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Abstract  It has been a long-standing goal in physics to present a physical model that may be used to describe and 

correlate the physical constants. We demonstrate, this is achieved by describing phenomena in terms of Planck Units and 

introducing a new concept, counts of Planck Units. Thus, we express the existing laws of classical mechanics in terms of units 

and counts of units to demonstrate that the physical constants may be expressed using only these terms. But this is not just a 

nomenclature substitution. With this approach we demonstrate that the constants and the laws of nature may be described 

with just the count terms or just the dimensional unit terms. Moreover, we demonstrate that there are three frames of reference 

important to observation. And with these principles we resolve the relation of the physical constants. And we resolve the SI 

values for the physical constants. Notably, we resolve the relation between gravitation and electromagnetism. 
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1. Introduction 

We present expressions, their calculation and the 

corresponding CODATA [1,2] values in Table 1. 

Calculations start with measurement of the magnetic 

constant. Along with defined values, this provides a 

CODATA value for the fine structure constant 

7.2973525693 10-3 which may be considered a physically 

significant guide for the remainder of the calculations. The 

count distance nLr=84.6005456998 corresponding to 

blackbody radiation may be resolved with twelve digits of 

physical significance knowing its approximate count nLr=84 

of lf. The value of lf is not needed in that the value of      

nLr is a mathematical property of discrete counts. The 

product, QLnLr is calculated using the Pythagorean Theorem 

QL=(1+nLr
2)1/2-nLr. Such that QL+nLr describes the 

hypotenuse of a right-angle triangle of sides nLr=1 and some 

count nLr of the reference lf, then QLnLr=0.49998253642 and 

with this we can resolve θsi kg m s-1. θsi also describes the 

angle of polarization with respect to the plane of entangled 

X-Rays [3] and has no units when describing properties of 

the universe. With θsi, the defined value for c and the 

fundamental expression lfmf=2θsitf – resolved from Planck’s 

Unit expressions [6] – we resolve fundamental mass mf   

and the Planck form of the inverse fine structure constant 

αp
−1. Using Planck’s expression along with measures for the 
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ground state orbital a0 and mass of an electron me – both 

measures from the 2018 CODATA – we resolve 

fundamental length lf. And we continue with the resolution of 

the gravitational constant G, Planck’s reduced constant ħ  

and those values typically resolved with ΛCDM. The 

electromagnetic constants involve several concepts and will 

be discussed later. 

Notably, the fundamental expression is provided without 

explanation. The difference between the Planck and 

electromagnetic descriptions of the fine structure constant 

are not discussed. Our goal, initially, is to demonstrate    

the approach. The formulation, physical significance and 

explanation of each expression is the purpose of this paper. 

Of the many descriptions of phenomena, it may come as a 

surprise that there are few expressions that describe discrete 

behavior as a count of some fundamental measure [4]. 

Perhaps one of the first and most notable is Planck’s 

expression for energy, E=nhv. That said, the property of 

discreteness exists with respect to several phenomena (i.e., 

those radii that identify orbits where there is a highest mean 

probability of electrons being fundamental to atomic theory). 

In that we describe phenomena mathematically in relative 

terms, it follows that the property of discreteness carried 

within such expressions is disguised beneath the 

macroscopic definitions that make up much of classical 

mechanics. 

In this paper, we reduce the classical nomenclature to a 

more fundamental set of terms that incorporates a description 

of discreteness. We accomplish this by taking the existing 

classical nomenclature and incorporating the concept of 

counts of fundamental measures to accommodate the 
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possibility of discrete measure. However, measure is not to 

be assumed countable or discrete. As such, we refrain from 

introducing biases, provide an accommodating nomenclature 

and then apply that nomenclature to existing phenomena to 

learn if there exists a physically significant correspondence. 

Table 1.  CODATA and MQ expressions for the physical constants 

Expressions 
Values 

CODATA [1] MQ 

θsi=(1/84)((1/2QLnLrαc) + 137)) 3.26239 kg m s-1 * 3.2623903039 kg m s-1 

mf=2θsi/c 2.176434 10-8 kg † 2.1764325398 10-8 kg 

αp
−1=84θsi - RND(42θsi) 137.04077 ‡ 137.04078553 

lf= mea0αp/mf 1.616255 10-35 m † 1.6161999121 10-35 m 

tf=lf/c 5.391247 10-44 s † 5.3910626133 10-44 s 

G=c2lf/mf 6.67408 10-11 m3 kg-1 s-2 † 6.6740779430 10-11 m3 kg-1 s-2 

ħ: (ħ/θsilf)
2-2(ħ/θsilf)=(1/nLr)

2 1.054571817 10-34 Js ‡ 1.0545719462 10-34 Js 

Ωdkm=(θsi-2)/(θsi+2) (dark energy) 68.3% § 68.362416104% 

Ωobs=4/(θsi+2) 31.6% § 31.637583896% 

Ωvis= Ωobs/2θsi 4.8% § 4.8488348953% 

Ωuobs= Ωobs-Ωvis (dark matter) 26.8% § 26.788749000% 

* 
Shwartz and Harris measure of theta corresponding to the signal and idler of entangled X-rays [2]. 

† 
2010 CODATA Recommended values [2]. 

‡ 
2018 CODATA Recommended values [1]. 

§ 
Cosmological parameters as published by the Planck Collaboration [4,5]. 

We begin with three notions: Heisenberg’s uncertainty 

principle, the universality of the speed of light, and the 

expression for the escape velocity from a gravitating mass. 

Each describes a bound to measure, respectively a lower 

bound, an upper bound, and a gravitational bound, the latter 

being needed to incorporate the mass bound with respect to 

the prior two. Using the new nomenclature, we identify three 

properties of measure: discreteness, countability, and the 

relationship between the three frames of reference. After 

resolving minimum count values for length, mass, and   

time, we then resolve physically significant values for    

the fundamental measures, matching values in the 2010 

CODATA [2] to six digits. Importantly, we learn that 

measure with respect to the observer is discrete, whereas 

measure with respect to the universe is non-discrete. This 

difference allows us to resolve the constants and the laws of 

nature. 

We identify this presentation as the Informativity 

approach – a term that describes the application of 

measurement quantization (MQ) to the description of 

phenomena. The nomenclature we call MQ. There are 

several papers that apply MQ to describe phenomena in 

disciplines such as: quantum mechanics, classical mechanics 

(including gravity, optics, motion, electromagnetism, 

relativity), and cosmology [7–11]. Nevertheless, a discussion 

of the physical constants is prerequisite to a thorough 

understanding of MQ. For that purpose, the first half of this 

paper is a review of concepts established in prior papers 

[10,11]. 

Foremost, we introduce a consequence of discrete length; 

discrete units of length limit the precision with which objects 

can be measured relatively. Importantly, the property of 

discreteness is not only intrinsic to measure but also to the 

laws that describe what we measure. The methods section 

focuses on correlating this to expressions that describe 

nature. 

Moving forward, we describe how discrete measure skews 

the measure of length, an effect like that of Special Relativity 

(SR). Not accounting for this effect reduces the precision of 

expressions, especially those that include Planck’s constant. 

It is for this reason that the Planck Units have largely been 

considered coincidental and without physical significance. 

Once completing the expressions for the fundamental 

measures, their relationship, and a quantum interpretation of 

gravity, we commence Section 3 describing the fundamental 

constants resolving their values and physical significance 

using only the MQ nomenclature (i.e., lf, mf, tf, and θsi). It is 

here that we part with the self-referencing definitions that 

have deadlocked modern theory. Specifically, we redefine 

the physical constants not as functions of one another (i.e.,  

ɛ0=1/μ0c
2) [1], but as functions of the fundamental measures. 

Several examples include elementary charge, the electric and 

magnetic constants, Coulomb’s constant, the fine structure 

constant, and the gravitational constant. 

With new definitions for gravitation and 

electromagnetism written in a shared and physically distinct 

nomenclature, we establish a physical reference with which 

to resolve what differentiates them. There are five 

expressions that describe their difference: two describe an 

observational skew in measure, one describes the fine 

structure constant as a count while another describes 

elementary charge using only fundamental units. The final 

term – a mathematical constant – describes what separates 

the energy of a particle from a wave. Although described 

entirely as a function of mathematical constants, the 

particle/wave duality is difficult to physically ascertain. The 

correlation, we admit, lacks the purity of classical concepts 

such as distance, velocity, and elapsed time. 
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From a broader perspective, the correspondence between 

geometry and physical expression becomes even more 

important. Its correspondence arises in so many expressions 

that we feel compelled to identify such descriptions as 

consistent with the phrase, ‘the metric approach’, short   

for geometric or a consequence of the geometry of a 

phenomenon. We do not mean to emphasize the 

mathematical properties of this correspondence as to say that 

such properties follow the same consistency as that of SR. In 

this light, we present physical constants, such as the fine 

structure constant and Planck’s reduced constant as counts of 

one fundamental measure. Importantly, the metric approach 

is not distinct from classical mechanics. Nevertheless, many 

of the physical constants are described as counts of one 

fundamental constant to be discussed at the outset in Section 

2.5. 

Finally, using MQ to describe the physical constants 

resolves several discrepancies between classical theory and 

measurement. For one, the precision limits of Planck’s unit 

expressions are resolved. Furthermore, disagreement 

between Planck’s expression for the ground state orbital of 

an atom and that of electromagnetic theory is resolved. 

Disagreement between Newton’s expression for gravitation 

and an MQ description of quantum gravity is resolved.  

Issues with singularities in classical theory are resolved.  

The physical significance of the fine structure constant     

is resolved. Physically independent definitions of the 

electromagnetic constants are resolved. A shared physical 

foundation for the unification of gravity and 

electromagnetism is resolved. The gravitational constant is 

resolved as a function of the magnetic constant to eleven 

significant digits. Additionally, several notable insights 

afforded by MQ are presented. Most importantly though, the 

solutions do not just provide six to eleven-digit 

correspondence to measurement, but a comprehensive 

physical description using the most fundamental tenants of 

classical theory. 

