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Natural Frequencies of Seiche in a Closed Trapezoidal
Basin with Internal Barriers
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Abstract A seiche is the free oscillation of water in a closed or semi-closed basin; it is frequently observed in harbors,
bays and lakes. Enclosed basins can experience oscillations due to a variety of causes. The enclosed basin has certain natural
frequencies of seiche, depending on the geometry of the water boundaries and the bathymetry of water depths. Therefore, the
variation in water surface at a point becomes irregular as caused by the combination of several natural frequencies, which
may be considered as the superposition of sinusoidal frequency components of different amplitude. This paper is mainly
concerned with the motion of an incompressible irrotational fluid in a closed trapezoidal basin with internal impervious
barriers. An analytical solution is presented for predicting the characteristic of generated waves in these types of basins. The
equations of free water surface oscillations and its boundary conditions are reduced to a system of linear equations, which is
solved by applying the small amp litude water wave theory. The flow potential, wave amplitude, flow patterns, and the natural
period of waves generated in the basin with impervious internal barriers are found based on the basin geometry. It is shown

that the natural period of basin is strongly dependent to the location of barriers and the size of barrier’s opening.
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1. Introduction

Standing waves in natural basins are called seiches.
Seiches can be generated by tectonic movements or winds.
Like water sloshing in a bathtub, seiches are tide-like rises
and drops in great lakes coastal water levels caused by
prolonged strong winds that push water toward one side of
the lake, causing the water levelto rise on the downwind side
of the lake and to drop on the upwind side. When the wind
stops, the water sloshes back and forth, with the near-shore
water level rising and falling in decreasingly small amounts
on both sides of the lake until it reaches equilibrium. They
occur commonly in enclosed or partially enclosed basins and
are usually the result of a sudden change or a series of
intermittent-periodic changes in atmospheric pressure or
wind velocity. The period of oscillation of a seiche depends
on the causative force, which sets the water basin in motion
and the natural or free oscillating period of the basin (Figure
D).

Seiches can inflict damage, if the natural period of a
moored ship matches that of a seiche, then considerable
motion will result in the moored ship. Seiches could damage
structures along the coastline, and create large vertical
accelerations for offshore structures such as boats, barges
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and floating piers. Shoreline flooding may be caused by
storm surges or seiches, often occurring simultaneously with
high waves. The appearance of these seiches can be
simulated by tilting a basin partially filled with water and
then setting it down on a level surface. The water will slosh
back and forth at a period determined by the size and shape
of'the basin. If the natural period, or seiche period, is close to
the period of one of the tidal species, the constituents of that
species will be amplified by resonance more than those of
other species. A variety of seiche periods may appear in the
same water level record because the main body of water may
oscillate longitudinally or laterally at different periods. The
various modes of seiching correspond to the natural
frequency response of the water body. There are an infinite
number of seiching modes possible, fromthe lowest (mode 1)
to infinity. Realistically, the lower modes probably occur in
nature, as frictional damping affects the higher modes
preferentially. If the rectangular basin has significant width
as well as length, both horizontal dimensions affect the
natural period, given by Ippen[1] as:
-1/2
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where Tnm is the natural free oscillation period, n, and m are

the modes of oscillation in longitudinal and lateral
coordinates respectively and a, and b are the length and
width of the rectangular basin. However, the most studied is
harbour oscillations caused by incident waves, which have



