve the isolation of the primary structure. 

However, the results presented in section 4 demonstrate the 

contrary, i.e. the conventional non-adaptive double FP 

outperforms the triple FP at medium to higher shaking levels 

at which sliding regimes II to IV are activated. 

In order to better understand how friction should depend 

on bearing motion in order to improve structural isolation a 

case study is performed where the friction coefficient of the 

pendulum is controlled in proportion to bearing 

displacement amplitude which is described subsequently. 

5.2. Energy Balance with Linear Viscous Damper 

The goal of any damping mechanism is to maximize the 

cycle energy of the damping device independent of its 

displacement amplitude. This means that the damping device 

should be linear, i.e. produce linear viscous damping. In 

order to obtain the control law of a controlled friction device 

it is therefore reasonable to balance the cycle energies of a 

linear viscous damper and a friction damper [47, 48] 

   UW4Ufr2c 2            (17) 

where c  denotes the viscous damper coefficient of the 

linear viscous damper and harmonic excitation is assumed. 

Equation (17) can be interpreted as the cycle energy balance 

of a pendulum (without friction) with a linear viscous 

damper in parallel and a conventional FP. Solving (17) for 

the friction coefficient and omitting all constant variables 

yields 

fr

U
~                  (18) 

Furthermore, fr const. may be assumed considering 

that the frequency fr  of the relative motion of the FP is in 

the vicinity of the isolation frequency isolationfr  that is 

given by the curvature ( effR ) of the FP. With this 

assumption it turns out that the friction coefficient should 

be adjusted in proportion to relative displacement 

amplitude [47-53] 

U~                  (19) 

5.3. Ideal Pendulum with Friction in Proportion to 

Displacement Amplitude 

Ideally, a curved surface without any friction is combined 

with a controllable damper [54], e.g. a magnetorheological 

damper [27, 28, 55], to realize (19). The according real-time 

controlled friction force of the controllable damper becomes 

  actual
1

1
ideal UW

U
usgnf


       (20) 

where 11 U/  denotes the gradient of friction relative to 

displacement amplitude (indicated by the dashed line in red 

in Figure 13(a)) and actualU  is the actual displacement 

amplitude. The resulting force displacement characteristics 

including the restoring stiffness force due to the curvature 

are depicted in Figure 13(a) for five selected actualU . 

5.4. Real Pendulum with Passive (Lubricated) Friction 

and Real-time Controlled Friction 

In reality, friction of curved surfaces cannot be avoided. 

The lowest value is obtained when the sliding surface is 

lubricated. Typically, the lubricated (passive, uncontrollable) 

friction coefficient 0  is around 1%. The sum of the force 

due to lubricated friction of the FP and the controlled friction 

force of the controllable damper therefore becomes 

 






 

 previous
1

01
0real UW

U

)(
Wusgnf


 (21) 

Here, previousU  denotes the previous (latest) 

displacement amplitude as the previous value is the latest 

value available in real-time control [50]. The resulting force 

displacement trajectories due to the simulation of the Loma 

Prieta earthquake scaled to PGA=2 m/s2 show local loops 

(Figure 13(b)) due to the broad band excitation of the 

accelerogram in contrast to the force displacement 

trajectories shown in Figure 13(a) that result from kinematic 

excitation at constant frequency and constant amplitude. 

5.5. Assessment for Two Accelerograms 

The isolation performance of the pendulum with 

lubricated (passive, uncontrollable) friction and real-time 

controlled friction force according to (21) is computed for 

the accelerograms of the El Centro NS and the Loma Prieta 

earthquakes. The results plotted in Figures 14(a, b) are 

compared to those of two double FPs without restrainers to 

avoid the deteriorated isolation results at PGAs in the 

vicinity of maxPGA  and to those of two triple FPs with 

increased friction coefficients also to avoid the worse 

isolation results when all restrainers are activated as seen in, 

e.g., Figures 8(a, b). 

It is observed that the pendulum with lubricated (passive, 

uncontrollable) friction of 1% and a friction force that is 

adjusted in real-time in proportion to the previous 

displacement amplitude significantly outperforms all other 

computed double and triple FPs within the entire PGA range. 

