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Abstract  This present work is built on references [1,2]. We restarted all analyses conducted previously and utilized a 

quantization technique based on a deformed version of Heisenberg's algebra. We applied this method to the quantum 

harmonic oscillator. Finally, we established the squeezed and coherent states associated with the system of the group SU(1,1), 

as well as the Wigner distribution function.  
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1. Introduction 

For several years, scientists have been interested in 

defining a structure based on Heisenberg’s algebra. 

The transition from commutative to non-commutative 

structures is a frontier of physics and mathematics. 

Many authors have discussed and applied this approach in 

various contexts. 

In 1926, Schrodinger introduced the concept of coherent 

states in his work on the single harmonic oscillator [3,4]. It is 

important to note that Glauber, Klauder, and Sudarshan, in 

the 1960s, were pioneers in applying the concept of coherent 

states to quantum optics. The term "coherent states" was first 

coined by Glauber during his research on electromagnetic 

radiation, where he defined these states as the eigenstates of 

the annihilation operator for the quantum harmonic oscillator. 

Furthermore, it has been demonstrated that the coherent 

states of the harmonic oscillator satisfy the minimization of 

Heisenberg's uncertainty principle. The algebraic method 

has proven to be beneficial in providing a unified treatment 

of these states and their interrelationships. This method has 

also led to the construction of squeezed states and other 

related states. The elegant and powerful algebraic approach 

to construction is rooted in the Heisenberg-Weyl algebra, 

defined by the relations [a, a†] = 1, in relation to the harmonic 

oscillator. 

This current work stemmed from earlier findings  
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discussed in Refs. [1,2], where we revisited the analysis and 

explored the problem concerning deformation. We have 

established the relationships associated with the structure  

of our system through a Harmonic approach, allowing us   

to diagonalize it using an algebraic method. Furthermore,  

we examined the symmetries pertinent to our system by 

employing the group algebraic SU(1,1). As we continue our 

analysis, we aim to verify Heisenberg’s inequality by 

utilizing linear combinations of position and momentum 

operators in terms of creation and annihilation operators. 

The paper is organized as follows. We demonstrate, 

through an algebraic approach, the connection between the 

wave functions of exactly solvable potentials. In Section 1, 

we present the mathematical formulation of the quantum 

harmonic oscillator. Section 2 includes the calculation of 

several commutators. In Section 3, we construct the creation 

and annihilation operators, which facilitate the diagonalization 

of the quantum Hamiltonian. Section 4 introduces the elements 

of the SU(1,1) group to generate squeezed states. In Section 

5, we explore various representations in position and momentum 

to establish the wave functions of excited states for both 

representations. Section 6 is dedicated to building coherent 

state wave functions and their corresponding Wigner distribution 

functions. Finally, in Section 7, we draw our conclusions. 

2. Quantum Harmonic Oscillator  

In this section, we present our system as defined by the 

Hamiltonian. 

 𝐻 =
1

2
  1 + 𝛼 𝑥 2 +  1 + 𝛽 𝑝 2 + 1 , (1.1) 

where 𝛼 and 𝛽 are real parameters.  
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The position and momentum operators obey the 

commutators as follows  

  𝑥 , 𝑝  =  𝑖𝜗  𝑥 , 𝑝  , (1.2) 

where 𝜗  𝑥 , 𝑝  = 1 + 𝛼𝑥 2 + 𝛽𝑃 2. 

The position and momentum operators are referred to as 

Hermitian operators and defined as: 

 𝑥 = 𝑥 † ;  𝑝 = 𝑝 † . (1.3) 

3. Construction of the Commutators 
Relations  

We start with the anti-commutator, which can be expressed 

as follows: 

  𝑥 , 𝑝  =  𝑥 𝑝 + 𝑝  𝑥  (1.4) 

We are establishing the commutation relations by examining 

the position and momentum operators, referencing the 

deformation relation in Eq. (1.2) as follows: 

 

1.  𝑥 , 𝑝 2 = −2𝑖𝜗𝑥 ;

2.  𝑥 2, 𝑝 2 = 2𝑖𝜗 𝑥 , 𝑝  ; 

3.   𝑥 , 𝑝  , 𝑥   = −2𝑖𝜗𝑥 ; 

4.   𝑥 , 𝑝  , 𝑝   = −2𝑖𝜗𝑝 ; 

5.   𝑥 , 𝑝  , 𝑥 2  = −4𝑖𝜗𝑥 2; 

6.   𝑥 , 𝑝  , 𝑝 2  = 4𝑖𝜗𝑝 2.