Journal of Civil Engineering Research 2013, 3(1): 22-34 23

typical periods of a few minutes. Due to strong wind or long
wave energy, the water body of a harbor exhibits oscillatory
resonant motions. A number of theoretical and numerical
investigations ofsuch resonant oscillations have been carried
out, but most of them were limited to harbors with constant
depth connected with open sea. The free oscillation in closed
rectangular and circular basins was analyzed by Lamb[2].
These solutions clarified the natural periods and modes of
free surface oscillations related to these special
configurations. Neumann[3] focused on the global seiche
modes of the entire Baltic, using sea-level data from a
number of events when particularly pronounced standing
oscillations. His theoretical analysis is based on
computational methods presented by[4]. The forced
oscillation in a circular harbour connected to the open sea
through a narrow mouth was studied by[5]. Since the
radiation effect was ruled out, the results showed a harbor
resonance as it does in a closed basin. An analytical model
for the oscillations of water in a bay or lake, using an
electronic network and an electric analogue computer was
developed by Ishiguro[6]. Miles and Munk[ 7], and Ippen and
Goda[8], realized that, the open-sea was important in
allowing for the loss of energy radiated from a harbor.
lida[9] studied the free oscillation of water in a lake of
elliptic boundary. The wave-induced oscillations in harbors
of arbitrary shapes was investigated by[10]. The wave
induced oscillations of harbors with variable depth was
studied by[l11]. The free oscillation in a simple
two-dimensional closed basin was studied by[1]. The study
of harbour resonance has been extended to take into account
the effect of bottom friction by[12], wave nonlinearity[13
and 14]. The wave motion and it’s characteristics on a
Physical model of small-boat harbour was studied by[15].
Wave-induced oscillation in harbor with porous breakwaters
was investigated by[16]. Weakly non-linear long internal
wave in closed basin was modelled by[17]. Although the
application of numerical models can beused for handling the
complexities in this regard, still developing an analytical
solution for practical cases can be very useful for parametric
study ofthe free oscillation phenomenon. Kabiri-Samani and
Ataie-Ashtiani[18], studied the motion of an incompressible
irrotational fluid in a closed rectangular basin with internal
impervious barriers based on analytical modeling. They have
found new solutions for predicting the characteristic of
generated waves in these types of basins, by applying the
small amplitude water wave theory. The Lake Urmia is a
lake salted in the North-West of the Iran, in the Iranian
Azerbaidjan (between the provinces of Eastern Azerbaidjan
and Western Azerbaidjan, with the west of the Caspian Sea,
which with the same form). It is more the big lake in Iran,
with a surface of approximately 5.200 km 2. In its greater
dimensions, it is approximately 140 km long and 55 km
broad. Its maximum depth is approximately 16 m. Urmia
lake has a rectangular shape in plan and trapezoidal shape in
cross and longitudinal sections (Figure 2).

Shahid Kalantari Bridge, is the longest bridge in Iran,
which is constructed over Urmia lake and connects Tabriz to
Urmia. Due to this natural geometrical properties,
construction of Shahid Kalantari Bridge, very similar to

internal barriers, over it, there is a potential to perform
seiches. This bridge is made of two side rock-filled walls and
a bridge deck which is constructed over the opening between
the barriers. Due to these similarities to a closed basin with
internal barriers, the behavior of free water surface
oscillation should be investigated to have informations about
the interaction between water surafe free waves and
structure.

Since this phenomena can cause undesired problems, in
this work an analytical solution for calculation of the free
water surface oscillations in a trapzoidal basin with internal
barriers will be presented. This analytical solution can be
applied for the cases such as constructing a causeway in
lakes and expansion plan in harbours. The water flow is
considered as an ideal and irrotational flow. Therefore the
Laplace equation governs to the velocity potential function
of flow domain. Free surface boundary condition is
linearized to formulate a linear set of equation forsolving the
small amplitude water wave in the trapezoidal basin. The
flow potential, wave amplitude and the natural period of
waves generated in the basin with impervious internal
barriers are found based on the basin geometry. These
parameters are presented for the variations of basin and
barriers geometry.

2. Free Oscillations in Closed Basins
with Internal Barriers

Consider the closed trapezedial basin of the bottom width
b, length a, constant depth /4, and latteral walls slope s, has
two internal impervious barriers, which have the length b,
and b, and divided the basin to two semi-closed basins as
shown in Figure 3. If a periodic motion of the water in this
basin is possible, the free oscillation will be described by
periods which are function of the basin dimensions.

a ar

a
Figure 3.
barriers

Three Dimensional closed trapezeidal basin with internal

The purpose is determining the period of these modes of
oscillation. The laplace equation applies throughout the fluid,
therefore
o’D D 9D

2 + 2 + 2 =
Ox oy oz
The boundary conditions for le ft semi-closed basin are:
Kinematic free surface boundary condition (KFSBC)

