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Abstract  The reinforced concrete terrace units were positioned and tested on a specially manufactured steel frame resting 
on the strong floor in the Civil Eng ineering laboratories at Coventry University. In parallel, a finite element model was 
developed and set to free v ibration. Natural frequencies and mode shapes were recorded and compared  with those obtained 
experimentally. As correlation was not deemed  to be satisfactory, an updating process was init iated and a series of parameters, 
starting with the concrete material properties were rev ised to improve links with the experimental results. Boundary 
conditions built-in the code were not adequate to model the real behaviour of the structure. Best results were achieved when 
supports conditions were modelled with a stiffness matrix. Correlation between experimental and computer predicted results 
improved further with the introduction of more advanced modelling techniques and gradual lifting of the limitations of the 
model, hence assisting the validation process, while verificat ion did not provide the expected degree of confidence. It was 
concluded that it is possible to extract the natural frequencies and mode shapes of a complex, non-symmetric structure 
accurately, by using relat ively low-cost, basic modal testing equipment and the finite element method of analysis, hence 
avoiding the risk of not detecting any mode shapes. This can be more apparent in complex modes (e.g. coupled, 
flexural/torsional) as they depend greatly on the number, position, d irection, type and quality of the transducers and data 
logging and processing equipment used. Emphasis is placed on the experience built up in interpreting modal analysis results 
in order to be used for similar future work.  
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1. Introduction 
This paper argues that the fin ite element method can take 

the leading role in the extraction of modal parameters of civil 
engineering structures and can help reduce the number of 
costly, time consuming and complex fu ll-scale modal tests. 
The confined objectives can be summarised as follows: 

• To improve modal analysis standards in Civil 
Engineering by proposing a contemporary system 
identification method, that effectively  captures the natural 
frequencies and mode shapes of grandstand terraces.  

• To highlight any inherent uncertainties in numerical 
simulation by utilizing the processes of experimentation, 
validation and verification. 

• To reveal and quantify the most effective parameters 
affecting the dynamic properties of grandstands. 

• To comment on the effect of steel reinforcement in the 
dynamic p roperties of these structures and identify any 
inbuilt patterns that may be related to the above. 
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2. Modal Analysis of Grandstands (Brief 
Overview)  

The basic assumptions that have to be made to perform an 
experimental modal analysis of any structure are:  

• The structure is assumed to be linear, obeying the 
principle of superposition.  

• The structure is time invariant, meaning that the 
parameters to be determined are constant and do not change 
with time.  

• The structure obeys Maxwell’s Reciprocity Theorem.  
Experimental modal identification techniques can be 

divided into two main categories: Input-Output and Output 
only and they are almost always accompanied by finite 
element correlation and updating, hence ensuring that the 
final output reflects better the measured data. 

The hybrid (steel skeleton-concrete terraces) method of 
stadia construction can be susceptible to excessive vibration 
caused by their users[1],[2],[3]. These vibrat ions are judged 
excessive by the discomfort, or even the panic and alarm 
they can cause to the users (serviceability limit state problem) 
or in ext reme cases, causing low cycle fatigue failu re 
(ultimate limit state problem).  
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The Joint Working Group (JW G) of the Institution of 
Structural Engineers in UK was established in January 2000 
to consider, advise and make recommendations on the 
dynamic performance and design of stadia structures[4],[5]. 
The Group completed their work by identifying a number of 
areas where more research should be directed. One of these 
areas was the need for accurate numerical modelling of the 
structures in question[6]. 

More pioneering work has been dedicated to the subject 
such as publications by Ellis and Littler[7],[8]. Earlier, Ellis 
and Ji[9], were involved in the estimation of the dynamic 
properties of structures. They concluded that the 
experimental study provided realistic  but incomplete 
informat ion while the theoretical study supplied complete 
but inaccurate results and stressed for more accurate 
computer simulat ion.  

Reynolds et al[10],[11],[12] developed a remote 
monitoring system to measure the vibration performance of 
stadia when empty and in-service during sporting and other 
events. They too, pointed towards the absence of accurate 
fin ite element modelling procedures, stressing the need for 
more accurate, 3D FE modelling to capture the realistic 
behaviour of the stands.  

Swan et al[13] established that support conditions are 
effective in influencing the Frequency Response Function 
(FRF) measured on a model deck and that the FRF may be 
used as an accurate general indication  of the overall state of 
stiffness of a bridge’s deck. However, their methodology 
incorporated elementary support modelling techniques only. 
Their subsequent consideration of a series of springs created 
unwanted alignment problems that hindered the process and 
affected the results. Hence, they were not able to report on 
the degree of effectiveness and expand on the structure’s 
stiffness.  

More recently, Ibrahim and Reynolds[14] demonstrated 
good correlation of natural frequencies and mode shapes and 

suggested that progressive modelling of different 
configurations is a fairly accurate approach in the FE 
modelling of large structures such as grandstands.  

It is apparent from the above that accurate and reliable 
fin ite element models of large structures, to complement the 
experimental identificat ion and estimation of their modal 
parameters are in short supply today. An up to date 
numerical model and a contemporary modal parameter 
identification method will be reported in  this study 
emphasizing that some civ il engineering structures 
(grandstands), their boundary conditions and non-structural 
elements are too large and complex to be modelled at a 
macro-scale level. Therefore sub-structuring, modelling 
(and testing) smaller units can show the way to better 
computer representation of such structures. 

3. Full Scale Modal Testing 
Tests were carried out primarily in the Civil Engineering 

laboratories of Coventry University and to some extent at 
Bison’s headquarters in Slough, England. The scope of this 
paper is not to present a detailed account of the experimental 
programme. This is given elsewhere[15]. However, some 
essential material is reported here.   

3.1. The Vibration Test System 

This is shown in Figure 1. The Shaker is used to deliver 
the input force. The Amplifier provides power to the shaker’s 
armature coil. The Signal Generator generates and drives the 
signal (sine, square, ramp, even earthquake simulat ions) to 
the shaker. The Spectrum (FFT) Analyser, perfo rms time and 
frequency domain analysis, calculates the frequency 
response function (FRF) and exports all data to  a personal 
computer. Finally, the accelerometers (barely visible here) 
trace the structure’s response. 

 
Figure 1.  Modal Analysis Data Acquisition Test System 
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3.2. The Test Programme  

The objective was to take measured data relating to the 
response properties (such as the input frequency) of a 
structure and from these to extract the modal properties 
(natural frequencies, etc). The terrace unit was modelled by 
dividing it into a set of lumped masses shown in Figure 2. In 
modal analysis, masses are used as data collection (reference) 
points (RPs) and the properties of the structure are 
determined by measuring the FRF (Frequency Response 
Function) at each of the RPs. The response of the unit was 
measured at two  locations, RP3 and RP5. To ensure linearity, 
samples of the amplitudes reached during the tests were 
compared with the allowable static deflect ions and found to 
be well within range.  