The values of the absolute structural peak accelerations 

almost describe a straight line which means that controlling 

the friction force in proportion to displacement 
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amplitude linearizes the friction damper over each cycle 

(the force is still a friction force, see Figure 13(b)) which 

is the direct result of the energy balance with the linear 

viscous damper (17). A linear line would be obtained if  

0 =0% and amplitude estimation errors were not present 

which corresponds to the ideal pendulum with controlled 

friction according to (20). It is also observed that the 

conventional double FP generates the same isolation as 

approach (21) at these PGAs for which the constant friction 

coefficients 21    of the conventional double FP are 

correctly tuned to the bearing displacement amplitude which 

is triggered when the peak of the structural acceleration 

occurs. The slightly better isolation result of the double FP 

with 21   =6.5% for the Loma Prieta accelerogram 

scaled to PGA=2.5 m/s2 is caused by the fact that the friction 

coefficient of (21) is controlled in proportion to previousU  

which is not the actual amplitude whereby small real-time 

tuning errors in the actual friction force (21) are present. 

 

 

Figure 13.  Force displacement trajectories of (a) FP according to (20) for kinematic excitation and (b) FP according to (21) due to ground excitation 

 

 

Figure 14.  Performance of single FP with friction controlled in real-time in proportion to displacement amplitude for (a) El Centro NS and (b) Loma Prieta 

earthquakes compared with double FPs without restrainers and best performing triple FPs 
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6. Conclusions 

The triple friction pendulum (FP) is well-known for its 

adaptive friction and stiffness properties that depend on its 

sliding regimes and bearing displacement amplitude, 

respectively, and consequently on peak ground acceleration 

(PGA) of the considered accelerogram. This paper therefore 

assesses the isolation performance in terms of absolute 

structural peak acceleration as function of various PGAs 

ranging between very small values up to the maximum value 

at which the full displacement capacity of the triple FP is 

used. The resulting isolation results demonstrate that the low 

friction of the articulated slider assembly is beneficial as it 

triggers relative motion in the bearing at small PGAs (<20% 

of its maximum) while the conventional non-adaptive double 

FP with same curvature outperforms the triple FP for all 

other PGAs. It is also observed that sliding regime V evokes 

a strongly deteriorated isolation due to the increased stiffness 

that reduces the isolation time period. In addition it is found 

that the increased stiffness of sliding regime V cannot reduce 

the displacement capacity of the triple FP because it is 

accompanied by reduced friction; the displacement capacity 

could be reduced by the combinations of increased stiffness 

and maintained friction or increased friction and maintained 

stiffness. 

Based on the finding that the displacement (position) 

dependent friction of sliding regimes II to IV of the triple FP 

is not beneficial for enhanced structural isolation a pendulum 

is presented whose friction coefficient is controlled in 

proportion to bearing displacement amplitude. This approach 

is derived from the energy balance between linear viscous 

and friction dampers and requires the adoption of a 

controllable damper that works in parallel with the curved 

surface. To minimize the uncontrollable friction of the 

isolator the curved surface is assumed to be lubricated. The 

results demonstrate that the FP with friction controlled in 

proportion to displacement amplitude significantly enhances 

the isolation of the structure. Hence, displacement amplitude 

proportional friction is seen as the objective function for the 

future development of adaptive pendulums based on passive 

mechanisms without the adoption of control devices. 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the financial support 

of MAURER SE, Munich, Germany. 

 

REFERENCES 

[1] R. I. Skinner, W. H. Robinson, and G. H. McVerry, An 
introduction to seismic isolation, Wiley: Chichester, England, 
1993. 

[2] A. K. Chopra, Dynamics of Structures: Theory and 
Applications to Earthquake Engineering, Prentice-Hall, 1995. 

[3] F. Naeim, and J. M. Kelly, Design of Seismic Isolated 

Structures, Wiley: New York, 1999. 

[4] C. A. Cornell, “Engineering Seismic Risk Analysis,” Bulletin 
of the Seismological Society of America, vol. 58, pp. 
1583–1606, 1968. 

