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Abstract  We make only the following two requirements: (1) inertial invariance and (2) that the product of two boosts 

in a given direction yields a boost in the same direction. It is shown that there are three (consistent) possibilities: (a) a 

Galilean transform, (b) a Lorentz transform, or (c) a rotation in Euclidean spacetime. For the case of the Lorentz transform, 

the relativistic rule for composition of velocities is obtained, with the velocity of light arising as a constant of integration. 
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1. Introduction 

Physics in the twentieth century may be characterized by 

an understanding of the rôle played by the symmetries of 

physical system. Although the subject became prominent in 

the 1920s through the work of Hermann Weyl in the subject 

of quantum mechanics, an important precursor of group 

theory in physics was proposed in 1911, in the study of the 

group properties of space-time transformations by Phillip 

Frank and Hermann Rothe.1 They showed the unique rôle 

of the Galilei and Lorentz transformations in this topic, 

inasmuch as only these transformations in two dimensional 

space-time ( , )x t  were consistent with the group 

transformation property. Unfortunately, although that 

approach could have led to highlighting the rôle of 

symmetry groups in all physical systems, it did not happen 

that way.  

We have reconsidered the matter studied by Frank and 

Rothe in this work, requiring that the composition of two 

boosts in space-time be a boost of similar character.     

We find three possibilities, corresponding to a Galilei 

transformation, a Lorentz transformation, and a rotation in a 

Euclidean space-time. In addition we find in Section II that 

a space-time dilation may be present in each of these three 

cases, but a physical reason for eliminating the dilatations is 
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1
 Ü ber die Transformation der Raumzeitkoordinationen von ruhenden auf 

bewegte Systeme, Annalen der Physics, 3, 325-355, 1911. Our English 

translation of this article appears in this journal, 11, 141-152 (2021). 

described. The issues are discussed in Section III. The 

Euclidean rotation occurs as mathematical possibility, but it 

can be rejected upon physical grounds, as we discuss. While 

the symmetries imposed by group compositions provide an 

important limitation upon physical systems, they must be 

supplemented by physical requirements, in this and many 

other cases. 

2. Analysis 

The most general linear transformation of spacetime 

coördinates ( , )x t  into ( , ) x t  that transforms the origin 

(0,0)  into itself is 

  

 

x a x b t

t c x d t
 

The parameters , , ,a b c d  depend only on the velocity v  

of the two frames, which we introduce by requiring that the 

points 0 x  lie along the line x vt , so that 

( ) [ ]

( ) ( )

  

  

x a v x v t

t c v x d v t
              (1) 

Correspondingly, we require that the curve 0x  

correspond to the line   x vt , so that 

( ) ( )  v a v v d v  

and ( ) ( )a v d v . Let us write these equations in matrix 

form: 

( )





x x
M v

t t
                (2) 

where 
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( ) ( )
( )

( ) ( )




a v va v
M v

c v a v
            (3) 

The composition of two such transformations v  and v  

is given by 

( )





x x
M v

t t
 

where 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

   
   

 

      


     

  


 

a v v a v a v va v
M v M v M v

c v a v c v a v

a v a v v a v c v v v a v a v

c v a v a v c v vc v a v a v a v

a v v a v

c v a v

 

From the requirement that the diagonal elements of 

( )M v  are equal we obtain ( ) ( ) ( ) ( )    v a v c v vc v a v , so 

that 

( ) ( )

( ) ( )


  

 

c v c v

v a v va v
            (4) 

where   is a constant independent of v  or v .     

Thus ( ) ( ) c v va v . Furthermore, from the requirement 

12 11( ) ( )   M v v M v  we obtain 

( ) ( ) ( ) [ ( ) ( ) ( ) ( )]         v v a v a v v a v a v v va v a v   (5) 

or 

1

 
 



v v
v

v v
                (6) 

The coefficient 11( )M v  leads to the nonlinear 

functional equation 

( ) ( ) ( ) [1 ]   a v a v a v v v          (7) 

In particular, when 0 v , then  v v  and 

( ) (0) ( )a v a a v , or (0) 1a . Let us differentiate Eq. (7) 

with respect to v  and then set 0 v  to obtain 

2( )[1 ] ( )[ (0) ]  a v v a v a v           (8) 

This is a linear first order differential equation for ( )a v , 

with the parameter (0) a   present. We may write it as 

2

( )

( ) 1






a v v

a v v

 


               (9) 

The parameter   may be positive, zero, or negative. 