 

 
Figure 2.  A terrace unit in the laboratory and its corresponding modal test 
grid 

The problem with large, slender structures consisting of 
minimum number of columns (supports) and long, heavy 
cantilevering beams, such as grandstands, is that they are 
very ‘tuneful’ and hence they enclose very little damping, 
usually less than 5% (damping ratio, ζ< 0.05). In the case of 
hybrid (steel-concrete) grandstands the damping present is 
even less. As ζ is small, the damped natural frequency 
becomes approximately equal to the natural frequency 

)1( 2ζωω −=d  at near resonance conditions. Hence, 
the error involved by neglecting the damping effects in  a 
modal analysis of a large structure is negligible. Therefore, 
the damping effects were omitted from the assessment of the 
structure. 

Table 1.  Data acquisition parameters for normal test FRF measurements 

PARAMETER Setting/Value 
Acquisition Bandwidth 

(Sampling Rate): 
80 Hz (325.5 

Hz) 
Acquisition Duration: 25.00 s 
Frequency resolution: 0.0397 Hz 

No. of frequency Domain 
Averages: 

4 

Excitation Type: Chirp 
Excitation Duration: 18.87 s 

Excitation Frequency Span: 1 –79 Hz 

A chirp excitation was selected for the FRF measurements. 
Chirp signals are comprised of short bursts of sine sweeps 
and allow for more rapid tests than the sine sweeps 
themselves. Coherence was used to validate testing. That is, 
both the cause and the effect signals were collected and 
compared and only when their ratio was found to be near 1.0, 
were accepted. A summary o f the main data acquisition 
parameters is given in Table 1 and a typical example of 
excitation and response time history (acceleration versus 
time) is shown in Figure 3. There is a clear exaggeration at 
certain points in the t ime history provided by the response 
accelerometer (b ). These exaggerations correspond to the 
unit passing through a number of resonance frequencies as 
the chirp excitation (a) swipes from 1 Hz to 79 Hz.  

In general, motion can be described in terms of 
displacement, velocity or acceleration. In this case the 
corresponding FRF is called compliance, mobility or 
accelerance. However, the term ‘mobility measurement’ is 
used to describe any form of FRF. Figure 4 below shows a 
typical point mobility FRF, after four frequency domain 
averages, estimated experimentally in the vertical direction, 
at RP7. The FRF peaks (a) and the characteristic phase 
changes (b) at frequencies corresponding to the natural 
frequencies of certain, estimated modes of vibration are 
visible. 

Modal parameter estimation was performed using 
ICATS[16] after import ing all FRF data into it. Measured 
frequencies are presented with predicted ones for 
comparison. 

4. An Analytical Outline 
In the case of the terrace units having no plane of 

symmetry, the problem becomes significantly more complex 
and involves coupled torsional and flexural v ibrations in the 
two principal p lanes. Weaver et al[17] warned of the 
development of three simultaneous differential equations 
instead of two and radically more elaborate analysis and 
computations. The entire, detailed analytical model is 
presented elsewhere[18] but an insight is outlined below, 
based on Figure 5. 
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(a) 

 
(b) 

Figure 3.  Typical excitation (a) and response (b) signals of the unit 

 
(a) 

 
(b) 

Figure 4.  Typical FRF at RP7, after four averages (a): FRF peaks. (b): their characteristic phase changes 
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Figure 5.  Cross-section of a terrace unit. CC = centroid, SC = shear centre. All dimensions in mm 

The differential equation of flexure when bending is constrained in the vertical and horizontal planes respectively is given 
in statics by: 

𝐸𝐸𝐸𝐸𝑥𝑥
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑑𝑑4 = 𝑤𝑤𝑦𝑦                                     (1) 

𝐸𝐸𝐸𝐸𝑦𝑦
𝑑𝑑4𝑢𝑢
𝑑𝑑𝑑𝑑4 = 𝑤𝑤𝑥𝑥                                       (2) 

where: 
EIx, EIy= flexural rig idity about a horizontal and vertical axes respectively. 
v, u= displacements in the vertical and horizontal directions 
wy, wx= intensity of distributed load in Y and X direct ions 
z= longitudinal (along the main span) direction  
Assuming torsion takes place about the shear centre, SC, 

𝑇𝑇(𝑆𝑆𝑆𝑆) = 𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝐸𝐸𝐼𝐼𝑤𝑤
𝑑𝑑3𝜑𝜑
𝑑𝑑𝑑𝑑3                                   (3) 

Or, after differentiation : 

𝑤𝑤𝑒𝑒𝑥𝑥 = 𝐺𝐺𝐺𝐺
𝑑𝑑2𝜑𝜑
𝑑𝑑𝑑𝑑2 − 𝐸𝐸𝐼𝐼𝑤𝑤

𝑑𝑑4𝜑𝜑
𝑑𝑑𝑑𝑑4                                   (4) 

where: 
GJ= torsional rigidity  
EIw= warping rigid ity 
φ = angle of twist 
wex= intensity of torque 
The equations of motion (EoM) can be put together such as: 

𝐸𝐸𝐸𝐸𝑦𝑦
𝜕𝜕4𝑢𝑢
𝜕𝜕𝜕𝜕4 + 𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥

𝜕𝜕4𝑣𝑣
𝜕𝜕𝜕𝜕4 + 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 − 𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 = 0 

 

𝐸𝐸𝐸𝐸𝑦𝑦
𝜕𝜕4𝑣𝑣
𝜕𝜕𝜕𝜕4 + 𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥

𝜕𝜕4𝑢𝑢
𝜕𝜕𝜕𝜕4 + 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2 + 𝜌𝜌𝜌𝜌𝑒𝑒𝑥𝑥

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 = 0 

                       (5) 

𝐸𝐸𝐸𝐸𝑤𝑤
𝜕𝜕4𝜑𝜑
𝜕𝜕𝜕𝜕4 − 𝐺𝐺𝐺𝐺

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 + 𝜌𝜌𝜌𝜌𝑒𝑒𝑥𝑥

𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2 −𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 + 𝜌𝜌𝐼𝐼𝑠𝑠𝑠𝑠

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 = 0  

 
where:  
u, v = d isplacements of the shear centre, SC, in X, Y d irections 
ρ = mass density 
A = cross-sectional area  
ey, ex = d istances from the centroid, CC to X and Y (shear centre) axes respectively. 
Isc = polar moment of inertia  about the SC 
EIxy = coupling stiffness (rigid ity) 
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t = time 
The following terms, 

�𝜌𝜌𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 � , �𝜌𝜌𝜌𝜌

𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2 � , �𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 � , �𝜌𝜌𝜌𝜌𝑒𝑒𝑥𝑥

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 �  denote mass and inertia  associated with linear and angular 

acceleration respectively, 

�𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥
𝑑𝑑4𝑢𝑢
𝑑𝑑𝑑𝑑4� , �𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥

𝑑𝑑4𝑣𝑣
𝑑𝑑𝑑𝑑4�  indicate coupling effects, 

�𝐸𝐸𝐸𝐸𝑤𝑤
𝜕𝜕4𝜑𝜑
𝜕𝜕𝜕𝜕4 � , �𝐺𝐺𝐺𝐺

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 �  are the warp ing and torsional terms respectively, 

�𝜌𝜌𝜌𝜌𝑒𝑒𝑥𝑥
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2 � , �𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 �  represent inertia forces and  

�𝜌𝜌𝐼𝐼𝑠𝑠𝑠𝑠
𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2 �  represents inertial torque. 

