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Abstract  A seiche is the free oscillat ion of water in a closed or semi-closed basin; it is frequently observed in harbors, 
bays and lakes. Enclosed basins can experience oscillations due to a variety of causes. The enclosed basin has certain natural 
frequencies of seiche, depending on the geometry of the water boundaries and the bathymetry of water depths. Therefore, the 
variation in water surface at a point becomes irregular as caused by the combination of several natural frequencies, which 
may  be considered as the superposition of sinusoidal frequency components of different amplitude. This paper is mainly 
concerned with the motion of an incompressible irrotational flu id in a closed trapezoidal basin with internal impervious 
barriers. An analytical solution is presented for predicting the characteristic of generated waves in these types of basins. The 
equations of free water surface oscillations and its boundary conditions are reduced to a system of linear equations, which is 
solved by applying the small amplitude water wave theory. The flow potential, wave amplitude, flow patterns, and the natural 
period of waves generated in the basin with impervious internal barriers are found based on the basin geometry. It  is shown 
that the natural period of basin is strongly dependent to the location of barriers and the size of barrier’s opening. 
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1. Introduction 
Standing waves in natural basins are called seiches. 

Seiches can be generated by tectonic movements or winds. 
Like water sloshing in a bathtub, seiches are tide-like rises 
and drops in great lakes coastal water levels caused by 
prolonged strong winds that push water toward one side of 
the lake, causing the water level to  rise on the downwind side 
of the lake and to drop on the upwind side. When the wind 
stops, the water sloshes back and forth, with the near-shore 
water level rising and falling in decreasingly  small amounts 
on both sides of the lake until it reaches equilib rium. They 
occur commonly in enclosed or partially enclosed basins and 
are usually the result of a sudden change or a series of 
intermittent-periodic changes in atmospheric pressure or 
wind velocity. The period of oscillation of a seiche depends 
on the causative force, which sets the water basin in  motion 
and the natural or free oscillating period of the basin (Figure 
1).  

Seiches can  inflict  damage, if the natural period o f a 
moored ship  matches that o f a  seiche, then considerab le 
motion will result in the moored ship. Seiches could damage 
structures along  the coast line, and  create large vert ical 
accelerations for o ffshore structures such as boats, barges  

 
* Corresponding author: 
akabiri@cc.iut.ac.ir (Abdorreza Kabiri-Samani) 
Published online at http://journal.sapub.org/jce 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