[5] M. Imbimbo, and J. M. Kelly, “Stability aspects of 
elastomeric isolators,” Earthquake Spectra, vol. 13, issue 3, 
pp. 431–449, 1997. 

[6] V. A. Zayas, S. S. Low, and S. A. Mahin, The FPS earthquake 
resisting system experimental report, Technical Report 
UBC/EERC-87/01, 1987. 

[7] T. M. Al-Hussaini, V. A. Zayas, and M. C. Constantinou, 
Seismic isolation of multi-story frame structures using 
spherical sliding isolation systems, Technical Report 
NCEER-94-0007, 1994. 

[8] C. S. Tsai, “Finite element formulations for friction pendulum 
seismic isolation bearings,” International Journal for 
Numerical Methods in Engineering, vol. 40, pp. 29-49, 1997. 

[9] K. Z. Y. Yen, and Y. J. Lee, Passive vibration isolating 
system, US Patent No. 6126136, October 3, 2000. 

[10] D. M. Fenz, and M. C. Constantinou, “Behaviour of the 
double concave Friction Pendulum bearing,” Earthquake 
Engng. Struct. Dyn., vol. 35, pp. 1403–1424, 2006. 

[11] C. S. Tsai, W.-S. Chen, T.-C. Chiang, and B.-J. Chen, 
“Component and shaking table tests for full-scale multiple 
friction pendulum system,” Earthquake Engng. Struct. Dyn., 
vol. 35, pp. 1653–1675, 2006. 

[12] C. Bucher, “Probability-based optimization of friction 
damping devices,” Structural Safety, vol. 31, pp. 500–507, 
2009. 

[13] R. Medeot, “Experimental validation of re-centring capability 
evaluation based on energy concepts,” Proc. 14th World 
Conference on Earthquake Engineering, October 12-17, 2008, 
Beijing, China. 

[14] C. Braun, “The sliding isolation pendulum – an improved 
recentring bridge bearing,” Steel Construction, vol. 2, pp. 
203–206, 2009. 

[15] J. M. Kelly, “The role of damping in seismic isolation,” 
Earthquake Engng. Struct. Dyn., vol. 28, issue 1, pp. 3–20, 
1999. 

[16] J. F. Hall, “Discussion of „The role of damping in seismic 
isolation‟,” Earthquake Engng. Struct. Dyn., vol. 28, issue 12, 
pp. 1717–1720, 1999. 

[17] Eurocode 8: Design of structures for earthquake resistance – 
Part 1: General rules, seismic actions and rules for buildings; 
EN 1998-1:2004 + AC: 2009. 

[18] M. Q. Feng, M. Shinozuka, and S. Fujii, 
“Friction-controllable sliding isolation system,” Journal of 
Engineering Mechanics (ASCE), vol. 119, issue 9, pp. 
1845–1864, 1993. 

[19] N. Wongprasert, and M. D. Symans, “Experimental 
evaluation of adaptive elastomeric base-isolated structures 
using variable-orifice fluid dampers,” Journal of Structural 
Engineering (ASCE), vol. 131, issue 6, pp. 867–877, 2005. 

[20] T. Kobori, M. Takahashi, T. Nasu, and N. Niwa, “Seismic 
response controlled structure with active variable stiffness 



32 Felix Weber et al.:  Isolation Performance Assessment of Adaptive Behaviour of Triple Friction Pendulum  

 

 

system,” Earthquake Engng. Struct. Dyn., vol. 22, pp. 
925–941, 1993. 

[21] S. Nagarajaiah, and S. Sahasrabudhe, “Seismic response 
control of smart sliding isolated buildings using variable 
stiffness systems: An experimental and numerical study,” 
Earthquake Engng. Struct. Dyn., vol. 35, issue 2, pp. 177–197, 
2006. 

[22] F. Casciati, L. Faravelli, and K. Hamdaoui, “Performance of a 
base isolator with shape memory alloy bars,” Earthquake 
Engineering and Engineering Vibration, vol. 6, issue 4, pp. 
401–408, 2007. 