After processing the EoM, the boundary conditions are introduced (z= 0 and z= ℓ) and the Frequency Equation can be 
structured by setting the determinant of Eqs. (5) equal to zero (∆(5)= 0). Fo llowing a vast amount of mathematical 
computations not shown here, the final Frequency Equation with respect to ω  yields:  

 𝜔𝜔6𝜌𝜌3𝐴𝐴2�𝐴𝐴�𝑒𝑒𝑥𝑥2 + 𝑒𝑒𝑦𝑦2� − 𝐼𝐼𝑠𝑠𝑠𝑠 � + 
 +𝜔𝜔4𝜌𝜌2 �𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠

𝑘𝑘4 𝜋𝜋4

ℓ4 �𝐼𝐼𝑦𝑦 + 𝐼𝐼𝑥𝑥 � − 𝐴𝐴2𝐸𝐸 𝑘𝑘4 𝜋𝜋4

ℓ4 �𝐼𝐼𝑦𝑦𝑒𝑒𝑥𝑥2 + 𝐼𝐼𝑥𝑥 𝑒𝑒𝑦𝑦2�+ 𝐴𝐴2𝐸𝐸𝐸𝐸𝑤𝑤
𝑘𝑘4𝜋𝜋4

ℓ4 −

                              −2𝐴𝐴2𝐸𝐸𝐼𝐼𝑥𝑥𝑥𝑥 𝑒𝑒𝑥𝑥𝑒𝑒𝑦𝑦
𝑘𝑘4𝜋𝜋4

ℓ4 + 𝐴𝐴2𝐺𝐺𝐺𝐺 𝑘𝑘
2 𝜋𝜋2

ℓ2 � − 

 −𝜔𝜔2𝜌𝜌 ��𝐸𝐸2𝐼𝐼𝑠𝑠𝑠𝑠
𝑘𝑘8𝜋𝜋8

ℓ8 �𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑥𝑥2 �+ 𝐴𝐴𝐴𝐴2𝐼𝐼𝑤𝑤
𝑘𝑘8𝜋𝜋8

ℓ8 �𝐼𝐼𝑦𝑦 + 𝐼𝐼𝑥𝑥 � + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑘𝑘
6𝜋𝜋6

ℓ6 �𝐼𝐼𝑦𝑦 + 𝐼𝐼𝑥𝑥 ���+ 

 +𝐸𝐸3𝐼𝐼𝑤𝑤
𝑘𝑘12 𝜋𝜋12

ℓ12 �𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑥𝑥2 � + 𝐸𝐸2𝐺𝐺𝐺𝐺 𝑘𝑘
10 𝜋𝜋10

ℓ10 �𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑥𝑥2 � = 0 

  (6) 

Finally, after copious calculat ions, the various constants are evaluated and substituted in Eq. (6). The latter yields the 
theoretical frequency results for k= 1,2,…6, (shown with those predicted by the FE model, for comparison. 

5. Numerical Modal Analysis 
In general, it is assumed that the structure has constant 

stiffness and mass effects and that there is no damping 
present for reasons discussed earlier. No constant or time 
dependent forces or displacements are applied (free 
vibration). Hence, the eigenvectors are the displacement 
solutions of the equilibrium equation of motion for free, 
undamped vibrations: 

0}]{[}]{[ =+ xKxM             (7) 
where:[K] = stiffness matrix 
[M] = mass matrix  
{x} = displacement vector 
For a ‘linear’ structure the displacement is harmonic, of 

the form: 
{x} = {φ}sinω t                 (8) 

where: {φ} = vector of order n (amplitude) 
ω = natural circular frequency of vibration 
Equation (9) shows the classic eigenvalue problem used in 

a typical undamped modal analysis. 
}]{[}]{[ 2

iii MK Φ=Φ ω           (9) 
where: {Φι}= mode (shape) vector (eigenvector) of mode i  
ωi = natural circular frequency of mode i (ωι

2 is the 
eigenvalue) 

It can be shown easily that: 

[ ] [ ] [ ] [ ]1=ΦΦ MT              (10) 

[ ] [ ][ ] [ ]2Ω=ΦΦ KT             (11) 

Equations (10) and (11) demonstrate the two ‘special’ 
properties of the eigenvectors. Each eigenvector is 
associated with a particular eigenvalue, both being special 
properties of square matrices. This constitutes the basis of 
any numerical modal analysis code. 

5.1. The Initial, ‘Static’ Model 

The initial, static numerical model used in this study has 
been published elsewhere[19],[20]. However, essential 
matter such as a brief account of the model built-up, material 
and geometric properties, boundary conditions, etc, 
particularly in conjunction with the process of correlation, 
will be reported here to aid the reader. Also, the method of 
extracting the mode shapes is of interest and will be briefly 
addressed.  

The terrace units (Figure 2) were designed, manufactured 
and transported to the laboratory by Bison Concrete Products 
Ltd. They were designated uncracked upon delivery. Table 2 
summarises the basic properties.  
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The Modulus of Elasticity of concrete was taken from 
relationships and tests shown condensed in Table 3. The 
Modulus of Elasticity of high yield steel reinforcement and 
its 0.2% proof stress were estimated by routine laboratory 
tests[19]. 

Table 2.  Initial (design stage) material properties of the terrace units 

Material Properties 
Characteristic Concrete Strength, fcu= 45 Nmm-2 (C35/45) 

Reinforcement (Flexural, T&C) Characteristic Strength, fy= 460 Nmm-2 
Reinforcement (shear) Characteristic Strength fyv= 460 Nmm-2 

Loading 
Dead Load (self-weight) = 3.65 kNm-2 

Imposed Load               = 4.00 kNm-2 
Main Reinforcement 

Riser Bar size Tread Bar size 
Longitudinal 

Reinforcement. Top: 2T12 Long. 
Span: T16 @ 150 c/s 

Longitudinal 
Reinforcement. 

