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Abstract  We propose here a model Hamiltonian of double quantum dots with the armchair boundary to produce a 

theoretical study of a quantum computer. Then we solve it using Dirac fermions equations. Solving the Hamiltonian model 

and investigate the exchange interactions between two electrons captured in the double dots. Then we investigate the effect 

of different parameters on exchange interaction. We have found the dependence of the exchange interaction for various 

potential barrier height and barrier thickness between double dots. Our result shows that; the change of exchange interaction 

under the effect of this parameter leads to studying coherence time for this model and get the smallest value of switching 

time. Changing of exchange interaction is accompanied by a transition of electrons between different states. This reality 

can examine this model as a quantum gate for quantum information.  
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1. Introduction 

A quantum dot based on graphene nanoribbon GNR [1,2] 

is the best candidate as a basic unit for quantum computers 

[3,4]. 

This computer that works depends on quantum 

mechanics phenomena [5] such as superposition and 

entanglement [6], where the spin of electrons acts as a 

quantum bit (qubit) [7-10]. 

Several types of research worked on how to model 

quantum computers depend on the spin of the electron and 

preserved the coherent time [11] of that electron compared 

to gate time to do its operation. Since the main sources of 

spin De-coherence are the spin of nucleus and orbit 

interaction [12-14], carbon material overcomes these 

difficulties [15], but the valley degeneracy [16] represents 

another problem. GNR introduces the ability to get a model 

of double quantum dot where the valley degeneracy is left 

and, coherence time of the electron's spin is long enough to 

transfer information, on the contrary; this property is lost in 

semiconductor material [17,18]. 

Here we introduce a theoretical model of graphene 

nanoribbon (GNB) double quantum dot of armchair 

boundary condition each of them confined single electron 

acts as a spin qubit. We allowed them to a couple through 

exchange coupling. Using the Dirac equation and  
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Heisenberg exchange model we can determine the exchange 

coupling, since studying quantum gate occur through 

studying exchange coupling. Finally, we examine the effect 

of a different variable on exchange coupling and calculate 

the switching time related to this model. 

2. Theiortical Quantum Dot Model 

Consider a model of two neighboring quantum dots 

constructed on graphene nanoribbon (GNB) with armchair 

boundary conditions whose length L and width W fig. (1). 

separated them by a potential barrier with thickness d; each 

dot has dimensional length l along the y-axis. A single 

electron captured on each dot with an electric potential V (y) 

along y-direction [19], the two spin qubits are coupled 

between dots through barrier 2 (thickness d) via exchange 

coupling and the coupling controlled by barrier voltage that 

represented by low energy effective Hamiltonians: 

ℋ𝑆(𝑡) = 𝐽12(𝑡)𝑆1. 𝑆2. 

Where J (t) is the exchange coupling constant between 

the two spins S(1) and S(2). 

The left and right barriers should be controlled to control 

the Klein tunneling effect. 

 

Figure (1).  Structured of double quantum dot of GNB with armchair edge 

separated by barrier with thickness d 
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The Hamiltonian describes this system is given by: 

ℋ =  ℋ𝑖𝑖=1,2 + C + ℋ𝑆          (1) 

ℋ𝑖  is the single-particle Hamiltonian for a Dirac particle 

can be defined by Dirac equation [20]. 

ℋ𝑖= ℏ𝑣  
−𝑖 𝜎𝑥𝜕𝑥 − 𝑖 𝜎𝑦𝜕𝑦 0

0 𝑖 𝜎𝑥𝜕𝑥 − 𝑖 𝜎𝑦𝜕𝑦
 + ℏ𝑣𝑞0U (2) 

where ℏ is Planck’s constant, 𝑣  is the Fermi velocity of 

graphene, σx, σy are Pauli matrices for the pseudospin 

describing two sublattices of graphene A and B, ∂x and ∂y 

are partial derivatives is the charge of an electron, 𝑞0 is the 

quantization ground state wave vector in x- direction which 

is  

𝑞0 =  
𝜋

3 𝑊
  

Where W is the quantum dot width, and U is the electrical 

confining energy in units of ℏ𝑣𝑞0 along the y-axis which is 

given by:  