1.1. Theoretical Landscape 

The first observations regarding a formalism of physically 

significant units were published by George Stoney in 1881 

with respect to experiments concerning electric charge [12]. 

There did not exist a specific nomenclature with which to 

conveniently describe the phenomena. Thus, Stoney derived 

new units of length, mass, and time normalized to the 

existing constants G, c, and e. These units later became 

known as Stoney units. However, little more was discovered 

for the two decades that followed. 

In 1899, discrete phenomena became important. It was 

then that Max Planck submitted his paper regarding 

observations of quantization with respect to blackbody 

radiation [6]. Moreover, he resolved a new constant of nature, 

which he later identified as a ‘quantum of action’. Today, 

this is known as Planck’s constant and is denoted with the 

symbol h. A factor of this behavior also appeared as h/2π, 

later to be assigned the symbol ħ. With an understanding of c, 

G, and ħ, Planck was able to derive expressions for length, 

mass, and time with values in SI units. They are widely 

recognized today as Planck Units. Notably, Planck Units 

differ from Stoney units by a factor of α1/2 as a result of their 

transformation αħc↔e2/4πε0. 

Unfortunately, a clear physical correlation between the 

Planck Units and observed phenomena did not exist. 

Expressions using Planck Units corresponded to 

measurements of three digits at best. Moreover, the values 

for length, mass, and time were too small (e.g., the Planck 

time) or too large (e.g., the Planck mass) to correspond to the 

phenomena being measured. Over time, the Planck Units 

were largely relegated to the status of a legitimate discipline 

without a known physical significance. This said, Planck 

Units are still taught and used in specific branches of modern 

theory (i.e., superstring theory and supergravity) because of 

their consistency regarding many phenomena. 

In the century since, we find ourselves still divided by the 

physical constants, which are so commonly used in classical 

mechanics and the corresponding Planck descriptions,  

which in rare but specific cases carry a count term thereby 

recognizing the countability of phenomena. The most 

notable and well-understood example relates to Planck’s 

initial observations of blackbody radiation whereby he 

published his expression for energy, E=nhv, n representing 

the count term for Planck’s ‘quantum of action’ [6]. 

To break the deadlock, we skip forward to the present and 

ask an interesting but seemingly straight-forward question. Is 

it the phenomenon or the measure of the phenomenon that is 

quantized? 

The question is interesting as the phenomenon of 

quantization has always been regarded as quantum both 

physically and in measure. To explore this further, we 

consider that we have discovered a box of pencils. First, we 

ask how we know they are pencils? The only answer to this is 

that there exists a reference pencil against which we have 

identified the phenomenon of a pencil and labelled it as such. 

We recognize that pencils are physically divisible, but for 

this thought experiment, we also recognize that the measure 

of a pencil is bounded and as such indivisible. 

To test our conjecture, we take the pencils from the box 

and place them on the desk. Our objective is to measure the 

phenomenon that is “pencil”. Having completed this 

measure, we divide the pencils into two equal stacks and 

measure again. Unfortunately, we are unable to evenly 

divide the stack. We theorize that one stack has an even 

count of pencils and the other odd. To test the conjecture, we 

proceed to divide each stack again. The process is a success 

with an even count stack but cannot be achieved with an odd 

count stack. The experiment may be repeated with the same 

result; the odd count stack cannot be divided. Why, because 

there exists no definition for half a reference and this is the 

physical significance of a quantized phenomenon. 

We could look at other means of measure and perhaps 

achieve some form of a division with respect to a different 

dimension, but if our definition of ‘pencil’ is indeed natural, 

that being the most fundamental of measures, then it is not 

possible to measure a fractional count of the reference 
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phenomenon. Consistently, we find our efforts foiled such 

that the measure of the last pencil ends up in one stack or the 

other. 

There does exist one remaining concern. Thus far, we 

present only the notion that we cannot measure a target 

smaller than a natural unit. Nevertheless, can a target be 

smaller than a natural unit? Particles are in fact smaller than 

the Planck mass. Indeed, we may certainly describe a length 

smaller than the Planck length. Therefore, we ask the reader 

to entertain the idea that what exists and what is measured 

are physically different and that difference describes a 

physically important property of nature. 

This property will be resolved in its entirety but doing so 

requires a careful presentation of physical clues, one built 

upon the next. With that in mind, we begin Section 2. 

2. Methods 

2.1. Considerations for a New Approach 

Before we express the physical constants, we must resolve 

values for the fundamental measures. Historically, these 

have been described using Planck expressions [6]. For 

evaluations, we used the 2010 CODATA for comparison of 

most calculations [2]. Once we have resolved the properties 

of measure, it will be better understood why the 2010 

methods used to resolve Planck Units are physically more 

significant. Planck’s expressions [2] are 

1/2
35

3
1.616199 10 m

c
p

G
l  

  
 

,      (1) 

1/2
44

5
5.39106 10 s

c
p

G
t  

  
 

,       (2) 

1/2
8c

2.1765110 kgpm
G

 
  
 

.      (3) 

While the expressions serve as a reasonably accurate 

guide, they will not suffice for our purposes. For instance, if 

we present the expression for Planck time such that the 

remaining values are supplied using the 2010 CODATA, we 

resolve a value for G such that 

   
2 5442 5

34

5.39106 10 299792458c

1.054571817 10

pt
G




  , (4) 

11 3 1 26.67385 10 m kg sG    .           (5) 

Similarly, with respect to length, then 

G=lp
2c3/ħ=6.67385×10−11 m3kg−1s−2 and with respect to  

mass G=ħc/mp
2=6.67431×10−11 m3kg−1s−2. All three    

values disagree with the 2010 CODATA value for 

G=6.67408×10−11 m3 kg−1 s−2. Is this a misunderstood 

geometry, new physics, or inaccuracies in measurement 

precision? Perhaps, but also consider that ((6.67431 + 

6.67385)/2 = 6.67408)×10−11 m3 kg−1 s−2. Considering a 6σ 

correlation, geometry invites further consideration. 

A second and equally important issue relates to the 

existing classical nomenclature with which we describe 

nature (i.e., length, mass, time, energy, charge). Modern 

nomenclature does not easily accommodate descriptions of 

discrete phenomena. Yes, there exists a means with which  

to resolve or at least conjecture discrete values associated 

with a phenomenon, but a nomenclature that includes an 

independent set of discrete terms separate from the reference 

measures may be more successful. 

To succeed in this endeavor requires new tools with  

which to describe measure. In addition to resolving an 

understanding of the measurement discrepancy presented 

above, we need an expression that correlates the three 

measures—lf, mf and tf—without inclusion of the physical 

constants. We must identify the properties of measure. 

Moreover, we must understand why those properties exist 

and under what circumstances they are immutable or 

skewed. 

Note that working with dimensionless count terms also 

carries limitations [13,14] or at least physically significant 

rules of use. Specifically, they present an inability to: 

  resolve a physical quantity if there are more than three 

dependent variables, 

  derive a logarithmic or exponential relation, 

  resolve whether a term involves derivatives, 

  distinguish a scalar from a vector, and 

  verify dimensions given two or more dimensionless 

terms. 

The first three are restrictions on use, but in no way lessen 

the physical significance of MQ descriptions. Yes, use of the 

dimensionally correlated count terms of MQ are restricted to 

basic operations: addition, subtraction, multiplication and 

division. Nonetheless, this is rarely an issue with respect to 

describing most classical phenomena. 

The latter two limitations are cause for concern especially 

when working with dimensionless values such as the fine 

structure constant. Fortunately, the count terms used in MQ 

differ from the traditional definition of a dimensionless value; 

each count is dimensionally bound to a measure: nL to length, 

nM to mass and nT to time. Moreover, unlike a dimensionless 

value, MQ count terms may not be combined (i.e., nLnM≠n2). 

Finally, each count term is, in definition, correlated to its 

dimensional counterpart: l=nLlf, m=nMmf, and t=nTtf. While 

attention must be given to avoid expressions that are 

dimensionally ambiguous, rarely do the issues typical of 

dimensionless values become physically significant in MQ. 

2.2. Physical Significance of Measure 

Before we begin, we must distinguish the fundamental 

measures of MQ from those of Planck. A subscript p is used 

to specify Planck units, whereas a subscript f is used for the 

fundamental measures, specifically, lf for length, mf for mass 

and tf for time. In that we have not resolved the fundamental 

measures, we use Planck Units as a guide. The arguments 

and expressions are to be considered as such until the 
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properties of measure and the values of the fundamental 

measures are resolved. 

Beginning with our understanding of light and 

Heisenberg’s expression for uncertainty [15,16], we resolve 

both counts and values for each measure. The speed of light 

is described as a count nL of length units lp divided by a count 

nT of time units tp, then c=nLlp/nTtp such that 

L Tn n .                    (6) 

Using c=lp/tp and Planck’s expressions for length and mass, 

we also resolve that the product of their squares is 

2 2

3 2

2c

c c
p p

G
l m

G
  ,             (7) 

2

c
p p

p p
p

l m
l m

t
  .               (8) 

Finally, using Heisenberg’s expression [16] to describe 

the uncertainty associated with the position σX and 

momentum σP of a particle, 

2
X P   ,                  (9) 

we can resolve physically significant values for nL, nM, and 

nT. We begin by clarifying how we intend to use 

Heisenberg’s expression to achieve our goal. This involves 

identifying the physical properties of uncertainty we intend 

to isolate. 