Bottom: 
2T25 Short. 

Span: T8 @ 150 c/s 

Shear Links: T6 @ 150 c/s   

Table 3.  Measured and calculated Modulus of Elasticity of Concrete and 
Steel in kN/mm2 

E(Hughes) E(static) E(u/sonic) E(BS8110) E(ave) 

3/1)(9100 cuf  

32.364 

cylinder 
compr. 

tests 
30.04 

ultrasonic 
lab. tests 

29.80 

value 
given by 
BS8110 

33.5 

average 
value 

 
31.50 

E(steel) 
estimated in lab. 

198.96 

E(steel) 
value for 
design 
200.00 

0.2% 
proof 
stress 

(estimated 
in lab.) 
525.00 

  

The initial model was revived from earlier, similar studies 
in the statics domain using ANSYS[21] code. Its purpose 
was to serve as a preliminary model for fu rther FE updating. 
The model was based on the SOLID65 element chosen to 
represent concrete. This is a 3D, eight node, solid, 
isoparametric element with three translational degrees of 
freedom (DOF) per node. When in a non-linear domain, it is 
capable of simulating the brittle  behaviour of concrete. This 
property vanishes when the element is used in a linear 
environment such as a modal analysis. A discrete 
representation was assigned to steel by involving LINK8, 1D 
elements capable of resisting tension and compression. Shear 
resistance was modelled in a s meared manner[20].  

Previous studies and personal experience have suggested 
that Poisson’s ratio is not sensitive enough to cause notable 
changes in the behaviour of concrete structures either in the 
static or the dynamic domain[22],[12]. On the other hand, 
any variations in the density of the two materials can cause 
considerable changes in the dynamic behaviour of the units.  

Other parameters (in addition to physical properties) may  
influence the updating process and the quality of results. 
These can be the supports (or any boundary) conditions, the 
steel reinforcement, even the solution procedure used by the 

program. Table 4 lists the physical properties of steel and 
concrete as used in the initial non-linear, static, fin ite 
element model.  

Table 4.  Physical properties of concrete and steel used in the ‘static’ model. 
E1, con refers to the initial tangent modulus of concrete 

Parameter Value 
E1,con  30.00 (kN/mm2) 
ρcon  2240 (kg/m3) 
νcon 0.225 
Esteel  198.960 (kN/mm2) 
ρsteel  7750 (kg/m3) 
νsteel 0.300 

5.2. Updating Strategy, Correlation, Fine-tuning, 
Validation 

The goal of FE model updating is to achieve an improved 
match between  model and test data by making meaningful 
changes to model parameters and rectify any inaccurate 
modelling assumptions. Updating methods are based 
primarily on the sensitivity of selected physical parameters, 
so that correlation between simulated responses and target 
values improves. Figure 6 summarizes the updating strategy 
in a symbolic flow-chart fo r Terrace Unit Member 003 
(TUM003).  

The main  difference between computational and manual 
updating is that the former allows for a simultaneous 
variation of more than one parameter and  therefore should be 
a good deal faster. However, the choice of appropriate model 
parameters can be an obscurity as they do not always deliver 
reliable results. The response can be correlation values like 
MAC (Modal Assurance Criterion), the most popular 
criterion for correlating vectors in a computer driven FE 
model updating. The purpose of a successfully updated FE 
model is to be used for further structural analysis, or model 
other load and boundary conditions, or even different 
configurations (such as damage) with much more confidence 
and without additional experimental testing.  

5.3. Gradual Updating and Correlation 

A plain concrete model taken from a previous static 
analysis of the same terrace units and with the material  

properties shown in Tab le 5 was used as an opening case. 
The results predicted are shown compared  with those 
collected from tests. The percentage error is also shown but it 
is based on the experimental (measured) values which can 
only be assumed to be accurate. The fact  that all 
accelerometers were positioned vertically  on the structure 
and therefore not make up for other direct ions may account 
for that. A more realistic indicator, such as the percentage 
deviation from the arithmet ic mean of the two values is also 
shown. This may be more erroneous than the percentage 
error at the beginning of the updating process but should 
become more accurate at a later stage when correlation 
improves. A first attempt to correlate the measured and 
predicted results is plotted in Figure 7.  
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Figure 6.  The updating process summarised 

 
Figure 7.  Preliminary correlation between measured and predicted natural 
frequencies 

5.4. Initial  FE Model 

As expected, the composition of the first finite element 
model is not satisfactory; hence the updating process. 
However, somet imes it is possible that the final parameter 
changes do not allow for a physical interpretation. They are 
simply numerical substitutes accountable for reducing the 
deviations between tests and FE analysis. Whether the latter 

are physically acceptable or not depends a great deal on the 
field of application of the model. For example, a large, 
disproportionate increase in the thickness of shell elements 
may  be unacceptable for a static stress analysis but has no 
effect on modal analysis. Hence, in a manually updating 
process it is left to the analyst to decide and justify whether 
the resulting model is acceptable and realistic or not. The 
slope of the ‘best-fit’ was chosen as a correlation index. The 
initial slope was 0.518. This is, out by 0.482, or 48.2%, from 
a perfect correlation (target), taken as one. 

5.5. First Update. (Material Properties) 

It has been said that fin ite element analysis overestimates 
stiffness[23],[24],[25]. This is usually attributed to 
overestimation of material properties, the variat ion of 
stiffness in different directions and interaction problems 
between two neighbouring materials, as it is shown later. 
Hence, as stiffness is directly related to the square of the 
natural frequency, it is expected that FE Analysis will 
overestimate the natural frequencies. The first update was 
based on the variation of material parameters. Hence, the 
inserted value for Young’s Modulus of concrete was lowered 
and the corresponding value for density was raised in  an 
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effort to come near the measured natural frequencies. Both 
variations were performed within the acceptable boundaries 
of the parameters themselves. Table 6 and Figure 8 display 
the details and the results. 

The results show a noticeable improvement in the 
predicted variables and a reduction in the percentage error 
and percentage deviation compared with the initial model. 
The slope of the ‘best fit’ curve has been improved from 
0.518 to 0.705; an  upgrading of 0.187 towards the target 
value, or 0.295 (29.5%) away from unity. The largest 
deviation occurred at mode 4 and the smallest at mode 1, as 
expected. 

 
Figure 8.  First  correlation between measured and predicted natural 
frequencies  

Table 5.  Preliminary FE model. Measured and predicted natural frequencies 

Econcrete = 30.00 (kN/mm2) 
ρconcrete = 2250 (kg/m3) 

Mode No. Measured ξ. (%) Measured f. (Hz) 
Predicted fini. 