U= 
eV 𝑦 

ℏ𝑣𝑞0
 

Where V(y) is confinement potential in y- direction 

C is the Coulomb interaction in two-dimension given by: 

C = ℏ𝑣
𝑧

  (r1−r2)2
 

Where z= (
𝑒2

4𝜋𝜖ℏ𝑣
) is a dimensionless Coulomb parameter, 

z =1.43 for graphene on quartz substrate [23]. 
The four-component wave function describes this system 

given by: 

𝜓 =  𝜓𝐴
 𝑘 , 𝜓𝐵

 𝑘 , −𝜓𝐴

 𝑘 ′  
, −𝜓𝐵

 𝑘 ′  
 . 𝑘 ,  𝑘′  related to the 

two valleys in the Brillion zone of graphene,  

The solution of eq. (1) gives an electron wave as: 

|𝜓(𝑥, 𝑦) >=
1

 𝑤𝐿
 
γ𝛼ⅇ

ⅈq𝑛 𝑥

γ𝛼ⅇ
−ⅈq𝑛 𝑥

 Cos[kLy]       (3) 

𝛼 = A, B refer to the two components of the pseudospin. 

The basis vectors for the two-component pseudo spinor are: 

γ𝐴 =  1
0
   

γ𝐵 =  0
1
   

The total wave function of coupled electrons must be 

anti-symmetric can be written as the product of the spatial 

wave function and the corresponding two-particle spinor for 

the singlet (triplet) state. 

|𝛷𝑠 𝑡 〉 =
1

 2 1±𝑠2 
(|𝜓𝐿𝜓𝑅〉 ± |𝜓𝑅𝜓𝐿〉)      (4) 

𝜓𝐿/𝑅  denotes a four-component single-particle wave 

function located at the left (right) quantum dot, and S 

=〈 𝜓𝐿  |𝜓𝑅〉, which is the overlap between them. 

Diagonalizable of S yield: 

〈𝛷𝑠 𝑡 |𝑆|𝛷𝑠 𝑡 〉 = 〈𝜓𝐿|𝜓𝐿〉〈𝜓𝑅|𝜓𝑅〉 ± 〈𝜓𝐿|𝜓𝑅〉〈𝜓𝑅|𝜓𝐿〉 (5) 

To evaluate the exchange coupling 𝐽𝑒𝑥 =ET -ES from the 

Schrodinger equation: 

𝐸𝑆 𝑇 = 〈𝛷𝑠 𝑡  ℋ 𝛷𝑠 𝑡 〉/〈𝛷𝑠 𝑡 |𝑆|𝛷𝑠 𝑡 〉       (6) 

From Eq. (1), (4) and (6) we can solve 𝐽𝑒𝑥  analytical and 

result: 

𝐽𝑒𝑥 =
〈𝛷𝑡  ℋ 𝛷t 〉

〈𝛷t  𝑆 𝛷t 〉
−

〈𝛷s  ℋ 𝛷s 〉

〈𝛷s |𝑆|𝛷s 〉
                   (7) 

𝐽𝑒𝑥 =  [〈𝜓𝑅 𝜓𝑅〉〈𝜓𝐿 ℋⅈ 𝜓𝐿〉 〈𝜓𝑅 𝜓𝑅〉〈𝜓𝐿 𝜓𝐿〉 −
〈𝜓𝐿 𝜓𝑅〉〈𝜓𝑅 𝜓𝐿〉 

2 +
〈𝜓𝐿 𝜓𝐿〉〈𝜓𝑅 ℋⅈ 𝜓𝑅〉 〈𝜓𝑅 𝜓𝑅〉〈𝜓𝐿 𝜓𝐿〉 −
〈𝜓𝐿 𝜓𝑅〉〈𝜓𝑅 𝜓𝐿〉 

2  − 〈𝜓𝐿 ℋⅈ 𝜓𝑅〉〈𝜓𝑅 𝜓𝐿〉 −
〈𝜓𝐿 𝜓𝑅〉 〈𝜓𝑅 ℋⅈ 𝜓𝐿〉  +
〈𝜓𝑅 c 𝜓𝑅〉 〈𝜓𝐿|𝜓𝐿〉 〈𝜓𝑅 𝜓𝑅〉〈𝜓𝐿 𝜓𝐿〉 −
〈𝜓𝐿 𝜓𝑅〉〈𝜓𝑅 𝜓𝐿〉 