The uncertainty principle asserts a limit to the precision 

with which certain canonically conjugate pairs of particle 

properties can be known. However, this differs from our goal 

of resolving the certain minimum measurements of a particle 

at the threshold, ħ/2. Therefore, we introduce a special case 

of the use of variances. 

Although the expression for variance is usually written  

to describe the certain properties of many targets, we  

modify this usage to describe the certain properties of  

many measurements whereby the measurement, whether 

applicable or physically significant, is uncertain. With this, 

we then consider the solution for only the minimum count 

values for length, mass, and time such that the conjugate pair 

is equal to the threshold at ħ/2; that is, 

   
22

1 1

2

N N

i i
i i

X X P P

N N

 

 



  .      (10) 

To the extent that the minimal count N is reducible to a 

certain measure describing a single particle, we consider 

measures at N=1. The variance terms for position and 

momentum reduce such that there is a certain length 

l=((Xi−𝑋 )2/1)1/2 corresponding to the variance in X and a 

certain momentum mv=((Pi−𝑃 )2/1)1/2 corresponding to the 

variance in P. We write each term in the MQ nomenclature, 

i.e., l=nLrlp and mv=ml/t=nMmp(nLlp/nTtp). Note also that the 

count nL for the change in velocity is distinct from the 

position count nLr, the latter describing the distance between 

the observer and the particle. We have 

 
2

2

2

L p
Lr p M p

T p

n l
n l n m

n t

 
 

 
 

.       (11) 

With these constraints, it follows that the minimum count 

values at the threshold ħ/2 correspond to a minimum distance 

nLrlp and a momentum comprising a minimum mass nMmp, a 

minimum length nLlp and a minimum time nTtp. Replacing 

the value of ħ with the result from Eq. (8), we then have 

2

( )
2

L p p p
Lr p M p

T p p

n l l m
n l n m

n t t

 
 

 
 

,         (12) 

2 Lr M L Tn n n n .                    (13) 

Identifying two additional conditions, we may constrain 

the expression sufficiently to resolve the count values for 

each dimension. We begin with a description of G using the 

expression for escape velocity. 

1/21/2 22 M f

L f

Gn mGM
v

r n l

  
         

,        (14) 

Such that v=nLlf/nTtf, given that nL=nT=1 (Eq. 6) and 

nM=1/2 (Eq. B7), we resolve that 

2 2

2 2

2L f M f

L fT f

n l Gn m

n ln t
 ,                  (15) 

3 3 3 3

2 2 2 3

1L f f p p

f pf T f f p

n l l l t
G

m mm n t t t

  
     

    

.   (16) 

To resolve the second condition, we return to the 

expression for escape velocity, again reducing the expression 

to Planck units and/or counts of those units. Such that r=nLrlp 

and M=nMmp and where we consider G at the bound v=c, then 

1/2
2GM

v
r

 
  
 

,                (17) 

3
2

3

2
c

p p
M p

Lr p pp

l t
n m

n l mt

 
 
 
 

,          (18) 

2Lr Mn n .                  (19) 

Given 2nLrnMnL=nT (Eq. 13) and nL=nT (Eq. 6), then 

2 1Lr Mn n  .                 (20) 

Then, as expected, with nLr=2nM (Eq. 19), we find 

 2 2 1M Mn n  ,              (21) 

2 1

4
Mn  ,                    (22) 

1

2
Mn  .                    (23) 
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We may continue the reduction given nL=nT (Eq. 6) and 

2nLrnMnL=nT (Eq. 13), whence we obtain 

1
2

2
Lr L Tn n n ,              (24) 

1T
Lr

L

n
n

n
  .                (25) 

Along with nL=nT (Eq. 6) and such that nL and nLr describe 

the phenomenon of length, then 

1Lr L Tn n n   .            (26) 

Thus, we recognize with the observation that 

O1: There are physically significant fundamental units of 

measure: length, mass, and time. 

That is, there is a physically significant lower threshold to 

measure as described by the resolved counts. The measures 

do not imply that a phenomenon may not be less than a 

minimum. Rather, a length or elapsed time less than lp and tp 

may not be measured with greater precision. Notably, mp is a 

composite of the length and time, an important count but not 

a minimum measure. Moreover, the above calculations do 

not imply that measure is discrete or countable. Resolving 

these properties requires further analysis. 

2.3. Discreteness of Measure 

We now entertain measures larger than the bounds 

identified in the prior section. Again, as before, we describe 

measure as a count of some fundamental unit of measure, in 

this case, a count of the fundamental unit of length. We also 

expand our analysis to include macroscopic measures (i.e., 

any distance greater than the reference lp). By example, 

consider two sticks, one a length of 5.00 lp and the other a 

length of 5.25 lp. The difference may then be described as 

5.25 5.00 0.25p p pl l l  .        (27) 

Is the result measurable? No. As resolved above, any 

count of the fundamental measure less than 1 cannot be 

measured. Therefore, with respect to the Heisenberg 

uncertainty principle, the gravitational constant, the speed of 

light, and the expression for the escape velocity, this 

difference cannot be measured. This is also to say that all 

macroscopic measures may be observed only as a whole unit 

count of the reference measure. 

While the presentation is extendable, let us clarify with 

another length difference, two sticks such that one is 10.25 lp 

and the other is 5.00 lp, 

10.25 5.00 5.25p p pl l l  .       (28) 

The difference here is physically significant and not 

discrete. To verify this statement though would also require 

that the result be distinguishable from a whole unit count 

equal to five units of the reference. We compare the result 

with a count of 5 lp, 

5.25 5.00 0.25p p pl l l  .       (29) 

We find again that this case is the same as the first. Thus, 

we can conclude that measure is physically significant only 

if a whole unit count of the reference is made. This may be 

summarized with the following observations: 

O2: Fundamental measures are discrete and countable. 

O3: Fundamental measures length and time each define a 

reference. 

We single out fundamental mass as exempt from this 

analysis. Mass is a consequence of our description of length 

and time. It is not a physically significant minimum measure. 

By example, one may resolve an expression for length 

starting with the expression for time. This arises in all 

physical descriptions of either dimension by definition of 

their measure (i.e., divide lp by c to get tp). Conversely, one 

may not resolve a value for length or time starting with the 

expression for mass. The realization that G=lf
3/tf

2mf is a 

consequence of the observation that the measure of G is 

coincident with this relation. To use that realization to 

establish physical significance is circular. 

2.4. Measurement Frameworks 

As established to this point, we recognize that measure is a 

property of references. With respect to this observation, we 

can then consider that the universe may be described as a 

space, time and mass. Locations in that space represent 

places of observing mass in elapsed time. And with respect 

to every place the visible motion may not exceed c.  

In that the rate of visible motion from all places is defined 

by the maximum c, we also recognize that the classical 

definition of a universe as a physically significant frame can 

have no external reference. Importantly, we then observe that 

measure with respect to the universe (i.e. with respect to the 

space) must be non-discrete. 

The observation brings to our attention a big picture view 

of measure, non-discrete with respect to the universe yet 

discrete relatively between objects. It is for this reason we 

describe measure with respect to the universe using a 

self-defining frame of reference. We describe measure 

relatively between phenomena using a self-referencing 

frame of reference. Distinguishing the properties of measure 

and how we describe measure enables a clearer description 

of phenomena. 

In working through various examples, we demonstrate 

that it is the difference between these two frames of reference 

that give rise to many, if not all, of the constants and laws of 

nature. If it were possible to reference points external to the 

universe, there would exist no differential between two 

frameworks and many of the observed behaviors of nature 

would not exist. With these observations, we observe that 

O4: Measure with respect to the observer is discrete. 

O5: Measure with respect to the universe is non-discrete. 

To demonstrate these observations with a mathematical 

description applicable to an observable phenomenon, we 

propose an experiment that may be described by each of 

three frameworks. A frame describing measure with respect 
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to the universe carries the property of non-discreteness. The 

remaining two carry the property of discreteness. The 

experiment also abides by two design prerequisites. We 

introduce no additional measures, such as angles, and at 

every instant in time, the observer must have access to all 

available information. 

Using the standard understanding of a Cartesian 

coordinate system, we illustrate the three frameworks in Fig. 

1. With respect to the different origins of information (i.e., 

the frameworks), we then recognize the differences in the 

discreteness of measure. The three frameworks are: 

  Reference Framework—This is the framework of the 

observer where properties of the reference 𝐴𝐵     are observed. 

With respect to the standard understanding, this framework 

differs only in that measure is a count function of discrete 

length measures equal to one. 

  Measurement Framework—This framework shares 

properties with the Reference Framework. It is characterized 

as some known count of the reference describing where 

count properties of the reference 𝐵𝐶     are observed. 

  Target Framework—This framework is characterized 

by the property of measure of non-discreteness, that being 

the framework of the universe that contains the phenomenon 

𝐴𝐶    . 

 

Figure 1.  Count of distance measures along segment 𝐴𝐶     

Although each framework is described with respect to the 

observer’s point-of-view, we also recognize the different 

properties of measure associated with each framework.  

With these constraints, we now address how information 

regarding the count of length measures in the Measurement 

Framework is obtained by the observer relative to the 

Reference Framework. Moreover, we make this presentation 

to establish values for the fundamental measures. As such, 

we will no longer use Planck Units, instead proceeding with 

the terms lf, mf and tf.  

Consider a system of grid points separated with a fixed 

count of lf along the shortest axis. Specifically, there must be 

enough points to form a square such that the length of each 

hypotenuse of the square is also equal. To set up the grid 

initially, we propose that a laser pulse rangefinder is used at 

each point along with the time-of-flight principle to ascertain 

a match to the prescribed requirements. In this way, we 

ascertain that the angular measure at each point is either 

along a line or at 90° except for those points along a 

hypotenuse. The design, as such, does not require that we 

introduce angular measure. Moreover, as all prerequisites are 

agreed prior to setup, the experiment does not initially 

incorporate time. 