(Hz) 
Plain Concrete 

% 
Error 

 

% 
Dev 

1 1.4 12.0 17.28 43.97 18.02 
2 2.0 14.7 29.38 99.83 33.30 
3 1.2 30.0 41.67 38.91 16.29 
4 1.0 40.0 76.80 92.00 31.51 
5 1.6 67.3 122.74 82.38 29.17 
6 - - 143.17   

Table 6.  First  FE update. Measured and predicted natural frequencies 

Econcrete = 29.00 (kN/mm2) 
ρconcrete = 2400 (kg/m3) 

Mode No. Measured ξ. (%) Measured f. (Hz) 
1st FE-update 

f. (Hz) 
(Mat Props) 

% 
Error 

 

% 
Dev 

1 1.4 12 15.32 27.67 12.15 

2 2.0 14.7 21.83 48.50 19.52 

3 1.2 30 38.75 29.17 12.73 

4 1.0 40 64.05 60.13 23.11 

5 1.6 67.3 91.25 35.59 15.11 

6   112.70   

Table 7.  Second FE update. Measured and predicted natural frequencies 

Mode No. Measured ξ. (%) Measured f. (Hz) 
2nd FE-update 

f. (Hz) 
(Reinforcement) 

% 
Error 

 

% 
Dev 

1 1.4 12 15.44 28.67 12.54 

2 2.0 14.7 21.1 43.54 17.88 

3 1.2 30 38.6 28.67 12.54 

4 1.0 40 64 60.00 23.08 

5 1.6 67.3 85.5 27.04 11.91 

6   109   
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5.6. Second Update (Reinforcement) 

Physical properties from the first update were kept 
constant while steel reinforcement was introduced in the 
model. There are currently confusing arguments regarding 
the latter[26]. The reinforcement was introduced gradually in 
order to observe the response of the unit. Table 3 shows the 
amount and type of rein forcement used. Note that 
distribution steel, warp ing control steel at corners, 
overlapping steel, as well as some other “features” of 
reinforced concrete design were not modelled. The second 
update was carried out and the following results were 
collected in Tab le 7 and Figure 9. 

 
Figure 9.  Second correlation between measured and predicted natural 
frequencies 

Depending on the particular mode of vibration, the 
percentage error and percentage deviation have both 
increased and decreased. Modes 1, 2, 4 had their deviation 
increased but modes 3 and 5 had their own decreased. This 
shows that the reinforcement does have an effect on the 
natural frequencies but not clear pattern for useful 
conclusions has yet been emerged. Th is is discussed in the 
next section. The gradient of the best fit has improved from 
0.705 to 0.745, a marginal improvement of 0.04. The best-fit 
improved to 0.255, and it is now 25.5% away from the target. 

5.7. Third Update. (Support Stiffness) 

The third update involved the accurate simulation of 
supports in the finite element model. Physical properties and 

steel reinforcement were kept constant this time. Support 
(boundary) conditions play an important role in the dynamic 
response of any structure. Initially, all 3 translational DOFs 
were restrained at one end of the terrace unit simulating a 
3-dimentional pin (UX= UY= YZ= 0), using ANSYS’ 
built-in facility. In addition, symmetric conditions at 
midspan were applied with some caution. That is, a fu ll 
model with a coarse mesh was used and its first six mode 
shapes were matched with those obtained from a symmetric 
model in order to make sure that any odd, non-symmetric 
modes would not be missed.  

The objective was to achieve better correlation between 
measured and computer predicted results. It is known that 
precast concrete terrace units usually rest on elastomeric 
bearings (bearing pads). Briefly, the pad’s multi-function is:  

° To protect the concrete from spalling;  
° to transfer loads smoothly and uniformly;  
° to allow for some end rotation over the supports; 
° to cater fo r d ifferential vertical movement and levelling 

problems; 
° to allow and compensate for some lateral and 

longitudinal ‘thermal’ movement;  
° to act as natural vibrat ion absorbers influencing the 

vibration of the units.  
BS2752[27] provides some informat ion regarding 

specifications of chloroprene rubber compounds. ANSYS 
provides the user with a variety of elements with stiffness 
capabilit ies. The MATRIX27 element was chosen due to its 
unique aptitude to allow the analyst full control of its input 
parameters, and its ability to relate two nodes (one lying on 
the structure and the other on some fixed medium) each with 
6DOF, translations along and rotations about, the nodal x, y, 
z axes. A ll matrices generated by this element are 12x12 
matrices. St iffness values were evaluated using relationships 
from Lindley[28] and the manufacturer’s data-sheets. 
Equation (12) shows the stiffness matrix developed 
specifically for ANSYS solver.  

Compr. stiffness of pad, 16 Nm1052.56 −×=compK  

Shear stiffness of pad, 16 Nm10248.1 −×=shearK  

Table 8.  Third FE update. Measured and predicted natural frequencies 

Mode No. Measured ξ. (%) Measured f. (Hz) 
3rd FE-update 

f. (Hz) 
(Support-Stiff) 

% 
Error 

 

% 
Dev 

1 1.4 12 12.74 6.19 3.00 

2 2.0 14.7 15.00 2.04 1.01 

3 1.2 30 31.72 5.73 2.79 

4 1.0 40 44.56 11.40 5.39 

5 1.6 67.3 71.47 6.20 3.01 

6   100.20   
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Table 9.  Forth FE Update. Measured and predicted natural frequencies 

Mode No. Measured ξ. (%) Measured f. (Hz) 
4th FE-update 

f. (Hz) 
(Block Lanczos) 

% 
Error 

 

% 
Dev 

1 1.4 12 12.63 5.25 2.56 
2 2.0 14.7 14.98 1.90 0.94 
3 1.2 30 31.22 4.07 1.99 
4 1.0 40 43.96 9.90 4.72 
5 1.6 67.3 70.95 5.42 2.64 
6   99.30   
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The resulting natural frequencies predicted by ANSYS are 
cited in Tab le 8 and Figure 10 for comparison with the 
measured results. 

 
Figure 10.  Third correlation between measured and predicted natural 
frequencies 

It is evident that a more accurate support representation 
had a dramatic effect in correlat ion. The slope of the best fit 
has changed from 0.745 to 0.918, an improvement towards 
target of 0.173 and only 0.082 (8.2%) away from perfect 
correlation. 

5.8. Forth Update (Block Lanczos) 

ANSYS provides the user with a variety of different 
solution techniques. The subspace method was initially 
chosen in the present study. This uses the generalised Jacobi 

iteration algorithm[29] which is similar to the familiar 
Gauss-Seidel iteration but consists in not using improved 
values until a step has been completed.  