 (1.5) 

4. Diagonalization of the Hamiltonian  

a. FOCK states of the system 

In this subsection, we discuss the construction of creation 

and annihilation operators as linear combinations of position 

and momentum operators, based on Refs. [5]. 

𝒶 =
1

 2𝜃
  1 + 𝛼 𝑥 + 𝑖 1 + 𝛽  𝑝    

 𝒶† =
1

 2𝜃
  1 + 𝛼 𝑥 − 𝑖 1 + 𝛽  𝑝   (1.6) 

From Eq. (1.6ab), we obtain the inverses equations as follows 

𝑋 =  
𝜃

2 1+𝛼 
  𝒶 + 𝒶† ,  

 𝑃 = 𝑖 
𝜃

2 1+𝛽 
  𝒶 − 𝒶†  (1.7) 

Substituting equations  1.7𝑎𝑏  in equation  1.2 , we got 

  𝒶, 𝒶† =   1 + 𝛼  1 + 𝛽 .  (1.8) 

Special cases if 𝛼 = 𝛽 = 0 , then the equations above 

namely  1.1 ,  1.6𝑎𝑏  and (1.7𝑎𝑏) becomes as follows  

𝐻 =
1

2
 𝑥 2 + 𝑝 2 + 1 ;  

  𝒶 =
1

 2
  𝑥 + 𝑖 𝑝  ;  𝒶† =

1

 2
  𝑥 − 𝑖 𝑝   (1.9) 

Also  

𝑋 =
1

 2
 𝒶 + 𝒶† ,  

 𝑃 =
𝑖

 2
  𝒶 − 𝒶†              (1.10) 

Substituting equations  1.6𝑎𝑏  in equation  1.1 , we got  

 𝐻 =
1

2
 𝜗   1 + 𝛼  1 + 𝛽 + 2𝒶𝒶† + 1  (1.11) 

If 𝛼 = 𝛽 = 0, then equation  1.11  reduce as follows  

 𝐻 =
1

2
  1 + 2𝒶𝒶† + 1 =  1 + 𝒶𝒶†      (1.12) 

From Refs. [5], we draw the notations of algebraic 

structures as follows  

 𝒶  Ω  = 0,  Ω Ω = 1 (1.13) 

In other contexts, we can define a set of orthonormalized 

states within Hilbert space for the Hamiltonian in the 

following manner: 

  𝑛;  Ω  =
1

 𝑛!
 𝒶† 𝑛   Ω  ,  n; Ω n′ ; Ω = 𝛿𝑛,𝑛′  (1.14) 

where 𝑛 = 0,1,2, …  
We define the identity operator in the following way: 

    𝑛;  Ω   𝑛;  Ω   ∞
𝑛=0 = I (1.15) 

This state allows the diagonalisation of the Hamiltonian of 

the system. We define the projector in the quantum state of 

the system as follows. 