and floating piers. Shoreline flooding may be caused by 
storm surges or seiches, often occurring simultaneously with 
high waves. The appearance of these seiches can be 
simulated by tilting a basin partially filled with water and 
then setting it down on a level surface. The water will slosh 
back and forth at a period determined by the size and shape 
of the basin. If the natural period, or seiche period, is close to 
the period of one of the tidal species, the constituents of that 
species will be amplified by resonance more than those of 
other species. A variety of seiche periods may  appear in the 
same water level record because the main body of water may 
oscillate longitudinally or laterally at different periods. The 
various modes of seiching correspond to the natural 
frequency response of the water body. There are an infin ite 
number of seiching modes possible, from the lowest (mode 1) 
to infinity. Realistically, the lower modes probably occur in 
nature, as frictional damping affects the higher modes 
preferentially. If the rectangular basin has significant width 
as well as length, both horizontal dimensions affect the 
natural period, given by Ippen[1] as: 
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where nmT is the natural free oscillation period, n, and m are 
the modes of oscillat ion in longitudinal and lateral 
coordinates respectively and a, and b are the length and 
width of the rectangular basin. However, the most studied is 
harbour oscillations caused by incident waves, which have 
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typical periods of a few minutes. Due to strong wind or long 
wave energy, the water body of a harbor exhib its oscillatory 
resonant motions. A  number of theoretical and numerical 
investigations of such resonant oscillations have been carried 
out, but most of them were limited to harbors with constant 
depth connected with open sea. The free oscillat ion in closed 
rectangular and circular basins was analyzed by Lamb[2]. 
These solutions clarified the natural periods and modes of 
free surface oscillations related to these special 
configurations. Neumann[3] focused on the global seiche 
modes of the entire Baltic, using sea-level data from a 
number of events when particularly pronounced standing 
oscillations. His theoretical analysis is based on 
computational methods presented by[4]. The forced 
oscillation in a circular harbour connected to the open sea 
through a narrow mouth was studied by[5]. Since the 
radiation effect was ruled out, the results showed a harbor 
resonance as it does in a closed basin. An analytical model 
for the oscillat ions of water in a bay or lake, using an 
electronic network and an electric analogue computer was 
developed by Ishiguro[6]. Miles and Munk[7], and Ippen and 
Goda[8], realized that, the open-sea was important in 
allowing for the loss of energy radiated from a harbor.  
Iida[9] studied the free oscillation of water in a lake of 
elliptic boundary. The wave-induced oscillations in harbors 
of arbitrary shapes was investigated by[10]. The wave 
induced oscillat ions of harbors with variab le depth was 
studied by[11]. The free oscillation in a simple 
two-dimensional closed basin was studied by[1]. The study 
of harbour resonance has been extended to take into account 
the effect of bottom friction by[12], wave nonlinearity[13 
and 14]. The wave motion and it’s characteristics on a 
Physical model of s mall-boat harbour was studied by[15]. 
Wave-induced oscillation in harbor with porous breakwaters 
was investigated by[16]. Weakly non-linear long internal 
wave in closed basin was modelled by[17]. Although the 
application of numerical models can be used for handling the 
complexit ies in this regard, still developing an analytical 
solution for practical cases can be very useful for parametric 
study of the free oscillat ion phenomenon. Kabiri-Samani and 
Ataie-Ashtiani[18], studied the motion of an incompressible 
irrotational fluid in a closed rectangular basin with internal 
impervious barriers based on analytical modeling. They have 
found new solutions for predicting the characteristic of 
generated waves in these types of basins, by applying the 
small amplitude water wave theory. The Lake Urmia is a 
lake salted in the North-West of the Iran, in the Iranian 
Azerbaïd jan (between the provinces of Eastern Azerbaïdjan 
and Western Azerbaïd jan, with the west of the Caspian Sea, 
which with the same form). It  is more the big lake in Iran, 
with a surface of approximately 5.200 km ². In its greater 
dimensions, it is approximately 140 km long and 55 km 
broad. Its maximum depth is approximately 16 m. Urmia 
lake has a rectangular shape in plan and trapezoidal shape in 
cross and longitudinal sections (Figure 2).  

Shahid Kalantari Bridge, is the longest bridge in Iran, 
which is constructed over Urmia lake and connects Tabriz to 
Urmia. Due to this natural geometrical properties, 
construction of Shahid Kalantari Bridge, very similar to 

internal barriers, over it, there is a potential to perform 
seiches. This bridge is made of two side rock-filled walls and 
a bridge deck which is constructed over the opening between 
the barriers. Due to these similarit ies to a closed basin with 
internal barriers, the behavior o f free water surface 
oscillation should be investigated to have informations about 
the interaction between water surafe free waves and 
structure. 

Since this phenomena can cause undesired problems, in  
this work an analytical solution for calculat ion of the free 
water surface oscillations in a trapzoidal basin with internal 
barriers will be presented. This analytical solution can be 
applied for the cases such as constructing a causeway in 
lakes and expansion plan in harbours. The water flow is 
considered as an ideal and irrotational flow. Therefore the 
Laplace equation governs to the velocity potential function 
of flow domain. Free surface boundary condition is 
linearized to formulate a linear set of equation for solving the 
small amplitude water wave in the trapezoidal basin. The 
flow potential, wave amplitude and the natural period of 
waves generated in the basin with impervious internal 
barriers are found based on the basin geometry. These 
parameters are presented for the variations of basin and 
barriers geometry. 

2. Free Oscillations in Closed Basins 
with Internal Barriers 

Consider the closed trapezedial basin of the bottom width 
b, length a, constant depth h, and latteral walls slope s, has 
two internal impervious barriers, which have the length bu 
and bd and divided the basin to two semi-closed basins as 
shown in Figure 3. If a periodic mot ion of the water in this 
basin is possible, the free oscillation will be described by 
periods which are function of the basin dimensions.  