 
Figure 11.  Forth correlation between measured and predicted natural 
frequencies 

For large, symmetrical problems ANSYS recommends the 
Block Lanczos[30] eigenvalue extract ion method. Th is uses 
the Lanczos algorithm perfo rmed with a b lock of vectors, as 
opposed to a single vector[31]. It performs part icularly  well 
when the model consists of a combination of 3D and 2D or 
1D elements. It uses the sparse matrix solver, overrid ing any 
other solver specified. Th is can make it more accurate than 
other methods as it incorporates all the terms of the sparse 
matrix. Kim[32] found that the spectral estimate of the block 
Lanczos method is more accurate than other mode extraction 
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methods but recommended addit ional research on the subject. 
Other researchers made similar conclusions[33]. The Block 
Lanczos method is especially powerful when searching for 
eigen-frequencies in  a specific part  of an  eigenvalue 
spectrum of a system. For this study, the subsequent 
adoption of Block Lanczos method has significantly reduced 
the CPU-t ime and has added to the accuracy of the results 
over the initial choice of the subspace method. Table 9 and 
Figure 11 show the results from the modal analysis. As the 
predicted results converge towards the measured ones, the 
rate of the percentage deviation is reducing. Also, the 
difference between the last (0.918) and present (0.937) best 
fit has improved to 0.018 and the ‘distance’ from the target is 
now only 0.064 or 6.4%.  

5.9. Fine Tuning   

Fine tuning was centred mainly on the material properties 
of concrete and was carried out in an effort to make final 
improvements to correlation. Hence, the modulus of 
elasticity of concrete was reduced slightly to 28.5 kNmm-2 
and its density was increased to 2450 kgm-3. It is accepted 
that the former is outside the range of values given in Table 4 
but within the acceptable values for C35/45 concrete. The 
density is still within  the values given by EC2. The results 
from this update are presented in Table 10 and the final 
correlation is plotted in Figure 12. The calculated frequency 
values are now listed alongside, for comparison. 

 
Figure 12.  ‘Fine-Tuning’ correlation between measured and predicted 
natural frequencies 

Fine tuning improved the slope of the ‘best fit’ from 0.937 
previously, to 0.954. This is an improvement to target of only 
0.018 but justifiab le, hence it may be included in the 
updating process. The final best-fit value is only 4.6% away 
from ‘perfect’ correlation.  

6. Commentary on the Results 
The main debate regarding the results has taken place 

during the updating process in Section 5 but one or two 
additional comments may be of interest. The final best-fit 
values were out by 4.6% from the perfect correlat ion and 
although efforts were made to improve the above figure, 
these could not easily be justified. It  is clear from the above 
that correlation depends on a number of variables but their 
degree of sensitivity is different and that obscures the 
process. Correlation is particu larly sensitive to the physical 
properties of concrete and the boundary conditions of the 
structure considered. Figure 13 demonstrates how 
FE-updating improves correlation (slope). No. 1 (S= 0.518) 
corresponds to the initial model and No. 6 (S= 0.954) to fine 
tuning. The difference of 18.7% between the initial model 
and the first update and that of 17.3% between the third and 
forth updates, demonstrate the importance of the material 
properties and support conditions in the process.  

 
Figure 13.  The updating process to ‘perfect’ correlation 

Table 10.  FE Fine-Tuning. Measured, Calculated and FEA–predicted natural frequencies 

 Econcrete = 28.5 (kNmm-2) 
ρconcrete = 2450 (kgm-3) 

Mode 
No. 

Measured ξ. 
(%) Measured f. (Hz) Calculated 

f (Hz) 

Fine Tuning 
f. (Hz) 

RC + Sup-Stiff. 

% 
Error 

 

% 
Dev 

1 1.4 12 11.98 12.12 1.00 0.50 
2 2.0 14.7 14.90 14.54 -1.09 -0.55 
3 1.2 30 31.80 30.40 1.33 0.66 
4 1.0 40 43.85 41.45 3.63 1.78 
5 1.6 67.3 70.70 69.80 3.71 1.82 
6   112.24 95.7   
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Table 11.  Terrace Unit. Mode shapes, estimated experimentally and predicted by FEA 
M

od
e 

N
o.

 Experimental Modal Analysis. 
Mode Shape 

FE Modal Analysis. 
Mode Shape 

Comments  

 

1 

 
 

The fundamental, 
bending 

mode of vibration. 

2 

 

 

Predominantly 
torsional mode. 

 
Also showing small 
amounts of bending. 

3 

 

 

Similar to Mode 2. 

4 

 

 

The second (flexural) 
mode of vibration. 

5 

 

 

The third flexural 
mode 

 
Also inhibiting a small 

amount of torsion. 

6 ? 

 

Predominantly 
bending mode 
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Table 11 is dedicated to mode shapes. There is relatively  
good agreement between mode shapes from the experimental 
and the finite element modal analysis. Mode 2 is of some 
interest as an almost predominantly torsional mode. It would 
be very difficult to interpret it without the help of FEA. Note 
that plane symmetry has been applied to all FE-models and 
therefore only half the models are shown. It should be 
stressed again that without the help of the finite element 
analysis it would be difficult to interpret any complex modes 
based on the experimental results alone. Modes 2 and 3 
represent twisting tendencies of the L-shaped terrace unit 
(depicted successfully in the FE analysis) whereas modes 4 
and 5, may be regarded as the second and third ‘bending-like’ 
modes of vibration. 

7. Uncertainties in Modal Analysis 
In general, the natural frequencies and mode shapes 

showed good correlation. As all accelerometers were 
positioned vertically and the structure under tests was 
approximated by RPs (lumped masses) in a straight line, it is 
reasonable to state that the experimental procedure needed 
assistance from the FEA in order to depict certain complex 
modes of vibration.  

The role the reinforcement plays in  the dynamic behaviour 
of the structure can be of some interest. The basic idea is that 
modal parameters (notably frequencies, mode shapes, and 
modal damping) are functions of the physical properties of 
the structure (mass, damping, and stiffness). Therefore, 
changes in the physical properties should cause detectable 
changes in the modal propert ies. 

Numayar et  al[27] concluded that steel reinforcement has 
no effect on the natural frequency of structures provided that 
the applied loads were kept below that causing the first crack. 
The same authors concluded that for applied loads greater 
than the cracking load, the natural frequency increases with 
reinforcement ratio.  

Feelings are mixed  in  this study as no clear pattern 
emerged. Strictly  speaking, when the structure is cracked its 
stiffness is reduced and so should be its natural frequency. 
The fact that the latter is increasing means that the loss of 
stiffness is not significant, which is true[19]. 