[23] N. Makris, “Rigidity–plasticity–viscosity: Can 
electrorheological dampers protect base isolated structures 
from near-source ground motions?,” Earthquake Engng. 
Struct. Dyn., vol. 26, issue 5, pp. 571–591, 1997. 

[24] J. C. Ramallo, E. A. Johnson, and B. F. Spencer Jr, “„Smart‟ 
base isolation systems,” Journal of Engineering Mechanics 
(ASCE), vol. 128, issue 10, pp. 1088–1100, 2002. 

[25] P. Y. Lin, P. N. Roschke, C. H. Loh, and C. P. Cheng, 
“Semi-active controlled base-isolation system with 
magnetorheological damper and pendulum system,” 
Proceedings of the 13th World Conference on Earthquake 
Engineering, Vancouver, BC, Canada, 2004; Paper 691. 

[26] H. Li, and J. Ou, “A design approach for semi-active and 
smart base-isolated buildings,” Struct. Control Health Monit., 
vol. 13, issue 2–3, pp. 660–681, 2006. 

[27] F. Weber, and M. Maślanka, “Precise Stiffness and Damping 
Emulation with MR Dampers and its Application to 
Semi-active Tuned Mass Dampers of Wolgograd Bridge,” 
Smart Mater. Struct., vol. 23, 015019, 2014. 

[28] F. Weber, “Robust force tracking control scheme for MR 
dampers,” Struct. Control Health Monit., vol. 22, issue 12, pp. 
1373–1395, 2015. 

[29] A. Pocanschi, and M. C. Phocas, “Earthquake isolator with 
progressive nonlinear deformability,” Engineering Structures, 
vol. 29, pp. 2586–2592, 2007. 

[30] M. C. Constantinou, A. S. Whittaker, Y. Kalpakidis, D. M. 
Fenz, and G. P. Warn, Performance of seismic isolation 
hardware under service and seismic loading, Technical 
Report MCEER-07-0012, State University of New York at 
Buffalo, Buffalo, NY, 2007. 

[31] D. M. Fenz, and M. C. Constantinou, “Spherical sliding 
isolation bearings with adaptive behavior: Theory,” 
Earthquake Engng. Struct. Dyn., vol. 37, pp. 163–183, 2008. 

[32] D. M. Fenz, and M. C. Constantinou, “Spherical sliding 
isolation bearings with adaptive behavior: Experimental 
verification,” Earthquake Engng. Struct. Dyn., vol. 37, pp. 
185–205, 2008. 

[33] D. M. Fenz, and M. C. Constantinou, Development, 
Implementation and Verification of Dynamic Analysis 
Models for Multi-Spherical Sliding Bearings, Technical 
Report MCEER-08-0018, State University of New York at 
Buffalo, Buffalo, NY, 2008. 

[34] M. C. Constantinou, and D. M. Fenz, Mechanical Behavior of 
Multi-spherical Sliding Bearings, MCEER-08-0007, 2008. 

[35] D. M. Fenz, and M. C. Constantinou, “Modeling Triple 

Friction Pendulum Bearings for Response-History Analysis,” 
Earthquake Spectra, vol. 24, issue 4, pp. 1011–1028, 2008. 

[36] F. Fadi, and M. C. Constantinou, “Evaluation of simplified 
methods of analysis for structures with triple friction 
pendulum isolators,” Earthquake Engng. Struct. Dyn., vol. 39, 
pp. 5–22, 2010. 

[37] F. Hamidreza, and G. A. Gholamreza, “Nonlinear 
Response-History Analysis of Triple Friction Pendulum 
Bearings (TFPB), Installed Between stories Stories,” Proc. 
15th World Conf. Earthquake Engineering, Lisboa, 2012. 

[38] T. A. Morgan, and S. A. Mahin, The Use of Base Isolation 
Systems to Achieve Complex Seismic Performance 
Objectives, PEER Report 2011/06, Pacific Earthquake 
Engineering Research Center, College of Engineering, 
University of California, Berkeley, July 2011. 