2 − 〈𝜓𝐿 c 𝜓𝑅〉〈𝜓𝑅|𝜓𝐿〉]/𝑞0(1 −
(〈𝜓𝐿 𝜓𝐿〉〈𝜓𝑅 𝜓𝑅〉 − 〈𝜓𝐿 𝜓𝑅〉〈𝜓𝑅 𝜓𝐿〉)

4)       (8) 

3. Results 

a) The effect of barrier height Ω𝒃 on exchange coupling 

Jex 

We represent the ribbon of width W= 0.4 𝑞0
-1 and its 

length L= 16  𝑞0
-1, the length of the dot is l= 4 𝑞0

-1, where 

q0= 1/20 (nm)-1. 

 

Figure (2).  The exchange coupling 𝑱𝒆𝒙 (ℏ𝐯𝒒𝟎) as a function of barrier 

height Ω𝒃 (ℏ𝐯𝒒𝟎) at l= 4 q0
-1, q0=1/20 (nm)-1 and d=2 q0

-1 (solid line), 

d=4 q0
-1 (dot line) 

We examine the change of exchange coupling at different 

barrier heights between two electrons in the double 

quantum dot. Using equation (8), we found that at small 

barrier height, for barrier thickness d=2 q0
-1 fig. (2-dot line) 

The exchange coupling Jex starting as a positive value, 

reaches to maximum value ≈0.0035 ℏv𝑞0, and as the barrier 

height increase, Jex decrease and change its sign to negative. 

For d=4 q0
-1 fig. (2-solid line) The exchange coupling is 

always negative for small and large barrier height. For small 

barrier height and small barrier thickness, the system 

behaves like a single quantum dot and coupling between 

electrons in a strong favored singlet state with positive Jex. 

As the potential increase or as large barrier thickness d, the 

double quantum dot becomes dominant and we see negative 

Jex according to transition from singlet to triplet, The 

transition from antiferromagnetic (J > 0) to ferromagnetic  

(J < 0), at ≈1 ℏv𝑞0. The value of Jex for short and long d   

is nearly close to each other as the barrier height reaches   

the value GNB ≈ 2 ℏv𝑞0. this phenomenon is a special 

character for GNB whereas the barrier is high the Klien 

tunneling occurs. The same result is obtained if we change 

the length of dots l=2 q0
-1 at barrier thickness d=1.2 q0

-1 and 
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d=2 q0
-1 fig. (3). 

 

Figure (3).  The exchange coupling 𝑱𝒆𝒙 (ℏ𝐯𝒒𝟎) as a function of barrier 

height Ω𝒃 (ℏ𝐯𝒒𝟎) at l= 2 q0
-1, q0=1/20 (nm)-1 and d=1.2 q0

-1 (solid line), 

d=2 q0
-1 (dot line) 

b) The effect of inter-dot distance d on exchange 

interaction Jex 

Now we study the effect of inter-dot distance or barrier 

distance on exchange coupling. For potential height 

Ω𝒃=0 ℏvq0 at l=4q0
-1 fig. (4-blue dot line) The exchange 

coupling Jex started positively at about 0.0002 ℏvq0 then 

decrease and change its sign into negative at d ≈ 4q0
-1 

corresponding to a transition from singlet to the triplet state. 