For the simplest case 0  we obtain the solution 

( ) exp[ ]a v v , or 

[ ]  
  


 




v

v

x e x vt
v v v

t e t




     (10) 

For 0  we obtain the Galilei transformation, 

whereas the parameter   also introduces a space-time 

dilation or contraction. 

For positive   we write 
21/ c . where c  is the 

characteristic velocity. The solution to Eq. (9) is 

/2

2 2

1
( )

1 /

 
    

c
c v

a v
c v v c



 

We may express these relations more elegantly in terms 

of the 'rapidity' parameter r , with / tanhv c r : 

( ) cosh     cra r e r r r r
 

Equivalently 

2

[ cosh sinh ]

[ cosh sinh ]

1 /

  

  


 



cr

cr

x e x r ct r

ct e ct r x r

v v
v

vv c



          (11) 

Evidently, the parameter   produces a scale 

transformation, as before. With 0  we obtain the 

Lorentz boost with velocity v . 

Finally, for negative   we write 
21/  c . where c  

is the velocity scale. The solution is 

1tan ( / )

2 2

1
( )

1 /






c v ca v e

v c

  

The solution to Eq. (9) is conveniently expressed in terms 

of the angle  , with / tanv c  : 

( ) cos     ca v e       

Equivalently 

2

[ cos sin ]

[ cos sin ]

1 /

  

  


 



c

c

x e x ct

ct e ct x

v v
v

vv c

 

 

 

            (12) 

For 0  this corresponds to a rotation by angle   in 

the Euclidean ( , )x ct  plane. Again, the parameter   

induces a scale transformation. 

3. Discussion 

First we consider the Galilei transformation, Eq. (9),  

that was obtained in the previous section. For the three 

dimensional case this can be generalized to obtain 

exp[ ] [ ]

exp[ ]

   

  

r a v r v t

t a v t
             (13) 

This particular transformation is not spatially isotropic, 

because it picks out a special direction identified by the 

vector a . Upon this basis, we must make the replacement 

0a  to recover the pure Galilei transform. These 
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transforms yield an Abelian group. 

For the case of the Euclidean rotation in space-time,   

we should similarly eliminate the scale factor exp[ ]c   

by setting 0 , to obtain the pure space-time rotation 

cos sin

cos sin

  

  

x x ct

ct ct x

 

 
            (14) 

This equation clearly satisfies the group composition 

property, and it can readily be generalized to rotations in 

four-dimensional space-time, leading to the group (4)O . 

Although for this case a characteristic velocity c  arises, 

there is no limit upon the velocity v . In fact, the rule for 

composition of velocities, Eq. (12), permits arbitrarily large 

velocities. Furthermore, the composition of two positive 

velocities 1v  and 2v  is negative, provided that 

2
1 2 v v c . This bizarre circumstance requires rejection of 

this transformation as a physical possibility. In the 

Euclidean transformation, the characteristic velocity would 

not be inertially invariant, in contradiction to the inference 

of the Michelson-Morley experiment. In fact, it would yield 

a length dilation and time contraction, in contradiction with 

experiment.  

By similar reasoning, one must set 0 , or the scale 

factor exp[ ] 1cr  in Eq.(11) to obtain the Lorentz 

transformation. As promised, the inertial invariance of the 

characteritic velocity arises as a consequence of the group 

composition property for this case. For consistency with 

Maxwell's equations, that velocity must be interpreted as 

the velocity of light. 

Note that the Lorentz transformations in three spatial 

dimensions do not form a group, since the product of   

two transformations with respective velocities 1v  and 2v  

with 1 2 0 v v  does not yield a Lorentz transformation, 

but in addition a spatial rotation in the plane perpendicular 

to 1v  and 2v  is needed. The full Lorentz group coonsists 

of spatial rotations and Lorentz boosts, the rotations 

forming a subgroup. 
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