 
Figure 3.  Three Dimensional closed trapezeidal basin with internal 
barriers  

The purpose is determin ing the period of these modes of 
oscillation. The lap lace equation applies throughout the fluid, 
therefore 

          (2) 

The boundary conditions for left semi-closed basin are: 
Kinemat ic free surface boundary condition (KFSBC) 
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Figure 1.  Schematic standing wave 

 
Figure 2.  General plan of Urmia lake 

                                  (3) 

Dynamic free surface boundary condition (DFSBC) 
                                         (4) 

Bottom boundary condition (BBC) and walls boundary conditions (WBC) are considered to be impreviouse. Therefore: 
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Boundary conditions on the barriers and their opening are (BOBC) 
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The boundary conditions for right semi-closed basin are 
Kinemat ic free surface boundary condition  
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Dynamic free surface boundary conditon 
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Bottom boundary condition and sloped lateral wall boundary condition: 
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Boundary conditions at the vicinity of barriers and their opening are (BOBC) 
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Using separation of variables method yields to: 
)()()()( tTzZyYxX=Φ                                       (21) 

by substituting into the governing equation results 
0=′′+′′+′′ TZXYZTYXYZTX                                (22) 

hence: 

02 =−′′ ZkZ                                          (23) 

02 =+′′ YY ε                                           (24) 

0)( 22 =−+′′ XkX ε                                       (25) 

Where 2k  and 2ε  are constants. These equations have the following general solutions 

xkBxkAX 2222 sincos εε −+−=                             (26) 
yDyCY εε sincos +=                                    (27) 

kzkz FeEeZ −+=                                       (28) 
It can be assumed that, the solution is periodic in t ime, then velocity potential variation by time is expressed by 

tGT σsin=                                          (29) 
Applying the boundary conditions yeilds to 

ksxFeE 2=                                              (30) 
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By substituting, and dividing domain at y direct ion to five subdomains as bellow, the result will be 
a) for shy /0 ≤≤  
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c) shcbyshb dd // ++≤≤+  

Velocities lu  and ru  are equal and evaluated by imposing the condition that the wave velocity at lax =  for left  
semi-closed basin is the same as the wave velocity for right semi-closed basin at this point. hence 
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d) shbyshcbd // +≤≤++  
The boundary conditions of this case are the same as those presented for case a therefore 
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Applying the boundary conditions for right basin, and by dividing domain at y d irection to five subdomains as bellow the 
results will be g iven as 
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d) shbyshcbd // +≤≤++  
The boundary conditions of this case are the same as those presented for case a therefore 
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For motion in both the x  and y  directions, at a closed basin, which is divided into two semi-closed basins, the 
continuity for shallow water waves results from equating the change in flow in the two directions to the change in storage in 
the control volume (Figure 4).  

From Laplace equation and using velocity potential 
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By substituting, and simplification of result, for left basin one obtains 
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Figure 4.  Selected control volume 
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and for right basin 
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3. Results 
In this section the results of analytical solution presented above for a closed trapezoidal basin with internal barriers are 

discussed. To check the credibility of the analytical model and it’s out coming results, Figure 6 is presented. Figures 5(a and 
b) compare the results of present model with the actual data of Geneva lake[19] and lake Lappajarvi[20] respectively. From 
these figures it can be seen the present analytical model is coincident with the real phenomena and hence could be used as a 
good tool for preliminary pred ictions. Figures 6, 7, and 8 show the variation of normalized  water level, H/η , versus x for 
various values of al/a and a=25m, b=10m, h/s=2, k=0.5, m=n=1, y=0 and a=25m, b=10m, h/s=2, k=0.5, m=n=1, y=2m and 
a=25m, b=10m, h/s=5, k=0.5, m=n=1, y=2m respectively. As shown in these figures, the wave length decrease as the ratio 
of al/a increases. The results are the same as those of a simple closed basin without barriers for limiting conditions as al/a 
equals 0 and 1. Figure 9 shows the variation of normalized water level, H/η , versus x for various modes of oscillat ion (m 
and n) and a/b=2.5, al/a=0.5 h/s=2, k=0.5,and y/b=0.5. As shown in these figures, wave length decrease as the ratio of al/a 
increases. It can be seen that. the results are the same as those of a simple closed basin without barriers in limit ing conditions 
of al/a equals 0 and 1.  