ViD=
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Figure 1. Schematic standing wave
Figure 2. General plan of Urmia lake
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Dynamic free surface boundary condition (DFSBC)
L (4)
g ot
Bottom boundary condition (BBC) and walls boundary conditions (WBC) are considered to be impreviouse. Therefore:
)
w=—%=0 on z=—h and h/s<x<h/s+a, and h/s<y<h/s+b (5
iz
O 0D
us+w=—sa——a—=0 on z=-sx ,0<x<h/s ,05y<2h/s+b (6)
ox 0Oz

vs+w:—s6£—a£:0 on z=-sy ,0<x<a,+h/s (7)

oy Oz
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on z=-2h+sy—sb

Boundary conditions on the barriers and their opening are (BOBC)

oD

u=—-—=0
ox
uz—agzu, on x=h/s+a,
Ox
u=—a£= on x=h/s+aq,
Ox

The boundary conditions for right semi-closed basin are
Kinematic free surface boundary condition

ob  0On
-— = on z=n(x,y,t
% o 17(x, 1)
Dynamic free surface boundary conditon
1 00
n=—— on z=0
g ot
Bottomboundary condition and sloped lateral wall boundary condition:
O
w=—%=0 on z=-hyh/s+a, <x<2h/s+a and h/s<y<h/s+b
zZ
—us+w:sa£—a£:O on z=-2h+sx—sa ,h/s+a<x<2h/s+a
Ox Oz
0<y<2h/s+b
LOJINGLO]
vs+w:—sa——6—:0 on z=-sy and a,+h/s<x<a+2h/s
oy Oz
—vs+w:sa£—a£=0 on z=-2h+sy—sb ,hls+a, <x<2h/s+a
oy Oz
Boundary conditions at the vicinity of barriers and their opening are (BOBC)
oo
u:—a—zo on x=h/s+a, ,05y<b,+h/s
X
oD
=—a—=ur on x=h/s+a, ,b,+h/s<y<b,+h/s+c
X
oD
u=—8—=0 on x=h/s+a, ,b,+h/s+c<y<b+2hl/s
X

Using separation of variables method yields to:

,0<x<h/s+a,

on x=h/s+a, ,05y<b,+h/s

Q= X(X)Y(»)Z(2)T ()

by substituting into the governing equation results

X"YZT + XY'ZT + XYZ'T =0

hence:

Z"-k*’Z=0
Y'+&’Y =0
X'+(k*-e)X =0

Where k* and & are constants. These equations have the following general solutions

X = Acosvk? —&’x+ BsinVk* —&*x

Y =Ccosegy+ Dsingy

Z=Ee" +Fe
It can be assumed that, the solution is periodic in time, then velocity potential variation by time is expressed by
T =Gsinot
Applying the boundary conditions yeilds to
E =Fe™

b, +h/s<y<b,+h/s+c

,b,+h/s+c<y<b+2h/s

>
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nmw
(a, +h/s)
_ mrmw
C(b+2h/s)

By substituting, and dividing domain at y direction to five subdomains as bellow, the result will be
a)for 0<y<h/s

2 2
k:—g" =

@_iiﬂcoshk(}wz)cos( niwx Jcos(
20 coshksy a+hls b+2h/

m=1n=1

H coshkh nwx mry
0S cos cosot ,h/s<x<hl/s+a
=334 > coshksy a2 h7s o 2n sy !

m=1n=1

byfor n/s<y<b,+h/s

D= Zng coshk(h +z) cos( nrx ) cos( mry )sinot ,0<x<h/s

1o 20 coshksx aj+hls b+2h/s
o= ZZgH c()Shk(thZ)cos( nrx ) cos( mry )sinot ,h/s<x<h/s+a
1ol 20 coshkh a+hls b+2h/s

and

e o]
n= z HCOShkh cos( nrx ) cos( mry Jcosot ,0<x<h/s
2 cosh ksx a+hls b+2h/s

m=1n=1

nwx mry
—cos co cosot ,h/s<x<h/s+
1= 3 H o G hls) (b+2h/) FSXS AT

mlnl

¢) by+h/s<y<b,+c+hl/s

)sinot ,h/s<x<h/s+aq

G

(32)

(33)

(34)

(35)

(53)

(36)

G7

Velocities #,; and u, are equal and evaluated by imposing the condition that the wave velocity at x =@, for left

semi-closed basin is the same as the wave velocity for right semi-closed basin at this point. hence