 ℙ𝑜 =    𝑛;  Ω   𝑛;  Ω   ∞
𝑛=0 ;  ℙ𝑜

2 = ℙ𝑜 ;  ℙ𝑜
† = ℙ𝑜  (1.16) 

We establish the following notation for the remainder of 

our discussion: 

   𝑛  =  𝑛;  Ω   (1.17) 

Based on the above, the projector of the operators 𝑥  and 

𝑝  in Hilbert space are 

 

 

 

 

𝑥 = ℙ𝑜𝑥  ℙ𝑜 =  
𝜗

2 1+𝛼 
ℙ𝑜 𝒶 + 𝒶† ℙ𝑜 =  

𝜗

2 1+𝛼 
  𝑛 + 1 𝛿𝑛,𝑛+1 +  𝑛𝛿𝑛,𝑛−1 ;  

𝑝 = ℙ𝑜𝑝  ℙ𝑜 =  
𝜗

2 1+𝛽 
ℙ𝑜 𝒶 − 𝒶† ℙ𝑜 ==  

𝜗

2 1+𝛽 
  𝑛 + 1 𝛿𝑛,𝑛+1 −  𝑛𝛿𝑛,𝑛−1     (1.18) 

The projection of the deformed commutator yields the following results: 

 𝑥 , 𝑝   = −𝑖𝜗ℙ𝑜       (1.19) 

This projection of the Heisenberg algebra is deformed across the entire space. 
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b. Energy spectrum 

We express the equation for the eigenvalue as follows  

𝐻   𝑛  = 𝐸𝑛   𝑛  ;  

𝐻   𝑛  =
1

2
 𝜗   1 + 𝛼  1 + 𝛽 + 2𝑛 + 1   𝑛  ;  

𝐸𝑛 =
1

2
 𝜗   1 + 𝛼  1 + 𝛽 + 2𝑛 + 1 .      (1.20) 

If 𝛼 = 𝛽 = 0, we get the special case where 𝐸𝑛  becomes 

𝐸𝑛 =  𝑛 + 1       (1.21) 

We can remark that here, the energy level 𝐸0 ground state is not zero. 

5. Group SU(1,1) 

The quantum group SU(1,1) and its associated algebra play a significant role in various quantum physics systems where 

the formalism of coherent states and squeezing is applied (Refs. [6,7]). 

The group generators of SU(1,1) are (𝐾+, 𝐾−) and (𝐾0). These generators are defined as follows: 

 𝐾−, 𝐾+ = 2𝐾0;            𝐾0, 𝐾± = ±𝐾±      (1.22) 

These group generators SU(1,1) act on the complete base of the FOCK vectors   𝑛, 𝑘  , where 𝑛 = 1,2, …  etc. as       

𝑘 =
1

2
, 1,

1

3
, … is Bargmann’s index with as representation what follows 

𝐾+  𝑛, 𝑘  =   𝑛 + 1  𝑛 + 2𝑘    𝑛 + 1, 𝑘  ;   

𝐾+  𝑛, 𝑘  =  𝑛 𝑛 + 2𝑘    𝑛 − 1, 𝑘  ;   

𝐾0  𝑛, 𝑘  =  𝑛 + 𝑘    𝑛, 𝑘        (1.23) 

In these cases, these three generators 𝐾1, 𝐾2 and 𝐾0 are of the from  

𝐾1 = −
𝜃

4
 

1

 1+𝛽 
 𝒶† − 𝒶  𝒶† − 𝒶 +

1

 1+𝛼 
 𝒶 + 𝒶†  𝒶 + 𝒶†  ;  

Finally, for 𝐾2, we have  

𝐾2 =
𝑖𝜃

2  1+𝛼  1+𝛽 
 𝒶†𝒶† − 𝒶𝒶      (1.24) 

Special cases, if 𝛼 = 𝛽 = 0, then 𝐾1, 𝐾2 and 𝐾0 become  

𝐾1 = −
𝑖

2
 𝒶†𝒶† + 𝒶𝒶 ;    𝐾2 =

𝑖

2
 𝒶†𝒶† − 𝒶𝒶 .     (1.25) 

We can calculate 𝐾+ and 𝐾− as follows  

 𝐾+ = −
1

2
𝒶†𝒶† ;  𝐾− = −

1

2
𝒶𝒶      (1.26) 

we compute 𝐾0 from of the equation  1.22𝑎𝑏  as 

𝐾0 =
1

2
 𝒶†𝒶† + 1       (1.27) 

From [8,9], knowing 𝐾+, 𝐾− and 𝐾0, we can establish the commutation relations between then as follows  