Similar studies at MSc level carried out by Pandelli and 
Karadelis[34] have demonstrated the change in dynamic 
behaviour of a simply supported, singly reinforced concrete 
beam of rectangular section undergoing free v ibrations. It 
was found that increasing the amount of reinforcement is 
likely to increase certain modal frequencies and decrease 
others. Subsequently, it was noticed that reinforcing and 
therefore increasing the ‘specific’ stiffness of the beam may 
result in “forcing” the beam into a different mode of 
vibration and lower rather than raise its corresponding 
frequency.  

The level of sensitivity that modal parameters have to 
small flaws in a structure is a point of controversy among 
many researchers. Much of the evidence on both sides of this 

disagreement is anecdotal because it is only demonstrated for 
specific structures or systems and not proven in  a 
fundamental sense. This issue is important for the 
development of health monitoring techniques because the 
user of such methods needs to have confidence that the 
damage will be recognized while the structure still has 
sufficient integrity to allow repair[35]. 

It is apparent that the geometric properties of the units 
(asymmetric cross-section) have an effect on its flexural and 
torsional rigidit ies (EI & GJ). Clearly, the stiffness of the unit 
along its main span is different to that along the short span. 
Furthermore, as the section along the short span varies, so 
does its stiffness and therefore a third  stiffness value may be 
justifiable. Some stiffness reduction related to possible 
cracks (shrinkage) may also be a possibility. Efforts were 
concentrated to assess the different stiffnesses of the unit and 
represent them in a s meared manner in the updating process. 
As a first approximation, it was decided to calculate the 
stiffness of the different parts of the unit  such as the tread, the 
riser, etc and then assign modified  E-values to these parts. 
This approach involved long computational effort and is not 
shown here.  

A purely analytical model has also been developed by the 
author for verification[18]. Verification does not, normally, 
consist part of the modal analysis procedure but may be of 
interest. The procedure involves the development of three 
partial differential equations from where the “exact” solution 
may be ext racted. Inevitably, the equations developed 
depend on a series of constants such as: Econ, Gcon, Iy-y, Ix-x, Ixy, 
Isc, J, Iw, ρ, ex and ey, as well as their products and sums (EIsc, 
EIw, EIxy, GJ, Ix.Iy.Isc, (Ix + Iy), (IxIy - I2

xy)) that in practice, 
can only be evaluated approximately. In addit ion, as most 
terms of the final frequency equation are raised to some high 
power, or involve products, errors can be exaggerated and 
accuracy compromised.  

8. Concluding Notes 
A comprehensive account of experimental and numerical 

modal analysis for a family of reinforced concrete 
grandstand terraces, supported on a rectangular hollow 
section (RHS) frame was presented in this study. Based on 
the findings, the following conclusions can be drawn:  

• Overall, and after studying the first five modes of 
vibration it  was found that experimentally obtained natural 
frequencies were in good agreement with the ones predicted 
by a repeatedly updated finite element model and the results 
obtained theoretically. 

• Experimental procedures may not be adequate to provide 
a complete account of modal analysis unless the equipment 
used is in abundance, of good quality, high resolution and 
standards and therefore ext remely expensive and 
unsustainable for research work alone. Hence, some 
limitat ions are inevitable as certain modes that tend to be 
more complex than others, may  not be depicted accurately by 
the experimental analysis. A rigorous finite element model 
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should help to overcome this problem by capturing the 
resulting mode shapes with  confidence and accuracy, 
especially at higher modes of vibration.  

• Initial and short term results suggest that the amount of 
reinforcement has little effect on the dynamic properties of 
the “uncracked” reinforced concrete terrace units. However, 
interim but carefully studied results from the finite element 
analysis hinted towards the possibility that an increase in the 
amount of reinforcement is likely to force the structure into a 
different mode of vibrat ion, hence altering the prev iously 
obtained properties. 

• The dynamic properties of the terrace units were found 
to be very sensitive to two parameters, the physical 
properties of the main material (concrete) and the conditions 
of the supports of the structure. The degree of sensitivity is 
discussed in some detail in Sect ions 5 and 6. Essentially, it 
was found that a gradual improvement of the predicted 
natural frequency values was evident by progressively 
improving the representation of boundary conditions. Best 
correlation  was achieved when the inserted between the units 
neoprene pads were modelled by simulating their stiffness 
characteristics with the ANSYS dedicated stiffness matrix 
element.  

• Also, it was found (section 5.1) that the subsequent 
adoption of Block Lanczos solution technique, over the 
initial choice of the subspace method, reduced the CPU-time 
and at the same time made a modest contribution to the 
accuracy of the results. It is therefore recommend for similar 
type of numerical analysis work.  

• Verification of the experimental and numerical results 
may not always be possible, or may sometimes be 
impractical due to complex mathemat ical calculations and a 
plethora of uncertainty factors arising main ly from the 
constants involved. 

ACKNOWLEDGEMENTS 
The author would like to thank the following organisations 

for their help: 
Bison Concrete Products Ltd, The Brit ish Gaskets Group, 

Howgate & Lane Ltd,  
Al Ashwaq Rubber products Ind.  

 

REFERENCES 
[1] Bachmann, H. “Vibrations of building structures caused by 

human activities, case study of a gymnasium”, Schweizer 
Ingenieur und Architekt, 100 (6), 104-110, 1983. 

[2] Allen, D.E. “Building Vibration from Human Activities”, 
ACI Concrete International: Design and Construction, 12 (6), 
66-73, 1990. 

[3] Batista, R.C, Magluta, C. “Spectator induced vibration of 
Maracana Football Stadium”, Structural Dynamics – 
EURODYN 93, 985-992, 1993. 

[4] Interim Guidance, DTRL, DCMS. “Dynamic performance 
requirements for permanent grandstands subject to crowd 
action. Interim guidance for assessment and design”, 
Institution of Structural Engineers, 2001. 

[5] Advisory Note, DTRL, DCMS. “Dynamic Testing of 
Grandstands and Seating Decks” Institution of Structural 
Engineers, 2002. 

[6] Note. “Calculation of Natural Frequencies of Grandstand 
Seating Decks”, The Structural Engineer, IStructE, 2003. 

[7] Ellis B.R., Littler J.D. “Response of cantilever grandstands to 
crowd loads. Part 1: serviceability evaluation”. Proceedings 
of the Institution of Civil Engineers, Structures and Buildings 
157, (SB4) Paper 12926, 235-241, 2004.  

[8] Ellis B.R., Littler J.D. “Response of cantilever grandstands to 
crowd loads. Part 2: load estimation”. Proceedings of the 
Institution of Civil Engineers, Structures and Buildings 157, 
(SB5) Paper 12927, 297-307, 2004.  

[9] Ellis, B.R. and Ji, T. “Dynamic testing and numerical 
modelling of the Cardington steel framed building from 
construction to completion”, The Structural Engineer, 74 (11), 
186-192, 1996. 