O ZZgH Coshk(h+Z)COS( nrx ) cos( mry )sinot ,0<x<h/s

ol 20 coshksx a+2h/s b+2h/s
o= ZZgH coshk(f +2) cos( Y ) cos( mry )sinot;h/s<x<h/s+aq
ool 2 cosh kh a+2h/s b+2h/s

and

& H oshkh X mmy
= — cos cosot ,0<x<h/s
1= 2 e (a+2h/s) (b+2h/)

m=1 n=l1

[coluee]
=ZZ ) cos( mry Jcosot ,h/s<x<h/s+aq
! +2h/s b+2h/s

d) b, +c+h/s£y£b+h/s
The boundary conditions of this case are the same as those presented for case a therefore

gH coshk(h+z) nwx Ty
o= cos cos sinot ,0<x<h/s
Z Z cosh ksx (al+h/s) (b+2h )

mlnl

CD:Z:zﬁCOShk(thz)cos( nrx ) cos( Y ysinot L h/s<x<h/s+aq

200 coshkh a+hls b+2h/

m=1n=1
and

- H coshkh nzx Ty
0s cos cosot ,0<x<h/s
7= zz 2 coshksx (al+h/s) (b+2h/ )

m=1n=1

(38)

(39

(40)

(41)

(42)

(43)

(44)
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o0 o0
H nrx Ty
= — cos cos cosot h/s<x<h/s+a (45)
=227 rnrs % 2h/) ’

m=l n=1

e) b+h/s<y<b+2hls

o coshk(h+z) X Ty
Z Z ) cos( )sinot (46)
o) 20 coshk(2h—sy + sa) a+hls b+2h/
his<x<h/s+a
o0 00
Z Z cosh k1 cos( nrx ) cos( iR )cosot @7
“1 oo 2 coshk(2h—sy +sa) a+hls b+ 2h/

h/sSxSh/s+al

Applying the boundary conditions for right basin, and by dividing domain at y direction to five subdomains as bellow the
results will be given as
a)for 0<y<hl/s

o gH coshk(h+z) cos( nx )+ tan( nra Jsin( nIx )
20 coshksy a.+hls a.+hls a.+hls
©=22 (48)
m=In=1 cos(—y) sin ot
b+2h/s

Jhls+a<x<h/s+a

H coshkh nwx nra . nrx
w o = cos( )+ tan( )sin( )
2 coshksy a.+hls a.+h/s a.+hls
n=2.2 (49)
m=1n=1 cos(—y) cosot
b+2h/s

Jhls+a<x<h/s+a
b)for h/s<y<b,+hls

h .
O zz coshk(h+z) (cos( nx )+ tan( nra )sin nwx )
o) 20 coshk(2h —sx + sa) a.+hl/s a.+hls a.+hls (50)
os(ﬂ)sinot yhls+a<x<2h/s+a
b+2h/s
O Zng coshk(h+z)(cos( nwx )+ tan( nra )sin( nrx )
o 20 coshkh a,+h/s a,+hls a,+hls (51)
cos(—y)smat Jhls+a<x<h/s+a
b+2h/s
cosh kh nwx nra . nIx
cos + tan SIn
= lenz‘iZ cosh k(2h - sx+sa)( (ar+h/s) (ar+h/s) (ar+h/s)) (52)
0(—y)cos0't his+a<x<2h/s+a
b+2h/s

nwx nra . nwx
n= ZZ—(COS( Jrh/s)+tan( ) sin( )

1l 2 a,+h/s a,+h/s (53)

cos (L)cosat yhlis+ay<x<h/s+a
b+2h/s

¢) by+h/s<y<b,+c+hl/s

Using the condition of u,= u

r

coshk(h+2z) nwx mry
O = cos co sin ot
2121 20 cosh k(2h—sx+sa) (a+2h/s) (b+ 2h/s ) (54)

h/s+a<x<2h/s+a
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gH coshk(h+z) nwx Ty