 𝒶, 𝐾+  = −𝒶† ;   

 𝒶† , 𝐾−  = 𝒶  

 𝒶, 𝐾0  =
1

2
 𝒶;   

 𝒶† , 𝐾0  = −
1

2
𝒶† ;   

 𝒶† , 𝐾+  =  𝒶, 𝐾−  = 0      (1.28) 

The equations  1.7𝑎𝑏  of the squared position and momentum operators as follows 

𝑋 2 = −
𝜃

 1+𝛼 
  𝐾+ + 𝐾− − 2𝐾0 +

1

2
 ,  

𝑃 2 =
𝜃

 1+𝛽 
  𝐾+ + 𝐾− + 2𝐾0 −

1

2
      (1.29) 

The dispersions of the coordinate ant momentum given by  
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 ∆𝑥 2 =  𝑥2 −  𝑥 2 =
𝜃

 1+𝛼 
  𝑛 +

1

2
   

 ∆𝑝 2 =  𝑝2 −  𝑝 2 =
𝜃

 1+𝛽 
  𝑛 +

1

2
   

Consequently 

∆𝑥∆𝑝 =
𝜃

  1+𝛼  1+𝛽 
 𝑛 +

1

2
   

From references [8,9], we introduce the displacement operator of squeezed states for the quantum harmonic oscillator, 

which is the most complex. 

Given the unitary squeezed operator as follows  

𝑆 𝑧 = exp  −
1

2
𝑧 𝒶†𝒶† +

1

2
𝑧∗𝒶𝒶 ;  

with 

𝑧 = 𝑟 𝑒𝑖∅;  

𝑟 = ln 𝑠.      (1.30) 

Using (1.30ab) in the previous equation, we finally get  

𝑆 𝑧 = exp  −
1

2
 𝑒𝑖∅ tanh 𝑟 𝒶†𝒶†  

1

cosh 𝑟
 

1

2
+𝒶†𝒶

exp  +
1

2
 𝑒𝑖∅ tanh 𝑟 𝒶𝒶    (1.31) 

We can still rewrite the equation  1.21  in term of the Bargamann indexe 𝑘 as follows  

 𝑛; 𝑘 𝐻  𝑛; 𝑘 = 𝐸𝑛,𝑘 = 2𝐾0;     𝐸𝑛,𝑘 =  𝑛 + 𝑘 .     (1.32) 

Special case, if 𝑘 = 1, then the equation  1.32𝑏 , we got  

𝐸𝑛,𝑘 =  𝑛 + 1       (1.33) 

6. Position and Momentum Representation  

In this section, we build the wave functions under two representations as described in Refs. [10]. Using the creation and 

annihilation operators, we can define the position and momentum operators as follows: 

𝑥 = 𝑖𝜃𝜕𝑝;    𝑝 = −𝑖𝜃𝜕𝑥      (1.34) 

𝒶𝑝 =
1

 2𝜃
  1 + 𝛼 𝑖𝜃𝜕𝑝 + 𝑖 1 + 𝛽 𝑝 ;   

 𝒶𝑝
† =

1

 2𝜃
 − 1 + 𝛼 𝑖𝜃𝜕𝑝 − 𝑖 1 + 𝛽 𝑝      (1.35) 

From of the equation  1.34𝑎 , we built a weve function as follows 

𝜓0 𝑝 = 𝐴0 exp  −
1

2𝜃

 1+𝛽

 1+𝛼
𝑝2 .     (1.36) 

Where 𝐴0 is normalization constant. 