Note that there are two discrete frameworks, one in which 

A certifies the length 𝐴𝐵     (the Reference Framework) and 

the other in which C certifies the length 𝐵𝐶     (the 

Measurement Framework). The Target Framework contains 

both A and C for which the unknown length 𝐴𝐶     is a member. 

In this way, all information in the system is defined with only 

the presence of members A and C. 

Using the Pythagorean Theorem such that 𝐴𝐵    =𝐵𝐶    , we 

recognize that 𝐴𝐶    ≈1.414. However, with respect to the 

observer only a discrete reference count may be measured  

of 𝐴𝐶    . It is with this conflict that we conclude that       

the difference 1.414−1.000=0.414 describes a physically 

significant property of the universe. In the section that 

follows, we show that this difference is the phenomenon of 

gravity. 

2.5. Gravity 

Having resolved that measure has a lower threshold and is 

discrete and countable, we now address the physical 

significance of a phenomenon with respect to the discrete 

and non-discrete frames. The three frameworks described in 

Section 2 are represented in Fig. 2. Side a is always the 

reference count 1. Side b is some known count of the 

reference. The hypothenuse of the right-angle triangle Side c 

is then resolved using the Pythagorean Theorem. 

 

Figure 2.  Count of distance measures between an observer and target 

Importantly, as a reference, Side a is prerequisite to any 

count of the reference along Side b to resolve Side c. 

Assigning a count other than 1 to the reference would 

introduce a factor representation (i.e., a=2) of the reference 

for all sides concealing the discrete count properties of the 

described phenomenon. Hence, 

 
1/2

2c 1 Lbn  .             (30) 
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We conjecture that any non-integer count QL of the 

reference along the unknown Side c relates to a change in 

distance. We may describe this as repulsion when rounding 

up or attraction when rounding down. Notably, for all 

solutions, QL is less than half as evident by its largest value 

~0.414 at Sides a=b=1 and therefore attractive. Moreover, 

because Side c always rounds down, we find that nLr=nLb for 

all observations. Thus, for each count nT of fundamental time 

tf, the model describes a count of lf that is closer by 

 
1/2

21L Lc Lb Lb LbQ n n n n     .     (31) 

Because the measure of Side c always rounds down, 

moving forward, we replace the term nLb with nLr. We also 

identify nLr as the ‘observed measure count’. With the loss of 

the remainder QL relative to the whole unit count is QL/nLr, 

we now have an important dimensionless ratio that describes 

gravity. 

We may express this ratio in meters per second squared  

(m s−2) by multiplying by lf for meters and dividing by tf
2 for 

seconds squared. This describes the loss of distance at the 

maximum rate of one sampling every tf seconds per second, 

2

L f

Lr f

Q l

n t
.                 (32) 

When compared with a classical description, we notice 

now that the quantity is scaled. Hence, we introduce the 

scaling constant S, multiplying by c/S to resolve. Notably, c 

describes the rate of increasing space relative to observers in 

all spaces as identified with respect to the classical 

description of the universe. In the following, we will learn 

that the scaling constant S is fundamental to the relation that 

describes the three measures. Such that r=nLrlf and c=lf/tf, 

then 

22 3

2

cc ccL f L fL L

Lr f Lr f fLr f

Q l Q lQ Q

S n t S n l t S rSn t
   ,    (33) 

3

2

cLQ G

rS r
 .               (34) 

The expression describes gravity as the difference 

between the non-discrete measure with respect to the 

universe and the discrete measure of the observer. When 

compared with Newton’s expression G/r2, we see a distance 

between the two curves that is immeasurable, beyond the 

sixth digit of precision for all distances greater than 2,247 lf. 

The curves differ by QLnLr, which describes a skewing of 

measure due to the discreteness of measure, an effect we 

refer to as the Informativity differential. As derived in 

Appendix A, QLnLr approaches 1/2 with increasing distance. 

In Appendix B, we replace S with θsi because of its 

correlation in value to the signal and idler polarization angle 

with respect to the plane of X-rays at maximum quantum 

entanglement [3]. Notably, the term is not a radian for all 

contexts, but the value of θsi=3.26239 is constant for all 

physical contexts. For instance, when the expression for 

mass accretion is written such that Macr=θsi
3mf/2tf ([7], Eqs. 

135 and 136) then θsi is dimensionless, having no units at all 

(note: Macr is a rate kg s−1). Likewise, as expressed in the 

fundamental expression lfmf=2θsitf ([7], Eq. 47), θsi has units 

kg m s−1. As demonstrated in Eq. (B7), θsi has units of radians. 

Each measure of θsi is physically significant and corresponds 

to the measurement data to six significant digits. 

So, why does this constant differ from the other constants 

that we are so familiar with? In part, because the other 

constants are each a composite of this constant and in    

part because this constant is a composite of all three 

dimensions θsi=lfmf/2tf. The units carried by θsi depend on the 

phenomenon and the selected frame. Described with respect 

to the Measurement Frame, θsi usually carries the units of 

momentum. Described with respect to the Target Frame of 

the universe, θsi carries no units. For specific descriptions 

with respect to electromagnetic phenomena, θsi carries the 

units of radians. Examples are presented throughout the 

paper, but for nearly all cases, θsi is defined with respect    

to either the Measurement (kg m s−1) or the Target 

(dimensionless) frame. 

2.6. Fundamental Measures 

With a quantum definition for gravity, we can now resolve 

the simplest relation that describes the fundamental measures. 

This approach is sensitive to the skewing effects of discrete 

measure and as such we cannot use the measure of ħ, a 

quantum property resolved where the effects described by 

the Informativity differential (Appendix A) are significant. 

Conversely, use of the measures of c and G are acceptable. 

Note also that the units for θsi are kilogram meters per second. 

As described in Appendix C, we then have: 

11
35

3 3

2 2 6.67408 10 3.26239
1.61620 10 m

c (299792458)

si
f

G
l

 
   , 

(35) 

11
44

4 4

2 2 6.67408 10 3.26239
5.39106 10 s

c c (299792458)

f si
f

l G
t

 
    , 

(36) 

3
82 2 3.26239c

2.17643 10 kg
c 299792458

si
f fm t

G

     .  (37) 

We may approach a solution to the fundamental 

expression—the simplest expression that relates the three 

measures—in two ways. One is we may replace G given that 

G=c3tf/mf (Eq. 16); the other is we may solve for G using the 

expressions for lf and mf, then set them equal and reduce. 

That is, 

2L f M f si T fn l n m n t ,          (38) 

2f f si fl m t .                (39) 

Here, all counts in Eq. (38) are notably equal to a value of 

one. This differs from their minimum values as well as the 

count for mass, nM=1/2 (Eq. 23). Explicitly, the fundamental 
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expression is not a description of the lower count bound of 

each dimension. Moreover, in MQ, we often ignore the 

Informativity differential and instead replace QLnLr with its 

macroscopic limit of ½  as described in Appendix A. The 

more precise expression, which we refer to as the expanded 

form, is 

si f
f f

L Lr

t
l m

Q n


 .              (40) 

As such, many MQ expressions are affected by the 

Informativity differential, each having expanded 

counterparts. Although the calculation does involve several 

steps, it is required when describing quantum phenomena, 

especially phenomena less than 2,247lf. 

2.7. Physically Significant Discrepancies with ħ 

Expressions that use measures, both macroscopic and 

quantum, have limited precision because of the Informativity 

differential. In this section, we explore those effects as they 

apply to the measures of G and ħ. This was demonstrated in 

(Eqs. 4 and 5) where the resolution of the gravitational 

constant using Planck’s expression for time presented a 

discrepancy in the fourth significant digit, a value of 

2.4×10−15 with respect to the 2010 CODATA. Because the 

measure of G is a property of macroscopic phenomena and ħ 

a measure of quantum phenomena, it is necessary to resolve 

the effects of the Informativity differential to present a value 

of ħ as it would appear if measured macroscopically. We will 

call this ħf. This, in turn, would be suitable when measured in 

expressions that include measures resolved macroscopically. 

Given c3/G=ħ/lf
2 (Eq. 1) and the fundamental expression 

θsi=lfmf/2tf (Eq. 39), we resolve ħf with respect to 

macroscopic measures G=c3(tf/mf) (Eq. 16), then 

3

2

c

2 2 2 2

f f f f
si

f f

f f

f

l m l l

t G ll


  
     

      

,    (41) 

341.05457 1 s2 0 Jsi ff l  .            (42) 

The approach physically validates our understanding of 

the derivation of limnLr→∞f(QLnLr)=1/2 (Appendix A), which 

had we instead used the expanded form of the Informativity 

differential (Eq. 38), would then yield ħ=θsilf/QLnLr.     

The result describes Planck’s reduced constant at the 

macroscopic limit, although the measure of ħf at any distance 

greater than 2,247lf will reasonably approximate the limit. 

Conversely, at the quantum distance 84.9764lf  

(Appendix D)—that distance corresponding to the measure 

of blackbody radiation—and ħ=θsilf/QLnLr with QLnLr = 

0.499983, then the value of ħ is as we recognize it today.  

We identify the 84.9764lf distance as the blackbody 

demarcation. 

Note that ħf is a function of only θsi and lf when accounting 

for the contraction of length associated with discrete measure. 

The approach changes our understanding of the physical 

significance of ħ, now being a count property of the 

Heisenberg uncertainty principle. Importantly, the Planck 

discrepancies observed in Eqs. (1)–(3) with respect to the 

2010 CODATA are reduced to the sixth significant digit (see 

Table 2). 