® = 0s cos sin ot

mzlnz:l cosh kh (a+2h/s) (b+2h/ ) (55)

h/s+a<x<h/s+a

cosh kh nrx
cos cos cos ot
(i mzlnz‘{2 cosh k(2h—sx + sa) (a+2h/s) (b+2h/ ) (56)
h/s+a<x<2h/s+a
n= zz 2h/ )COS(bm;h/ Jcosot h/s+a;<x<h/s+a (57)
a+ S +

m=1n= 1

d) b, +c+h/s<y<b+hls
The boundary conditions of this case are the same as those presented for case a therefore

= z Z gH coshk(h+2z) (cos( n7rx/ )+ tan( nra sin( nwx )

20  coshksx a.+hls a.+hls a.+hls (58)

m=1 n=1

os(ﬂ)sinat his+a<x<2h/s+a

b+2h/s
O z z gH coshk(h+z) (cos( nwx )+ tan( nra )sin nwx )
o 20 coshkh a.+hls a.+hls a.+hls (59)

os(—2X_ysinot Lh/s+ay<x<hl/s+a

b+2h/s
H coshkh nTx nra . nwx
0s + tan sin
= ;1%2 coshksx (a,+h/s) (a,,+h/s) (a,,+h/s)) (60)
cos(—y)cosat yhls+a<x<2h/s+a
b+2h/s
nra . nITX
— (cos sin
7= mZ:an‘i ( ( ) (ar+h/s) (ar+h/s)) (61)
O(L)cosat hls+a <x<h/s+a
b+2h/s
€) b+h/s<y<b+2h/s
h .
D ZZ coshk(h+z) cos( nwx )+ tan( nra )sin nXx )
ol 20 coshk(2h—sy +sa) a.+h/s a.+hls a.+h/s (62)
os(ﬂ)sinaz hi/s+a <x<h/s+a
b+2h/s
= — cosh kh nrwx nra . . NIX
nzzz (cos( ) + tan( )sin( )
o 2 coshk(2h—sy+sa) a.+hls a.+hls a.+hls (63)
os(ﬂ)cosat h/s+a<x<h/s+a
b+2h/s

For motion in both the x and y directions, at a closed basin, which is divided into two semi-closed basins, the

continuity for shallow water waves results fromequating the change in flow in the two directions to the change in storage in
the control volume (Figure 4).
From Laplace equation and using velocity potential

2 2
Z(ad) o d @:0 (64)

)+
By substituting, and simplification of result, for left basin one obtains

+
ot ot ot
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Figure 4. Selected control volume

2 " 5 57 -1/2
T = + m for b, <y<b,+c
’ \/g a+2h/s b+2h/s

-, -1/2

2 2
T, = 2 ‘ + [ ~ ) otherwise ©3)
Jzg |La, +n/s b+2h/s

z=h for h/s<x<h/s+a,

2 2 5 -1/2
T = [ n j +( m j for b, <y<b,+c
Jzg |\a+2h/s b+2h/s

) ) -1/2
T, = 2 " + ( ~ j otherwise (66)
Jeg |\a, +his b+2h/s

z=h for hls+a,<x<h/s+a

and for right basin

3. Results

In this section the results of analytical solution presented above for a closed trapezoidal basin with internal barriers are
discussed. To check the credibility of the analytical model and it’s out coming results, Figure 6 is presented. Figures 5(a and
b) compare the results of present model with the actual data of Geneva lake[19] and lake Lappajarvi[20] respectively. From
these figures it can be seen the present analytical model is coincident with the real phenomena and hence could be used as a
good tool for preliminary predictions. Figures 6, 7, and 8 show the variation of normalized water level, n/H ,versus x for
various values of a/a and a=25m, b=10m, h/s=2,k=0.5, m=n=1,y=0 and a=25m, b=10m, h/s=2,k=0.5, m=n=1,y=2m and
a=25m,b=10m, h/s=5, k=0.5, m=n=1, y=2m respectively. As shown in these figures, the wave length decrease as the ratio
of ay/a increases. The results are the same as those of a simple closed basin without barriers for limiting conditions as aya
equals 0 and 1. Figure 9 shows the variation of normalized water level, 5/, versus x for various modes of oscillation (m

and n) and a/b=2.5, aya=0.5 h/s=2, k=0.5,and y/b=0.5. As shown in these figures, wave length decrease as the ratio of a;/a
increases. It can be seen that. the results are the same as those of a simple closed basin without barriers in limiting conditions
of a)/a equals 0 and 1.