[39] N. D. Dao, K. L. Ryan, E. Sato, and T. Sasaki, “Predicting the 
displacement of Triple Pendulum bearings in a full scale 
shaking experiment using a three-dimensional element,” 
Earthquake Engng. Struct. Dyn., vol. 42, pp. 1677–1695, 
2013. 

[40] A. P. Giammona, K. L. Ryan, and N. D. Dao, “Evaluation of 
Assumptions Used in Engineering Practice to Model 
Buildings Isolated with Triple Pendulum Isolators in 
SAP2000,” Earthquake Spectra, vol. 31, issue 2, pp. 637–660, 
2015. 

[41] C. Bucher, “Analysis and Design of Sliding Isolation 
Pendulum Systems,” Proc. IABSE Conference Nara, May 
13-15, 2015. 

[42] L. Meirovitch, Fundamentals of Vibrations, New York: 
McGraw-Hill, 2001. 

[43] F. Al-Bender, V. Lampaert, and J. Swevers, “The Generalized 
Maxwell-Slip Model: A Novel Model for Friction Simulation 
and Compensation,” IEEE Transactions on Automatic 
Control, vol. 50, issue 11, pp. 1883–1887, 2005. 

[44] M. Ruderman, “Presliding hysteresis damping of LuGre and 
Maxwell-slip friction models,” Mechatronics, vol. 30, pp. 
225–230, 2015. 

[45] C. S. Tsai, T.-C. Chiang, and B.-J. Chen, “Experimental 
evaluation of piecewise exact solution for predicting seismic 
responses of spherical sliding type isolated structures,” 
Earthquake Engng Struct. Dyn., vol. 34, pp. 1027–1046, 
2005. 

[46] P. M. Colvi, M. Moratti, and G. M. Celvi, “Seismic Isolation 
devices based on variable friction sliding materials,” 
Proggettazione Sismico, vol. 6, issue 1, pp. 17–44, 2015. 

[47] F. Weber, J. Høgsberg, and S. Krenk, “Optimal tuning of 
amplitude proportional Coulomb friction damper for 
maximum cable damping,” Journal of Structural Engineering, 
vol. 136, issue 2, pp. 123–134, 2010. 

[48] F. Weber, and C. Boston, “Energy Based Optimization of 
Viscous-Friction Dampers on Cables,” Smart Mater. Struct., 
vol. 19, 045025, 2010. 

[49] F. Weber, and C. Boston, “Clipped viscous damping with 
negative stiffness for semi-active cable damping,” Smart 
Mater. Struct., vol. 20, 045007, 2011. 

[50] F. Weber, and H. Distl, “Amplitude and frequency 



 Journal of Civil Engineering Research 2017, 7(1): 17-33 33 

 

 

independent cable damping of Sutong Bridge and Russky 
Bridge by MR dampers,” Struct. Control Health Monit., vol. 
22, pp. 237–254, 2015. 

[51] F. Weber, and H. Distl, “Semi-active damping with negative 
stiffness for multi-mode cable vibration mitigation: 
Approximate collocated control solution,” Smart Mater. 
Struct., vol. 24, 115015, 2015. 

[52] F. Weber, “Semi-active vibration absorber based on real-time 
controlled MR damper,” Mechanical Systems and Signal 
Processing, vol. 46, issue 2, pp. 272-288, 2014. 

[53] F. Weber, H. Distl, S. Fischer, and C. Braun, “MR Damper 

Controlled Vibration Absorber for Enhanced Mitigation of 
Harmonic Vibrations,” Actuators, vol. 5, 2016,  
doi: 10.3390/act5040027. 

[54] M. A. Riley, A. M. Reinhorn, and S. Nagarajaiah, 
“Implementation issues and testing of a hybrid sliding 
isolation system,” Engineering Structures, vol. 20, issue 3, pp. 
144–154, 1998. 

[55] F. Weber, H. Distl, and C. Braun, “Semi-active Base Isolation 
of Civil Engineering Structures Based on Optimal Viscous 
Damping and Zero Dynamic Stiffness,” Proc. IMAC–XXXV 
Conference and Exposition on Structural Dynamics, January 
30 – February 2, 2017, Garden Grove, CA, USA. 

 