Table 2.  Planck’s expression calculated with quantum ħ and macroscopic 
ħf values for Planck’s constant 

Informativity 

differential 
θ (radians) 

Length 

(m) 

Mass 

(kg) 
Time (s) 

Planck’s Reduced 

Constant ħ 
3.26250 

1.616228×

10−35 

2.17647

×10−8 

5.39116×

10−44 

Planck’s 

Fundamental 

Constant ħf 

3.26239 
1.616200×

10−35 

2.17643

×10−8 

5.39106×

10−44 

2010 CODATA 

Estimates [2]  

1.616199×

10−35 

2.17651

×10−8 

5.39106×

10−44 

We mention that the small rounding effect that occurs in 

the length result (0.0000006×10−35 m) is subsequently 

amplified in the mass. Had the rounding gone the other way, 

differences with the CODATA would not exist. That said, 

neither case displays a seventh-digit physical significance 

and as such should not be considered. There exists no 

physically significant difference between the MQ 

description and the measurement data. 

With Planck’s reduced constant adjusted for the effects of 

the Informativity differential, we may apply the value to 

expressions that include macroscopically measured terms. 

For instance, the value of θsi as described in Appendix B 

using G and c may now be presented using ħf (see listing in 

Table 3). Each value precisely matches the Shwartz and 

Harris measures [3]. 

Table 3.  Predicted radian measures of the k vectors of the pump, signal, 
and idler for the maximally entangled state at the degenerate frequency of 
X-rays using Planck’s fundamental constant ħf 

 
θp θs θi 

π−θMax 
(ħf/2lf)−π 

(0.1208) 

π−(ħf/2lf) 

(−0.1208) 

π−(ħf/2lf) 

(−0.1208) 

θMax 
2π−(ħf/2lf) 

(3.02079) 

(ħf/2lf) 

(3.26239) 

(ħf/2lf) 

(3.26239) 

Likewise, we may expand our understanding of the 

relationship between G and ħ with the following correlation. 

We start with the fundamental expression lfmf=2θsitf (Eq. 39), 

then 

2 si f fft ml  ,               (43) 

 2 24 i fsi f s ft ml  ,          (44) 

24 si f fft m  ,               (45) 

3 2 34 c cf
f

si
f

t

m


 
 
 
 

 ,          (46) 

2 34 cfsiG  .                (47) 

Here, all the terms are macroscopic, and hence we have 
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appropriately replaced ħ with ħf. We then move the terms we 

find in Planck’s expression for length (Eq. 1) to the right, 

leaving the remaining terms for the fundamental length (Eq. 

35) to appear on the left. This brings to our attention that it is 

the lack of the Informativity differential that limits Planck’s 

expressions to three digits of precision. Having both a 

physically significant description of the fundamental length 

and accounting for the skewing effects arising from discrete 

measure, we bring the two expressions together thus 

resolving the measurement discrepancy found in G as 

presented in Eqs. (4) and (5). Specifically, we have 

2

3

4

c

si
f

G
 ,                (48) 

2 2

6 3

4

c c

si fG G
 ,             (49) 

1/2

3 3

2

c c

si f GG  
 





.           (50) 

In the same way, we can take this expression and using ħf, 

Planck’s reduced constant adjusted for the Informativity 

differential, solve. However, (ħG/c3)1/2=1.61623×10−35 m 

incorrectly resolves the measured value. Using ħf, the 

expression is now mathematically equivalent to six digits, 

  

 

  
 

11

3

1/2
34 11

3

2 6.67408 10 3.26239

299792458

1.05454 10 6.67408 10

299792458



  
 
 
 







,    (51) 

35 351.61620 10 1.61620 10  .         (52) 

Returning to Eqs. (4) and (5), and replacing ħ with the 

distance sensitive measure adjusted for the Informativity 

differential, ħf, the discrepancy with the 2010 CODATA for 

the gravitational constant G=c3lp
2/ħ=6.67385×10−11 is also 

resolved, specifically 

   
34

11 3 -1 -

33 2

2

23 5

1.0

299792458 1.616200 10c

5454 10

6.67408 10 m kg s

f

fl
G







 



.     (53) 

Moreover, replacing ħ with ħf properly accounts for the 

skewing effects of the discrete measure as applies to Swartz 

and Harris’s measure of θsi (Appendix B), 

 3

1
34

5

1.05454 10
3.26239

2 2 1.61
kg m 

6199 10
si

f

f
s

l






   . (54) 

The dimensional homogeneity problem is also solved. 

From the fundamental expression, 2θsi=lfmf/tf, we find a 

mathematical correspondence with the 2010 CODATA 

values [2], 

  
  

 

35 8

44

1.616200 10 2.17643 10

5.3
2 1 3.26

9106 1
239

0

 


 , (55) 

16.52478 6.52 kg 478 m s .             (56) 

Finally, we recognize that the quantum approach to 

describing gravity also allows for a calculation of the 

gravitational constant using only the measure of light (i.e.,  

lf =tfc) and θsi. The approach again corresponds to the 2010 

CODATA to six significant digits. 

21L Lc Lb Lb LbQ n n n n     ,          (57) 

34 34

36

2 6.18735 10

8.08100 

1 (6.18735 10 )

10

LQ



  



,   (58) 

3 36 3

1 211 -

c 8.08100 10 (299792458)

1 3.26239

6.67408 1 m kg  s0

L

si

Q

r



 





.     (59) 

Similar examples extend to electromagnetic phenomena. 

The effects of the Informativity differential with respect to 

those constants will be discussed in the section to follow. To 

summarize these results, we present in Table 4 the 

Informativity differential with respect to three physical 

constants. We recall that the value for θsi comes from the 

Shwartz and Harris experiments, not from the CODATA, 

which presently does not recognize this value. 

Table 4.  Physical constants calculated with quantum ħ and macroscopic ħf 
values for Planck’s constant 

Planck’s 

reduced 

constant 

Physical Constants 

c=(4Gθsi/ħ)1/3 θsi=ħ/2lf G=c3lf
2/ħ 

ħ 299788980 3.26250 6.67385×10−11 

ħf 299792458 3.26239 6.67408×10−11 

2010 

CODATA [2] 
299792458 3.26239 6.67408×10−11 

3. Results 

3.1. Fine Structure Constant 

Considering the new descriptions offered by MQ, we 

present four expressions that describe the fine structure 

constant α. Concepts from MQ are used to resolve an 

understanding of each. More importantly, we present a 

singular physical description of their differences— that is, 

how the distortion of measure explains the difference in 

value between each expression. 

Before we begin, we note that counts of θsi are central to 

the presentation. Specifically, the count factor 42 of θsi 

determines the value of the fundamental fine structure 

constant αf and is physically correlated to the charge 

coupling demarcation, a distance associated with α and 

described as a count of lf. The two terms—lf and θsi—are 
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proportional as described by the count values of each term 

and related by the fundamental expression. Given the 

minimum count terms are nL=nT=1 and the corresponding 

count term for mass nM=1/2, (Eqs. 23, 26), then the minimum 

count of θsi with respect to the Reference Frame is obtained 

from the fundamental expression, 

 1 1/ 2 1

1 2

L M
s

T
i

n n
n

n


 
   
 

.        (60) 

The physical significance of counts and their relation to 

frames of reference are best understood with respect to the 

unity expression described in ([8], Eq. 111) of a “Quantum 

Model of Gravity Unifies Relativistic Effects …” as 

published in Journal of High Energy Physics, Gravitation 

and Cosmology; 

2
1/3 2

Lc

1
n

f Lm

f f

t n

l m

                 

.        (61) 

As is true with the fundamental expression, the 

combination of terms lfmf/tf has no units, defined with respect 

to the frame of the universe. The unity expression describes 

the dimensional measures of the prior counts with respect to 

the expansion of the universe, yet notably excludes the factor 

1/2, the constant of proportionality in the fundamental 

expression lfmf/2=θsitf which correlates the dimensional 

terms. When working with the nondimensional expressions 

of MQ, how counts apply to specific phenomena must be 

validated by the physical and value correlations of the 

resulting description, the difference in this case being a 

description with respect to the self-defining frame of the 

universe, as opposed to the self-referencing frame of the 

observer. 

With respect to the charge coupling demarcation a 

non-discrete distance of nLr=276/θsi=84.6005 corresponds to 

a count of nθ=RND(84.9764/2)=42 in the Measurement 

Frame. We present the MQ expression for the inverse of the 

fundamental fine structure constant as αf
−1=42θsi. However, 

θsi is defined with respect to the Target Frame and as such is 

dimensionless. A second description of α was discovered by 

Planck in his work with the Planck units. He observed that α 

could be described as a function of the electron mass me  

and the radial distance to the first ground state orbit a0 (i.e., 

the Bohr radius 4πɛ0ħ
2/mec

2). We identify his description 

with the designation αp. A third description follows from 

electromagnetism, which also serves as the CODATA 

definition for α. We identify this description as αc. A fourth 

expression follows from MQ, modifies the CODATA 

definition such that Planck’s reduced constant ħ is adjusted 

for the Informativity differential, ħf with respect to a 

macroscopic distance. We identify this description as αħ. 

There are other descriptions, such as α=Z0G0/4 written as the 

impedance and conductance of a free vacuum and the 

product of the Bohr radius α=re/rQ such that rQ=ħ/mec.   

The first four descriptions though will suffice for our 

demonstration. 

We shall next discuss the metric and Informativity 

differentials and their relation to each of the measurement 

frameworks. We do not address the change in the value of α 

with respect to increasing energy as described in QED. 