The main result of these figures is that, the opening size (c¢) and the barriers length (b, or ;) have a significant influence on
the normalized water level ( 5/ 7 ) at various positions in the basin. Figure 10 shows the normalized water level contours for
different modes of oscillation for a rectangular closed basin and trapezoidal closed basin with internal barriers, where,
al/a=0.5 and ¢/b=0.2. These figures illustrate the differences of flow pattern among these two cases. Fromthese figures, the
significant influence of internal barriers on flow map, wave-length, and more importantly natural frequency of free oscillation
in the basin can be seen.

Figure 11 illustrates the normalized natural period 7,/7; versus h/s for different ay/a and m=n=1. From this figure for
ay/a<0.3 increasing a; increase the natural period and for ay/a>0.3 increasing a; decreases natural period of coupled basin
against natural period of simple basin. For large values of 4/s the normalized natural period (7./7;) has a limiting value equal
to 0.6 for different ay/a.
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Figure 5. Comparison between the results of present model with the actual data of (a) Geneva lake (Lemmin et al., 2005) and (b) Lake Lappajarvi
(Simojoki, 1961)
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Figure 6. The variation of normalized water level, n/ H , versus x forab=2.5, i/s=2, k=0.5, m=n=1, and y=0 and various values of aa
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Figure 7. The variation of normalized water level, n / H , versus x for ab=2.5, h/s=2, k=0.5, m=n=1, and y=2m and various values of a/a
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Figure 8. The variation of normalized water level, n/H , versus x forab=2.5, h/s=5, k=0.5, m=n=1, and y=2m and various values of a/a
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Figure 9. Variation ofnormalized water level, n / H , versus xfor various modes of oscillation (m andn) andab=2.5, aa=0.5h/s=2, k=0.5,and yb=0.5
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barriers (al/a=0.5)
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Figure 11. The nommalized natural period 7,/T versus h/s for different aa

Figure 12 illustrates the normalized natural period 7/T; versus //s for different modes ofoscillation, and a/a=0.5.it can be
interpreted that, increasing m increases the natural period and increasing n decrease the natural period of coupled basin. For
large values of /s (h/s>10) the normalized natural period for different 4/s becomes the same.
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Figure 12. The normalized natural period versus //s for different modes of oscillation, and a/a=0.5

4. Summary

An analytical solution for the free surface oscillations in a
trapezoidal basin with internal barriers was presented. The
water flow was considered as an ideal flow. Therefore the
Laplace equation governs to the velocity potential function
of flow domain. Free surface boundary condition was
linearized to formulate a linear set of equation forsolving the
small amplitude water wave in the trapezoidal basin. The
flow potential, wave amplitude and the natural period of
waves generated in the basin with impervious internal
barriers were found based on the basin geometry. It was
shown that the barriers geometry significantly influences the
flow map, wave-length, and natural frequency of free water
oscillation in the basin. Wave length decrease as the ratio
of a,/a increases. The opening size, ¢ and the barriers
length b, or b; have asignificant influence on the normalized

water level (5/H) at various positions in the basin. The
analysis of wave condition dut to the greometrical properties
of Urmia lake showed that, the water free suraface
osccilation has not undesireable influences on the Urmia lake
bridge and it’s breakwaters, due to the sufficient height and
free board taken into account for this structure.

NOMENCLATURE

H wave height

T, natural free oscillation period

T; the largest period

Te, Ty natural period for left and right semi basins
respectively

Ts natural period of simple closed basin

S, non-dimensional parameter defined as



34

A. R. Kabiri-Samani:

Si, S, velocities in x direction at the station of barrier
opening for left and right semi basins respectively

X(x), Y(y), Z(z) functions of x, y, z, and t which,
demonstrare flow field or amp litude functions

a,b dimensions of simple closed basin

aj, ar

dimensions of semi basins in xdirection

by, bg thesize of up and down barriers respectively
¢ the opening size

g gravitational acceleration

h water depth

k wave number

1 length of closed basin along axis

m,n

integers show the oscillation mode

t time
u,v velocity components at x and y directions
X,y, z cordinates

n
c

O]

water level (amplitude)
wave frequency
velocity potential function
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