According to Refs. [11,12,13], the orthogonality properties in the two representations in position and momentum are given 

by  

 𝜓𝑛
∗ 𝑥 𝜓𝑚 𝑥 𝑑𝑥 = 𝛿𝑛,𝑚  

+∞

−∞
;   

 𝜓𝑛
∗ 𝑝 𝜓𝑚 𝑝 𝑑𝑝 = 𝛿𝑛,𝑚  

+∞

−∞
.     (1.37) 

After performing the calculations and simplifications, the result for 𝐴0 is as follows  

𝐴0 =  
𝑏

𝜋

4
,      (1.38) 

where  

𝑏 =
1

𝜃

 1+𝛽

 1+𝛼
  

Substituting equations (1.38) in equation  1.36 , we got  

𝜓0 𝑝 =  1

𝜋𝜃

 1+𝛽

 1+𝛼

4

 exp  −
1

2𝜃

 1+𝛽

 1+𝛼
𝑝2   

By analogy, we got a wave function in the position representation as follows  
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𝜓0 𝑥 =  
1

𝜋𝜃

 1+𝛼

 1+𝛽

4
 exp  −

1

2𝜃

 1+𝛼

 1+𝛽
𝑥2        (1.39) 

In the following discussion, we will consider 𝛼 = 𝛽 = 0, to simplify equations  1.39𝑎𝑏  be easy, as follows: 

𝜓0 𝑝 =
1

 𝜋 
4  exp  −

1

2
𝑝2 ;   

𝜓0 𝑝 =
1

 𝜋 
4  exp  −

1

2
𝑥2           (1.40) 

We are going to build the excited state as follows 

𝜓𝑛 𝑝 =
1

 𝑛!
 𝒶𝑝

† 
𝑛

 𝜓0 𝑝 ;   

𝜓𝑛 𝑥 =
1

 𝑛!
 𝒶𝑝

† 
𝑛

 𝜓0 𝑥 .        (1.41) 

We got the two functions in terms position and momentum representations  

𝜓𝑛 𝑝 =
1

 𝜋 
4

 −𝑖 𝑛

 2𝑛𝑛!
 exp  −

1

2
𝑝2  𝐻𝑛 𝑝 ;   

𝜓𝑛 𝑥 =
1

 𝜋 
4

1

 2𝑛𝑛!
 exp  −

1

2
𝑥2  𝐻𝑛 𝑥        (1.42) 

7. Quantum Coherent States and Wigner Distributions Functions  

a. Quantum coherent states  

We start by exploring the fundamental relationships of canonical coherent states, as discussed in references 

[12,13,14,15,16]. These quantum states are defined for all complex numbers Z. We can express a linear superposition of the 

energy eigenstates in the following manner. 

𝜓𝑧 𝑥 =  exp  
1

2
 𝑧 2  

𝑧

 𝑛 !
𝜓𝑛 𝑥  𝑛        (1.43) 

Substituting the equation  1.42𝑏  in equation  1.43 , we got  

𝜓𝑧 𝑥 = exp  
1

2
 𝑧 2  

𝑧

 𝑛 !

exp  −
1

2
𝑥2 

 2𝑛𝑛! 𝜋

∞
𝑛=0 𝐻𝑛 𝑥 ;  

 𝜓𝑧 𝑥 =
1

 𝜋 
4 exp  −

1

2
 𝑧 2 −

1

2
𝑥2  

 𝑧𝑛  𝐻𝑛  𝑥 

𝑛!
∞
𝑛=0 .       (1.44) 

We know that  

𝜓𝑛 𝑥 =  𝑥 𝑛         (1.45) 

We recall the formula for the generating function of Hermite polynomials as follows 

exp −𝑡2 + 2𝑡 𝑥 =  
𝑡𝑛

𝑛!
∞
𝑛=0  𝐻𝑛 𝑥        (1.46) 

Given equation  1.46 , equation  1.44𝑏  becomes 

 𝜓𝑧 𝑥 =
1

 𝜋 
4 exp  −

1

2
 𝑧 2 −

1

2
𝑧2 exp  −

1

2
𝑥2 exp  2 𝑧𝑥       (1.47) 