Nonetheless, this presentation does address the ground state 

of α; a description that incorporates high-energy phenomena 

is to be a topic of further research. Also, we note that αħ is not 

physically interesting because a coupling of the Informativity 

differential to the measure of a phenomenon that already 

accommodates the effects of this skew is duplicative. Given 

that ħf differs from ħ precisely by the Informativity 

differential, the calculation presents an opportunity to 

demonstrate two means of applying this effect, each 

resulting in the same value. The expression and value for 

each of the four descriptions are: 

1 42 137.020sif    ,           (62) 

1 0 137.041e
p

f f

m a

m l
   ,           (63) 

1
0 2

c
π 137.0364c

e
    ,         (64) 

1
0 2

c
π 137.0314

f

e
    .       (65) 

To explain their relationship, we begin with αf and then 

demonstrate how each of the remaining expressions    

differ. Two distinct measurement-skewing effects must be 

considered. The metric differential is notably different than 

that of the Informativity differential; the latter describes the 

skew in measure arising from the discreteness of measure 

and is defined with respect to the self-referencing frame of 

the observer, that is, between phenomena in the universe. 

The metric differential Δf describes the shift in measure that 

exists between the discrete and non-discrete frames. The 

function RND to be used below means to round to the nearest 

whole-unit value (glossary). And the count nθ is 42, as 

discussed above, corresponding to the measure of the charge 

coupling demarcation. 

Beginning with a general expression for the metric 

differential, then 

   RNDsif sin n n     ,     (66) 

 42 RND 42si sf i   .        (67) 

To resolve a Planck form of the expression αp
−1, we start 

with αf
−1 and adjust; that is, we add the metric differential  

Δf. The addition accounts for the physically significant 

difference between the discrete and non-discrete frames of 

reference. 

  1 1 42 42 RND+ 42si sip f f si         , (68) 

 1 84 RND 42 137.041p si si    .          (69) 
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The value is identical to the value resolved with Planck’s 

expression to the precision of θsi, i.e., six digits. 

Conversely, descriptions of αc and αħ differ from that of αp 

by the Informativity differential. To proceed, we must know 

the non-discrete count nLr of lf associated with the charge 

coupling of a cesium atom absorbing a photon, namely, the 

charge coupling demarcation, described here; 

276 84.6005/Lr sin   .           (70) 

We can then resolve the Informativity differential as 

 
1/2

21 0.499983L Lr Lr Lr LrQ n n n n
 

    
 

.  (71) 

The differential skewing of measure between the Planck 

and electromagnetic expressions Δ(P-C) due to MQ is again 

the differential between αp
−1 and αc

−1. We multiply the 

Informativity differential by two to resolve the skew with 

respect to the self-defining frame of the universe, not the 

radial description respective of an observer/target relation. 

Then 

   1 1 2p L LrP C Q n 
   .          (72) 

Notably, the Informativity differential is a contraction 

effect (i.e., like gravity). Subtracting two differentials 2QLnLr 

of αp
−1 from αp

−1 (i.e., 1−2QLnLr), then 

 
1 1

c p P C  
  ,             (73) 

 1 1 1 11 2 2c p p L Lr L Lr pQ n Q n          ,    (74) 

  1 2 137.0384 RND 42 6si sic L LrQ n     . (75) 

We repeat this process once again to resolve the value one 

would find when using the Informativity differential adjusted 

value for Planck’s constant, ħf, only our base measure is not 

αp
−1, but now αc

−1. Specifically 

   1 1 2c L LrC Q n
   ,             (76) 

 
1 1

c C  
  ,                   (77) 

 1 1 1 1 2 137.031c c L LrQ n        .  (78) 

Each of the values match the corresponding 2018 

CODATA values to the same precision as the measure of θsi, 

i.e., six digits. Also, of interest is the difference between the 

calculated values with respect to the modern and MQ 

expressions. While MQ calculations are constrained to six 

digits of physical significance —the precision with which  

we can measure θsi—on comparing the values of the 

resulting calculations, we find that the difference between 

the modern and MQ expressions are consistent to the 10th 

significant digit corresponding to the precision of the  

modern measurement (see Table 5). The consistency of   

the difference emphasizes a correlation that extends in 

parallel between the MQ expressions and the physical 

measurements. 

Table 5.  Modern and MQ expressions for the inverse fine structure constant, their values and difference 

Expressions for α 
 Values 

CODATA MQ Difference Differential 

αf
−1=42θsi - 137.02038 - - 

αħ
−1=4πɛ0ħfc/e2 137.03123 137.03123 0.0000088261 αc

−1(1-2QLnLr) 

αc
−1=4πɛ0ħc/e2 137.03600 137.03600 0.0000088263 αp

−1(1-2QLnLr) 

αp
−1= mea0/mflf 137.04077 137.04077 0.0000088263 42θsi−RND(42θsi) 

 

Moreover, we now have one physical approach to describe 

all expressions. The difference between them is a function of 

the differential. The approach supports the position that the 

expressions are not in error but are a physically significant 

consequence of MQ relative to the measurement distance. 

This is most relevant in the long-standing discrepancy 

between the Planck and electromagnetic interpretations. 

There has been no physically correlated explanation for their 

difference to date. We also draw attention to the metric 

differential and its physical significance when describing 

differences in measure between the two frames of reference. 

3.2. Electromagnetic Constants 

Until May 20, 2019, the value of the elementary charge e 

had been defined as an exact number of Coulombs [17]. This 

gave a specific value for the electric constant ɛ0 as a function 

of the magnetic constant μ0, which in turn follows from   

the elementary charge and the fine structure constant α.  

This approach has changed. Now, the elementary charge, 

Planck’s constant h, and the speed of light in vacuum c are 

defined values, leaving the magnetic constant as a measured 

value that determines the value of ɛ0. The magnetic constant, 

as before, is a function of α. 

With the expressions presented, we may approach 

definitions for the electromagnetic constants anew. For one, 

we may replace Planck’s reduced constant with the 

following expression (Eq. 54) given QLnLr=1/2, 

f
f

si

L Lr

l

Q n


 .             (79) 

Next, we may replace α with αc reducing the description of 

ɛ0 to a function of θsi, c, and e. Although ɛ0 is defined, the 

determination of ɛ0 follows as a function of e, fundamental 

units, and mathematical constants. With QLnLr=0.499983 at 

the charge coupling demarcation, then 
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.          (81) 

Given that μ0=1/ɛ0c
2 and c=lf/tf, we also resolve two more 

constants. The magnetic constant, for instance, is 

    20 22
0

21 1

c 84 RND 42

π si f

si siL LrQ n

t

e







 


, (82) 

6
0

11.25664 10 Hm   .              (83) 

Coulomb’s constant ke is 

    0
22

2 c1

4 4 84 RN

π

π D 42π
L

si f
e

si sr iLQ n

l
k

e



 
 


, (84) 

     2
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2 -2

c

84 RND 42

8.98755 10
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Nm C

L L

si f
e

si ir s

l
k

n eQ



 



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.        (85) 

New to modern theory, θsi is also the radial rate of 

expansion defined with respect to the universe (i.e., not per 

Mpc) and an angular measure (in value) corresponding to  

the plane of polarization for maximally quantum-entangled 

X-rays in specific Bell states [3]. As such, we have expanded 

our physical definition of electromagnetic theory to include 

both quantum and cosmological phenomena. 

Although the electric and magnetic constants have been 

reduced, in part, as a function of the metric and Informativity 

differential, elementary charge remains problematic in that a 

known description of e does not exist as a count of θsi. That is, 

the non-discrete frame of the universe provides a geometry 

of only counts and mathematical constants. Nevertheless, 

elementary charge is a multi-dimensional measure in the 

discrete frame of the observer. For this reason, there exists no 

mathematical counterpart. We are forced to describe e with a 

discrete physical approach and correlate that to the 

non-discrete frame of the universe with the metric 

differential. 

Before we begin, we note briefly that a second way to 

describe the metric differential is as a ratio of counts of θsi. 

Specifically, we introduce the quantization ratio, taking the 

non-discrete product nθθsi and dividing by its discrete 

product, 

 RND i
q

si

s

n
r

n








 ;            (86) 

Its physical significance is discussed extensively in the 

sections to follow. We may now resolve an expression for 

elementary charge. Recall in Eq. (69), that αp
−1 was resolved 

with respect to a differential (i.e., a difference) between the 

discrete and non-discrete frames, i.e., 42θsi-RND(42θsi). As 

such, we may describe the differential b-d of ef as an equality 

with the quantization ratio b/d. Collectively, the two define 

the fundamental elementary charge which when multiplied 

by the metric differential Δfr between the frames – the 

product being a function of rq and b-d (i.e., b/d=b-d) – give 

us ep in the local frame. To do so, we leverage the known 

value of the discrete difference d=θsi at the demarcation 42θsi. 

Notably, the demarcation counts for all phenomena round to 

42. 

2

1

d
b

d



.             (87) 

With this we isolate and resolve the fundamental value of 

ef as a function of b. Keep in mind, charge is not and may not 

be known as a count of θsi nor is it known in terms of the 

fundamental measures. As such, there exist no dimensionally 

homogeneous precedent to validate our expression. To 

compensate, we express all measures in their fundamental 

form, lf, mf, tf, θsi, and ħ, replacing dimensional homogeneity 

with physical homogeneity. 

Having physically correlated each measure, then the base 

b is the elementary charge ef as a function of the fundamental 

mass f(mf) relative to its quantum of angular momentum ħf. 