For small distance d, the system considers as a single dot 

and two electrons arranged in the singlet state. As the 

inter-distance increase, the double dot system dominant and 

triplet state exists. For barrier height greater than Ω𝒃=1 

(critical value) fig. (4) (red and green); the exchange 

interaction always negative, and the value of Jex increase 

first as d increase until reaching the critical value of d; 

about 4 q0
-1; then start to decrease again. The value of Jex for 

Ω𝒃=1.95 ℏvq0 is greater in the negative direction than that 

for  Ω𝒃=1.3 ℏvq0, for triplet state, this may be related to 

Klein tunneling properties in graphene. 

 
Figure (4).  The exchange coupling 𝑱𝒆𝒙 (ℏv𝑞0) as a function of inter- dot 

distance d (q0
-1) at l= 4 q0

-1, q0=1/20 (nm)-1 for Ω𝒃=0  ℏvq0 (blue), 

Ω𝒃=1.3 ℏvq0 (red), and for Ω𝒃=1.95 ℏvq0 (green) 

c) The effect of confining length L on exchange 

interaction Jex 

Fig. (5) Show a relation between exchange coupling Jex 

and the dot length l for various barrier heights Ω𝑏  with d= 

5q0
-1. For barrier height greater than the critical value, the 

figure represents a negative value of Jex according to triplet 

state and Jex increase exponential as the dot length increase 

but the minimum value of Jex is greater for Ω𝒃 =1.95 ℏvq0
 

than that for Ω𝒃=1.3 ℏvq0 where overlap between wave 

functions of electrons increases by Klein tunneling of Dirac 

particle this gives a special character for a qubit in GNB 

than qubit in other systems [21]. 

  

Figure (5).  The exchange coupling 𝑱𝒆𝒙 (ℏv𝑞0)  as a function of 

confining length l (q0
-1) at d= 5 q0

-1, q0=1/20 (nm)-1 for Ω𝒃=0 ℏvq0 (blue), 

(Ω𝒃=1.3 ℏvq0 (red), and Ω𝒃=1.95 ℏvq0 (green) 

The gate operation: 

The formation of quantum gate is achieved through 

Turning on tunneling for time t between the spins of two 

electrons represented by Hamiltonians 

ℋ𝑆(𝑡) = 𝐽𝑒𝑥 (𝑡)𝑆1. 𝑆2 

The exchange interaction allows representing the unitary 

time evolution between the 1-th and 2-th spins with the 

operator:  𝑈12(𝑡) = ⅇ−ⅈtℋ𝑠(𝑡) ℏ , corresponding to the 

"swap" operator. The combination of this gate with one qubit 

rotation gate obtain a universal quantum gate UXOR which 

can use for programming any desired quantum computation. 

Thus the calculation of quantum XOR can be reduced by 

calculation of exchange coupling Jex(t) and how can be 

controlled experimentally using external parameter [22]. 

4. Conclusions 

As we Show; we have introduced a theoretical model  of 

the double qubits on the GNB quantum dot, we solve the 

Dirac equation for the model and get the exchange 

interaction Jex between two qubits. We have examined the 

value of Jex at different parameters such as barrier height 

between double quantum dot, barrier thickness, and dot 

width to study the effect of each one on Jex. The results 

represent a transition of exchange interaction from singlet to 

triplet state by increasing barrier height between double 

quantum dots as in fig. (2) and (3). This transition can also 

get under the effect of barrier thickness figure (4-blue dot 

line). This transition we can use to transfer information in 

quantum computers. The transfer of information is an 

essential step for computation. Also, we get the maximum 

value of Jex≈ 0.0035 ℏvq0 ≈ 0.11515 meV which is greater 

than that of GaAs [23,24] (in GaAs is around 0.1 mV) and 

exceed the value of Jex in other models. The corresponding 
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value of switching time is about τs =πℏ/ Jex [6] ≈.018ns. 

The validity of the quantum gate comes from the long 

coherence time to switching time. Since the coherence time 

for graphene is greater than that for GaAs [22,25] and we 

get the smallest value of τs, so we found that the graphene 

qubit is better than that of GaAs. This factor is a 

fundamental condition for working a spin as a qubit. 
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