The main result of these figures is that, the opening size (c) and the barriers length (bu or bd) have a significant influence on 
the normalized water level ( ) at various positions in the basin. Figure 10 shows the normalized water level contours for 
different modes of oscillation for a rectangular closed basin and trapezoidal closed basin with internal barriers, where, 
al/a=0.5 and c/b=0.2. These figures illustrate the differences of flow pattern among these two cases. From these figures, the 
significant influence of internal barriers on flow map, wave-length, and more importantly natural frequency of free oscillation 
in the basin can be seen. 

Figure 11 illustrates the normalized natural period Tc/Ts versus h/s for different al/a and m=n=1. From this figure for 
al/a<0.3 increasing al increase the natural period and for al/a>0.3 increasing al decreases natural period of coupled basin 
against natural period of simple basin. For large values of h/s the normalized natural period (Tc/Ts) has a limiting value equal 
to 0.6 for different al/a.  

H/η
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(a)                                                   (b) 

Figure 5.  Comparison between the results of present model with the actual data of (a) Geneva lake (Lemmin et al., 2005) and (b) Lake Lappajarvi 
(Simojoki, 1961) 

 
Figure 6.  The variation of normalized water level, H/η , versus x for a/b=2.5, h/s=2, k=0.5, m=n=1, and y=0 and various values of al/a 

 
Figure 7.  The variation of normalized water level, H/η , versus x for a/b=2.5, h/s=2, k=0.5, m=n=1, and y=2m and various values of al/a 
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Figure 8.  The variation of normalized water level, H/η , versus x for a/b=2.5, h/s=5, k=0.5, m=n=1, and y=2m and various values of al/a 

 
Figure 9.  Variation of normalized water level, H/η , versus x for various modes of oscillation (m and n) and a/b=2.5, al/a=0.5 h/s=2, k=0.5,and y/b=0.5 



32 A. R. Kabiri-Samani:  Natural Frequencies of Seiche in a Closed Trapezoidal Basin with Internal Barriers   
 

 

 
Figure 10.  Normalized water level contours for different modes of oscillation for a rectangular closed basin and trapezoidal closed basin with internal 
barriers (al/a=0.5) 
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Figure 11.  The normalized natural period Tc/Ts versus h/s for different al/a 

Figure 12 illustrates the normalized natural period Tc/Ts  versus h/s for different modes of oscillat ion, and al/a=0.5. it  can be 
interpreted that, increasing m increases the natural period and increasing n decrease the natural period of coupled basin. For 
large values of h/s (h/s>10) the normalized natural period for different h/s becomes the same. 

 
Figure 12.  The normalized natural period versus h/s for different modes of oscillation, and al/a=0.5 

4. Summary 
An analytical solution for the free surface oscillat ions in a 

trapezoidal basin with internal barriers was presented. The 
water flow was considered as an ideal flow. Therefore the 
Laplace equation governs to the velocity potential function 
of flow domain. Free surface boundary condition was 
linearized to formulate a linear set of equation for solving the 
small amplitude water wave in the trapezoidal basin. The 
flow potential, wave amplitude and the natural period of 
waves generated in the basin with impervious internal 
barriers were found based on the basin geometry. It was 
shown that the barriers geometry significantly influences the 
flow map, wave-length, and natural frequency of free water 
oscillation in the basin. Wave length decrease as the ratio 
of al/a increases. The opening size, c and the barriers 
length bu or bd have a significant influence on the normalized 

water level ( H/η ) at  various positions in the basin. The 
analysis of wave condition dut to the greometrical properties 
of Urmia lake showed that, the water free suraface 
osccilation has not undesireable influences on the Urmia lake 
bridge and it’s breakwaters, due to the sufficient height and 
free board taken into account for this structure. 

NOMENCLATURE 
H  wave height 
Tn  natural free oscillation period  
T1  the largest period 
Tcl, Tcr  natural period fo r left and right semi basins 

respectively 
Ts  natural period of simple closed basin 
Sn  non-dimensional parameter defined as   
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Sl, Sr  velocities in x d irection at  the station of barrier 
opening for left and right semi basins respectively 

X(x), Y(y), Z(z)  functions of x, y, z, and t which, 
demonstrare flow field or amplitude functions 

a, b  dimensions of simple closed basin 
al, ar  dimensions of semi basins in x direction 
bu, bd  the size of up and down barriers respectively 
c  the opening size 
g   gravitational accelerat ion 
h  water depth 
k  wave number 
l  length of closed basin along axis 
m , n  integers show the oscillat ion mode 
t  time 
u, v  velocity components at x and y directions 
x, y, z  cord inates 
η     water level (amplitude) 
σ     wave frequency 
Φ     velocity potential function 

 

REFERENCES 
[1] Ippen A.T., Estuary and coastline hydrodynamics, Mc 

Graw-Hill Inc., USA (1982). 