By analogy, 𝜓𝑧 𝑝  can write as coherent states function writes as follows 

 𝜓𝑧 𝑝 =
1

 𝜋 
4   −𝑖 𝑛 exp  −

1

2
 𝑧 2 −

1

2
𝑧2 exp  −

1

2
𝑝2 exp  2 𝑧𝑝      (1.48) 

b. Wigner distribution function  

We present the Wigner function as an alternative to the Schrödinger image for addressing quantum mechanical problems, 

as noted in Refs. [11,12]. Let us recall the Wigner function for the stationary states of a quantum system, denoted as 𝜓𝑧 𝑥  

and 𝜓𝑧 𝑝 , which are defined by the following relationship: 

𝑊 𝑥, 𝑝 =  𝜓𝑧
∗  𝑥 −

1

2
𝑥 ′  𝜓𝑧  𝑥 +

1

2
𝑥 ′  𝑒−𝑖𝑝𝑥 ′

𝑑𝑥 ′  
+∞

−∞
;  

Also 

𝑊 𝑥, 𝑝 =  𝜓𝑧
∗  𝑝 −

1

2
𝑝′  𝜓𝑧  𝑝 +

1

2
𝑝′  𝑒−𝑖𝑝 ′ 𝑥𝑑𝑝′  

+∞

−∞
      (1.49) 

By substitution of the equation (1.47) and (1.48) in equations  1.49𝑎𝑏 , we get these results 

𝑊 𝑥, 𝑝 =
1

 𝜋
 𝑒−𝑖𝑝𝑥 ′

exp  −𝑥2 + 2 2 𝑧𝑥 −
𝑥 ′ 2

4
− 𝑧2 −  𝑧 2 𝑑𝑥 ′  

+∞

−∞
   (1.50) 

According to Refs. [7,12,13], we have the Gaussian integral of the form  
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 exp −𝑎2𝑥
2 − 𝑎1𝑥 − 𝑎0 𝑑𝑥 

+∞

−∞
=  

𝜋

𝑎2
 exp  −𝑎0 +

𝑎1
2

4𝑎2
      (1.51) 

Where 𝑎2 > 0 and 𝑎1, 𝑎0 ∈ ℂ. 

Given the equation  1.51 , equation  1.40  becomes  

𝑊 𝑥, 𝑝 = 2 exp  𝑧 2+𝑧2 exp − 𝑥2 − 𝑝2 + 2 2 𝑧𝑥        (1.52) 

By analogy, in the momentum representation, the Wigner function 

𝑊 𝑥, 𝑝 = 2 −𝑖 2𝑛 exp  𝑧 2+𝑧2 exp  −  𝑝2 −
1

4
𝑥2 + 2 2 𝑧𝑝      (1.53) 

 

8. Conclusions 

Our work involved replicating all analyses conducted in 

Refs. [1,2] while also exploring new directions that are not 

addressed here. We employed the technique of quantization 

by deformation, utilizing the deformed Heisenberg algebra 

to construct the creation and annihilation operators and to 

determine the physical spectrum of this system. Subsequently, 

we established the generators of the SU(1,1) group to derive 

the squeezed states. Building on this foundation, we used the 

definition of linear superpositions of energy eigenstates to 

establish the wave functions of coherent states in both position 

and momentum representations. Finally, we presented the 

Wigner functions, beginning with a review of the mathematical 

formulas for the Wigner distribution functions to construct 

them in the position and momentum frameworks. 

We provided three illustrative examples of non-Hermitian 

systems within the domain of quantum mechanics, noting 

that all these Hamiltonians exhibit a real energy spectrum. 

This demonstrates that our approach is straightforward and 

yields reliable results. In our analysis, we observed that 

among these three examples, only the second one features an 

energy spectrum that is scaled by a complex phase. This 

indicates that it is not always evident for two distinct systems 

governed by different Hamiltonians to share the same 

equation of motion or energy spectrum. 

Additionally, we presented a general form of the Hamiltonian 

that generates these examples. We introduced a local similarity 

transformation which establishes a connection between the 

spectra of two related Hamiltonians. This general Hamiltonian 

can be addressed through an algebraic method, specifically 

bi-Fock algebras. These bi-Fock algebras enable us to 

diagonalize the general form of the Hamiltonian and ascertain 

their physical spectra, which are real. 
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