[10] Reynolds, P., Pavic, A., and Ibrahim, Z. “A Remote 
Monitoring System for Stadia Dynamics”. Structures and 
Buildings, Proceedings of the Institution of Civil Engineers, 
157, 385-393. ISSN 0965-0911, 2004. 

[11] Reynolds, P., Pavic, A., and Ibrahim, Z. “Changes of modal 
properties of a stadium structure occupied by a crowd”. In 
IMAC XXII. The 22nd International Modal Analysis 
Conference, Dearborn, USA, 26–29, 2004. 

[12] Reynolds, P., Pavic, A. and Prichard, S. “Dynamic Analysis 
and Testing of a High Performance Floor Structure”, 
International Conference on Structural Dynamics Modelling - 
Test, Analysis, Correlation and Validation, Madeira Island, 
Portugal, 339-346, 2002. 

[13] Swan, I.P. Reid, D.B. Fairfield, C.A. “Modelling Highway 
Bridge Vibrations; the effect of Support Conditions”, British 
Institute of Non-destructive Testing, 47 (7), 409-413, 2005.  

[14] Ibrahim, Z., Reynolds P. “Finite Element Modelling for 
Evaluating the Dynamic Characteristic of a Grandstand”. 
International Journal of Engineering and Technology, 4 (2), 
235-244, 2007. 

[15] Karadelis, J.N. Experimental Modal Analysis of Grandstand 
Terraces, A report submitted to BISON Concrete Products 
Ltd, 2010, (unpublished). 

[16] ICATS. MODENT, MODESH, MODACQ, MESHGEN, 
Reference manual, Imperial College Analysis & Testing 
Software, London, UK, 1997. 

[17] Weaver, W. (Jr), Timoshenko S.P., Young D.H. Vibration 
Problems in Engineering, 5th ed, John Wiley & Sons, NY, 
1990. 

[18] Karadelis, J.N. Modal Analysis of Asymmetric Terrace Units. 
An Analytical Approach. Proceedings of the Institution of 
Civil Engineers, Engineering and Computational Mechanics 
Journal, 2012, (submitted) 

[19] Karadelis, J.N. “Concrete Grandstands. Part I. Experimental 
Investigation”, Proceedings  of the Institution of Civil 



99 Journal of Civil Engineering Research 2012, 2(6): 84-99  
 

 

Engineers, Engineering and Computational Mechanics 
Journal 161, Issue EM1, doi: 101680/eacm.162.1.3, 3-9, 
2009. 

[20] Karadelis, J.N. “Concrete Grandstands. Part II. Numerical 
Modelling”, Proceedings of the Institution of Civil Engineers, 
Engineering and Computational Mechanics Journal 162, 
Issue EM1, doi: 101680/eacm.162.1.1, 11-21, 2009. 

[21] ANSYS 9.0. “Analysis User Manual”, Version 9, Tools, 
Chapter 15, ANSYS Inc, Houston, USA, 2005. 

[22] Hughes, B.P., Karadelis, J.N. “Computation of rigid 
pavement stiffnesses using surface deflections from the 
Falling Weight Deflectometer”. Proceedings, Concrete 
Communication Conference 98, The 8th BCA Conference on 
Higher Education and the Concrete Industry, Southampton 
University, , 87-101, ISBN: 0 7210 1540 9 (also on CD), 
1998.  

[23] Hyo-Gyoung Kwak, Filippou, F.C. “Finite Element Analysis 
of Reinforced Concrete Structures under Monotonic Loads”, 
Structural Engineering Mechanics and Materials, PhD Thesis, 
Dept of Civil Engineering University of California, Berkeley, 
California, Report No. UCB/SEMM-90/14, 1990. 

[24] Ha-Wong Song, Sang-Hyo Shim, Keun-Joo Byun, and 
Koichi Maekawa. “Failure Analysis of Reinforced Concrete 
Shell Structures using Layered Shell Element with Pressure 
Node”, Journal of Structural Engineering, 128 (5), 655-664, 
2002. 

[25] Sherif,  A.G. & Dilger, W.H. “Analysis and deflections of 
reinforced concrete flat slabs”, Canadian Journal of Civil 
Engineering, 25 (3), 451-466, 2006.  

[26] Numayar, K.S., Al-Jallamdeh, S.A., Al-Akhras, N.M. 
“Dynamic Stiffness of Reinforced Concrete Beams”, 
Proceedings of the Institution of Civil Engineers, Structures 
and Buildings 156, , Issue: SB4, 373-379, 2003. 

[27] BS2752. “Chloroprene Rubber Compounds Specification”, 
British Standards Institution, 2003. 

[28] Lindley, P.B. “Engineering Design with Natural Rubber”, NR 
Technical Bulletin, The Natural Rubber Producers’ Research 
Association, Malayan Rubber Fund Board, London, 1966. 

[29] Mahinthakumar, G.A., Hoole, S.R.H.A. “Parallelized 
Element-by-Element Jacobi Conjugate Gradients Algorithm 
for Field Problems, and a Comparison with Other Schemes”, 
Applied Electromagnetics in Materials, 1, 15-28, 1990.  

[30] Lanczos, C. “An iterative method for the solution of the 
eigenvalue problem of linear differential operators”, J Res. 
Natural Bureau of Standards, 45, 255-282, 1950. 

[31] Lewis, J.G., Grimes, R.G., Simon, H.D. “A Shifted Block 
Lanczos Algorithm for Solving Sparse Symmetric 
Generalized Eigenproblems”, SIAM Journal of Matrix 
Analysis Applications, Society for Industrial and Applied 
Mathematics, 15 (1), 228-272, 1994. 

[32] Kim, Y.J. Block Lanczos Algorithm, PhD thesis: AD-A224, 
011,Naval Postgraduate School, Monterey, California, 1989 

[33] Dai, H, & Lancaster, P. Preconditioning Block Lanczos 
Algorithm for Solving Symmetric Eigenvalue Problems. 
Journal of Computational Mathematics, Vol.8, No.4, 2000, 
365-374. 

[34] Pandelli, I.  & Karadelis, J.N. “The Effect of Reinforcement 
on the Dynamic Properties of a Reinforced Concrete Beam”, 
ANSYS UK Conference, (on CD), 2003. 

[35] Farrar, C.R., Doebling, S.W. An Overview of Modal Based 
Damage Identification Methods, Los Alamos National 
laboratory, Los Alamos, NM 

 


	1. Introduction
	2. Modal Analysis of Grandstands (Brief Overview)
	3. Full Scale Modal Testing
	4. An Analytical Outline
	5. Numerical Modal Analysis
	6. Commentary on the Results
	7. Uncertainties in Modal Analysis
	8. Concluding Notes
	ACKNOWLEDGEMENTS