[2] Lamb S.H., Hydrodynamics, University of Cambridge, 6th 
Edit. (1932).   

[3] Neumann G., Eigenschwingungen der ostsee, Arch. Dtsch. 
Seewarteu. Marineobs. 61, pp.1-59 (1941). 

[4] Hidaka K., Application of Ritz's variational method to the 
determination of seiches in a lake. The memoirs of the Imp. 
Marine Observatory 6, Nr. 2, Kobe (1936). 

[5] McNown J.S., “Waves transmission through porous 
structures.”, Jour. Wtrway., Harbor and Coastal Engrg. Div.,  
ASCE, 100(3), pp.169-188 (1952). 

[6] Ishiguro S. “An analytical method for the oscillations of water 
in a bay or lake, using an electronic network and an electric 
analogue computer.” Journal of the Oceanographical Society 
of Japan, 11(4), pp.191-197 (1955). 

[7] Miles J.W., Munk W.H., “Harbor paradox.” Jour. Wtrway. 
and Harbor Div., ASCE, 87(3), pp.111-130 (1961). 

[8] Ippen A.T., Goda Y. Wave induced oscillations in harbors: 
The solution of a rectangular harbor connected to the open sea. 
Report No. 59, Hydrodynamics Lab., MIT, Cambridge 
(1963). 

[9] Iida F., “On the free oscillation of water in a lake of elliptic 
boundary.” Journal of the Oceanographical Society of Japan, 
21(3), pp.103-108 (1965). 

[10] Lee J.J., “Wave-induced oscillations in harbors  of arbitrary 
shape.’ J. Fluid Mech., 45,pp.375-394 (1971). 

[11] Raichlen F., Naheer E., “Wave induced oscillations of 
harbors with variable depth.” Proc. 15th ICCE., ASCE, 
pp.3536-3556 (1976). 

[12] Kostense J.K., Meijer K.L., Dinemans M.W., Mynett A.E., 
Van Den Bosch P., “Wave energy dissipation in arbitrarily 
shaped harbors of variable depth.” 20th ICCE, pp.436-437 
(1986). 

[13] Lapelletier T.G., Raichlen F., “Harbor oscillations induced by 
nonlinear transient long waves.” Jour. Wtrway., Port, Coast. 
and Ocean Engrg., 113(4), pp.381-400 (1987). 

[14] Zhou C.P., Cheung Y.K., Lee J.H.W., “Response in harbor 
due to incidence of second order low-frequency waves.” 
Wave Motion, 13, pp.167-184 (1991). 

[15] Bottin R.R., Physical modeling of small-boat harbors: design 
experience, lessons learned, and modeling guidelines. 
Technical Report in press, U.S. Army Engineer Waterways 
Experiment Station, Vicksburg, MS (1992). 

[16] Yu X., Chwang A.T., “Wave-induced oscillation in harbor 
with porous breakwaters.” Jour. Wtrway., Port, Coast and 
Ocean Engrg., 120(2), pp.125-144 (1994). 

[17] Horn D.A., Imberger J., Ivey G.N., Redekopp L.G. “A weakly 
nonlinear model of long internal waves in closed basins.” Jour. 
Fluid Mech., Cambridge University Press, 467, pp.269-287 
(2002). 

[18] Kabiri-Samani, A.R., Ataie-Ashtiani, B., “Free water surface 
oscillations in a closed rectangular basin with internal 
barriers.” Int. Jour. Science and Techn., Scientia Iranica,  
15(3), pp 315-323 (2008). 

[19] Lemmin U., Mortimer C.H. and Ba¨uerle, E., “Internal seiche 
dynamics in Lake Geneva.” Limnol. Oceanogr., 50(1), 
207–216 (2005). 

[20] Simojoki H., “On seiches in some lakes in Finland.” 
Geophysicn, 7(3), pp.145-150 (l96l).  

 


	1. Introduction
	2. Free Oscillations in Closed Basins with Internal Barriers
	3. Results
	4. Summary
	NOMENCLATURE