We begin by mapping each description to θsi. For instance, 

the corresponding momentum is θsi=(1/2)lfmf/tf, indicating 

that we should divide ħf /2. Moreover, we observe that the 

phenomenon of elementary charge presents itself at the 

upper bound c. Therefore, we resolve the upper count bound 

of mf in relation to the count of tf as the mass frequency 

bound. As described in Appendix E and the third paper ([9], 

Appendix 5.3), then 

3 3
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f f f
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   (89) 

Hence, f(mf)=mf
2 relative to θsi=lfmf/2tf (i.e., the remaining 

terms). With both mapped to θsi, then the physically 

homogenous expression is b=mf
2/(ħf/2). With this description 

resolved with respect to the macroscopic measures of G and 

c, we then use ħf=2θsilf to reduce. Thus, 

/ 2

f f
f

f
f

si f

m m
e e

l

 
 

 
 

.         (90) 

The approach confirms the identification of θsi as the 

divisor/difference d. We remove θsi from our definition of 

the base b and account for the squared relation of mf at the 

bound, 

2
f

f
f

m
b e

l
 .              (91) 

We now solve for the fundamental elementary charge in 
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terms of the fundamental units, 

2 2
f f f f

si
si f f

e m e m

l l



  ,               (92) 

2 2 2
f f si f f f sie m e m l  ,            (93) 

 

2
19

2
1.60513 10
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

 .      (94) 

With respect to units, there is no convention in describing 

phenomena relative to different frames. The issue becomes 

more complex with elementary charge, now a presentation of 

the geometry used to describe the fundamental fine structure 

constant. It is conjectured that charge may have a geometric 

origin, a function of m kg-2, but more research would be 

needed to fully resolve the physical significance of this 

description. 

We continue by correlating this description to the 

Measurement Frame by applying the metric differential. This 

is described as a product of the quantization ratio between 

the two frames. Note, the differential is an offset of one 

relative to the demarcation. The differential should have 

been applied to ef, but we are forced to apply it to ep, making 

this an approximation. That said, a solution is presented in 

Section 3.7 that resolves the true value. For now, we describe 

this as nθ-1 such that nθ=42. 

 
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RND 1

si
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


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


 .        (95) 

Taking the product, we resolve the Planck equivalent of 

elementary charge. 

 
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.  (96) 

We present the Informativity differential relative to the 

demarcation count (both the charge coupling and blackbody 

demarcations product the same six-digit value) and resolve 

the differential between the Planck equivalent ep and the 

CODATA form of the elementary charge ec; 

 
1/2

21 0.499983L Lr Lr Lr LrQ n n n n
 

    
 

,   (97) 

   1 2p L LrP C ne Q   .                  (98) 

Subtracting two differentials 2QLnLr of ep from ep (i.e., 

1-2QLnLr), then 

 Cc Ppe e   ,                          (99) 
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191.60217 10 Coulombsce  .              (102) 

With a description of the elementary charge comprising 

fundamental measures, we describe the electric and magnetic 

constants. Such that lfmf=2θsitf and ec=2QLnLrep=2QLnLrΔfref, 

then 
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To be discussed in detail in the section on unification,   

we may replace the metric differentials with gamma γ. The 

effects described by γ are geometric, a function of the 

point-of-view of the observer and not intrinsic to the 

described phenomenon. For this reason, it is physically 

significant to separate these characteristics. 
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Making the substitution then, 
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With μ0=1/ɛ0c
2, then 
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Coulomb’s constant is then 
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The value of each constant is compared with the 2018 

CODATA values in Table 6. 

Notably, there is a skew of 0.55 in the sixth digit of e from 

that found in the CODATA. This stems from the application 

of the differential to ep instead of ef. Moreover, there is a 

six-digit precision constraint in the measure of θsi that is 

amplified in ɛ0 and ke. We will address this by resolving a 

more precise value for γ in Section 3.7. 
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Table 6.  Electromagnetic constants as a function of the fundamental measures and appoximated γ 

Physical Constants 
Values 

e (C) ɛ0 (F m−1) μ0 (H m−1) ke (N m2 C−2) 

MQ 1.60217×10−19 8.85413×10−12 1.25665×10−6 8.98761×109 

2018 CODATA [1] 1.60218×10−19 8.85419×10−12 1.25664×10−6 8.98755×109 

 

To explore the physical meaning of these expressions 

further, we modify the definition of μ0 to incorporate h as a 

part of the expression. First, recall that the blackbody 

demarcation (Appendix D) is a function of the Informativity 

differential, which may be used to solve for the demarcation 

at 84.9764lf. With this solution, we resolve first the metric 

differential Δfr=0.998194 and then the Informativity 

differential QLnLr=0.499986. Given ħf=2θsilf, then 

 

    
0 4 2

0

2

2 2 5

2 1

c 84 RND 42 c

1

L

si
f

si si fLr fr

h
Q n l






 





 . (112) 

The expression hints at magnetic phenomena being a 

discrete count of Planck’s constant, a quantum of action. 

Does this tell us more about its discrete properties? Perhaps, 

but we must refine this understanding to improve the 

physical correlation. The focus here is on π, which was lost 

with the introduction of hf. To understand the physical 

importance of π, observe the expressions below; they 

describe the relationship between the energy of a 

fundamental unit of mass Em and the energy of a photon El. 

From the fundamental expression lfmf=2θsitf and with 

ħf=2θsilf (our comparison is with the measure of mass), then 

2 2
c

c c
Mf sisi

m M
L Lr L Lr

n
E m n

Q n c Q n


   ,            (113) 

2π1 c
2π 2π

si f M si
M M M

L Lr f r
l

L L

l n
E n n n

Q n Q
hv

n
v

t

 
   , (114) 
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2πl mE E .                                  (116) 

These expressions describe the role of π between 

descriptions of particle and wave phenomena. That is, the 

numerical constant that divides them is 2π. Returning to the 

Planck modified definition for μ0,we find that it is more 

fundamental to retain π. This is evident when we observe that 

the difference between Eqs. (108) and (112) is 

 2π c 4π c 2π 2 2πf f si f si f ffm l t l h     .   (117) 

Such that (2θsilf)=ħf, it is more fundamental to replace hf 

and then ħ, which would then place us back to where we 

started. That is, electromagnetism is best described as a  

wave phenomenon (epitomized by π) in a classical spacetime 

using the same fundamental measures used to describe 

gravitational curvature. 

That said, we also observe that 

0 2 5
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l


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With γ incorporating several effects, each a function 

relative to the observer, then the discrete properties of 

Planck’s constant hf, the quantum of action, are directly 

proportional to that of μ0. 

3.3. Properties of the Atom 

When working with the MQ nomenclature, we may more 

easily recognize the permissible properties of phenomena. 

For instance, we may ask what an MQ description of an 

elementary charge looks like to understand atomic structure. 

With the observation of charge appearing in nature as a 

discrete count of fundamental units, we may then look to the 

component terms to see if they vary and, if so, what other 

values of e are permitted. From Eq. (101) and given 
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We observe that all values are constant. Subsequently, 

given that elementary charge is measured only as a 

whole-unit count of e, we find that charge must be a 

whole-unit count of the observed phenomenon. Importantly, 

the component terms that describe e are physical and 

numerical constants. To imply that e could take on a 

fractional value would require that one or more of the 

fundamental measures—lf or θsi or c—was not fundamental. 

The description does not accommodate fractional charges 

inferred with respect to quarks, leaving the conjecture that 

charge is a physically measurable property of quarks 

unsupported. 

O6: Charge is not a physically measurable property of 

quarks. 

In a similar fashion, such that me=nMmf, (i.e., nM is not    

a physically significant count, but is constant) Planck’s 

expression for the fine structure constant may be arranged as 
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Consequently, the ground state orbital a0 of the electron 

must exist precisely as described. 

O7: The ground state orbital of an atom is invariant with 

respect to the fundamental length lf and the count nM of mf of 

an electron (i.e., lf/nM). 

There are no variable terms in the description. Importantly, 

we find that the Informativity differential, applicable to terms 

in the numerator and denominator, cancels out such that it is 

also not a part of the description. Thus, we would expect 

differentials are a function of the relative distance of the 

observer, not an intrinsic property of the atom. 

3.4. Unification 

One of the greatest endeavors of the modern era has been 

to provide a physically significant and meaningful 

unification of gravity with electromagnetism. We present 

that this endeavor is challenging in that there is no clear 

roadmap as to what constitutes unification. For instance: i) 

Should one present a one-for-one match between strings as 

described in String Theory with respect to each of these 

phenomena? ii) Would this be recognized as the most 

satisfactory solution? iii) Would a correlation between two 

distinct field expressions constitute a better unification? iv) 

What about a classical approach using only the laws of 

motion? 

Moreover, let us consider the existence of a match. In that 

each phenomenon is different, there would exist a physical 

differential. What differential—additional constants and 

geometry—would be acceptable? 

Let us entertain what may be considered a step towards 

unification by presenting an example of what is not 

unification to help clarify the definition. Consider the 

expression for the product of the electric and magnetic 

constants and multiply both sides by G, 

0 0 2c

G
G   .                 (123) 

Granted, such a coupling of fields is nonsensible, but our 

goal is to then reduce and demonstrate a fundamental 

expression that masquerades as unification. With G=c3tf/mf, 

replace G on the right-side, thus solving for G. 
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Why does this fail to demonstrate unification? Among 

other things, the expression fails to provide term descriptions 

that can be defined independent of the unified phenomena. 

With this example, we identify unification as being 

nomenclature of physically distinct terms that are 

independent of the correlated terms, 

A definition of each correlated term comprising distinct  

terms and mathematical constants, and 

A difference between the correlated terms that describes 

one or more other phenomena. 

Consider now the application of the MQ nomenclature—a 

set of physically distinct terms—to our descriptions of 

gravitation and electromagnetic phenomena. Given that the 

electric and magnetic constants are inversely proportional up 

to the square of the speed of light (i.e., ɛ 0=1/μ0c
2), we 

consider only the relationship between G and ɛ0. We reduce 

the expression for G (Eq. 34) and compare it with the 

expression for ɛ 0 (Eq. 105), arranged such that the 

dimensional terms fall to the end. 
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The dimensional terms for the electric constant are 

precisely those that describe gravitation. To complete their 

correlation, we make a final substitution, 
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One must bear in mind that the description of G is a 

distance-sensitive property of the observer, not an intrinsic 

property of gravitation. Moreover, note that QLnLr=0.499983 

at 42θsi and the differential Δfr=0.998158 both describe 

observational phenomena not intrinsic to the compared 

phenomena. The physical significance of that which 

describes their difference excludes the observer’s relative 

motion, and the distance is independent of the 

measurement-skewing effects between the inertial frame and 

the observed phenomenon. 

We now consider each of these ‘other phenomena’ that 

distinguish gravitation from electromagnetism, as follows. 

Two measurement-distortion phenomena: the metric 

and Informativity differentials 

The Informativity differential is described by QLnLr at 42θsi 

and the metric differential is described by Δfr. Each term 

describes a relative skew in measure. Importantly, the 

Informativity differential addresses the skew in lf with 

respect to the self-referencing frame. The metric differential 

addresses the skew in θsi with respect to the self-defining 

frame. 

First frame correlation: the metric differential associated 

with the fine structure constant 

Given that the inverse fundamental fine structure constant 

is 42θsi, we then apply the metric differential to resolve the 

Planck equivalent as observed in the Measurement Frame. 

The expression is a function of the count of the base measure 
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θsi corresponding to the charge coupling demarcation. 

 84 RND 42si si  .        (130) 

Second frame correlation: the metric differential 

associated with elementary charge 

The terms below describe the metric differential 

associated with elementary charge. The expression may be 

considered a mathematical constant correlating the measure 

of e between the discrete and non-discrete frames; 
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One particle/wave correlation: as a function of energy 

The last term, found in the denominator, is 2π. As 

expressed in Eq. (116), the term may be described as the ratio 

of the energy of a fundamental unit of mass mf with respect to 

that of a photon; 

2π = l

m

E

E
.                 (132) 

Collectively, the five expressions—all of which  

comprise mathematical constants—describe differences that 

distinguish the electric constant from gravitational curvature. 

With γ representing those terms that describe the skew in 

measure and geometries external to the intrinsic properties of 

the two phenomena, 
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then the correlation of G to ɛ0 is 
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2πG
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 ,                (134) 

02πG   .                (135) 

As expected, the correlation follows the same form as for 

energy which carries no geometric component γ, El=2πEm. 

We advance one more expression with respect to energy. 

Arranging Eqs. (115) and (134) with both equaling 1/2π, we 

then set them equal yielding 
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Thus, the gravitational constant corresponds to the energy 

of a photon as the electric constant does to the energy of mf, 

with γ describing the four additional geometries not intrinsic 

to the phenomena. We may also describe the energy Em of mf. 

Given El=2πθsic/QLnLr (Eq. 114) and θsi=QLnLrlfmf/tf, then 

0
0

2

3

f f
m l l

f

t m
E E E

G l


    ,                 (137) 

2 2

3 30 0

2π c 2πcf f L Lr f f f fsi
m

L Lr f L Lrf f

t m Q n l m t m
E

Q n t Q nl l
   


  , (138) 

0

2

2π
f

m
f

m
E

l
  .           (139) 

Although γ is a necessary part of the calculation, we 

consider it an external consequence of the geometry between 

the observer, the target, and the universe. When resolving  

the properties, the overall geometry is important to the 

calculation, but not relevant to the intrinsic properties of the 

phenomenon. Consequently, we consider the above energy 

expression a physically correlated function of the electric 

constant and fundamental measures, the remainder γ being 

geometric relative to our point-of-view. Notably, the extra 

fundamental units mf
2/lf are precisely the base relative to θsi 

used to describe e. For instance, substituting mf
2/lf with Eq. 

(94), then 
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As such we find the product of energy and charge to 

describe one revolution and the electric constant, the 

remaining terms a function of the observer’s point-of-view. 

3.5. Demarcations and Fundamental Constants 

MQ allows us to use the physical correlation we have 

made between counts of θsi and that of α to do the same for 

Planck’s reduced constant. We clarify that one must choose 

to resolve values with the demarcation most appropriate to 

the phenomenon being described. We will use a discrete 

approach to the fine structure constant and then a second 

approach to resolve Planck’s reduced constant. 

The fine structure constant is defined against the    

Target Frame as αf
−1=42θsi=137.020. When compared to  

the Measurement Frame, the value of α corresponds to       

the nearest whole unit count RND(nθθsi)=137. Hence, the 

quantization ratio is rq=137.020/137=1.00015. We express 

this as 
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The ratio is a numerical description of the relationship 

between the non-discrete and discrete frames. Quantization 

ratios may also be defined by the inverse, but this relation has 

proved most useful. 

 

Figure 3.  Diagram of quantization ratio terms 
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In that we are working with counts, which are 

nondimensional, the approach is both universal and 

applicable to all dimensions (i.e., θsi, lf). Importantly, the 

approach allows us to resolve α. However, before we begin, 

we briefly define some terminology (see Fig. 3). 

Demark—Given a plot of quantization ratios, there is a 

repeating pattern. Demark identifies the first point in each 

pattern such that y=1, with the average of a discrete set of 

points immediately to the left y<1 and the average of a 

discrete set of points immediately to the right y>1. 

Sequence—A plot of quantization ratios comprising 

points including both beginning and end demarks. 

Series—The set of sequences for which the beginning 

demarks share identical quantization ratios. A series may be 

distinguished as having a base demark nθ with repeating 

demarks such that each demark in the series is a whole unit 

count of the base (i.e., nθ: 42, 84, 126, …, 1050). 

Before we begin, we emphasize that quantization ratios 

are a function of discrete counts nθ of θsi, but we use those 

counts to resolve α with respect to the charge coupling 

demarcation, as a non−discrete multiplier nL of lf. A physical 

value is not needed, but we will need to map the pattern to a 

physical phenomenon, and we achieve this as a count of 

some measure. The two measures – θsi and lf – are correlated 

with respect to their count values such that nθ=RND(nL/2) as 

described in Eqs. (60) and (61). Moreover, resolving the 

midpoint—as is required for resolving the demarcation 

associated with α —produces the same value with any 

sequence to a considerable precision. 

Moreover, sequences are a function of the separation of 

data points along the x-axis (i.e., their quantization which is 

described by rq=nθθsi/RND(nθθsi), Eq. 86). Graph 1 is 

displayed with non-discrete x-axis values nθ incremented by 

0.1 in separation. A 0.2 separation produces sequences that 

are half in length along the x-axis. A 0.3 separation produces 

a line that connects the upper left point of each sequence  

with its lower right point. Each may be used to obtain the 

same result, although larger separations of the data points 

become increasingly difficult to resolve. Importantly, the 

quantization separation is what produces the physically 

significant pattern that describes the charge coupling 

demarcation. 

Note also that different graphing programs will render 

differently. For instance, online tools such as desmos.com 

will not connect all the data points left to right as a 

continuous plot. Conversely, MS Excel does. 

Given the charge coupling demarcation is associated with 

a count of nθ=RND(nLr/2)=42, we may resolve the mid-point 

of that sequence near nθ=42 and then scale the count of lf 

with respect to the constant of proportionality. Or we may 

resolve the non-discrete mid-point of the sequence near 

nθ=84.9764 (Eq. 70) (i.e., any sequence may be used). To 

avoid scaling, we proceed with the latter. The demarcation 

count may be resolved relative to the midpoint of the second 

full sequence displayed in Graph I. 

Both the demarks and the halfway point fall on the y-axis 

with a value of 1 (Graph 1; also listed in Table 7). Points are 

resolved such that y=1 for the quantization ratio at the 

beginning, end, and middle of the sequence. Notably, what is 

being counted – θsi, lf, widgets – is irrelevant and affects only 

the magnitude of the quantization ratios along the y-axis. 

The resolution of the midpoint is a function of the x-axis 

count quantization, that is entirely a function of counting. 

 

 

Graph 1.  Plot of Quantization Ratios Describing the Charge Coupling 

Demarcation 

Table 7.  Metric Approach to Planck’s Reduced Constant 

nθθsi↔nLlf 
Calculate Values 

Start Midpoint End 

Dataset 82.148363623 84.600553570 87.052743541 

Such that nLrθsi=276, we find the charge coupling 

demarcation is nLr=276/θsi=84.6005. 

Conversely, we do not have an expression for Planck’s 

reduced constant with respect to the Target Frame. We can 

resolve its demarcation distance with Eq. (70). Knowing θsi 

and lf, then 
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341.05457 10 Js .            (144) 

We will look at this more closely later with greater 

precision. But for now, we note that we can also write Eq. 

(143) as a function. Setting x=ħf/θsilf and y=1/nLr., we then 

have 

22 02x y x   .              (145) 

The solution as displayed in Fig. 4 for ħ/θsilf falls on the 

point (2.000069857, 0.000139718) on the right parabola. 

The axis of symmetry for both parabolas fall parallel to the 

x-axis. The expression can also be reduced. With ħf=2θsilf 

and ħ=θsilf/QLnLr, then 
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Figure 4.  Skew in spatial measurement as a count of lf identifies the 

blackbody demarcation 

Substituting 1/QLnLr for ħ/θsilf, then 
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Thus, the x-axis describes the skew in measure between 

the non-discrete frame of the universe and the discrete frame 

of the observer, also known as the Informativity differential. 

The effect is geometric, independent of the rate of expansion 

(i.e., 2θsi, which is defined relative to the universe). The 

y-axis describes the blackbody demarcation. In that y is a 

function of x (i.e., f(x)=(x2−2x)1/2), it follows that the 

demarcation distance is also independent of the 

expansion—that is, independent of all system parameters 

particular to our universe. Both axes are dimensionless 

counts of lf. 

Although the expression is initially expressed as a 

function of Planck’s reduced constant, it can just as well be 

expressed as a function of θsi or several other physical 

constants. The relation does not describe the constants that 

make up the expression but describes the skewing of length 

relative to the Informativity differential. 

While the vertex of the right parabola corresponds to the 

blackbody demarcation, of interest is the vertex of the left 

parabola (positive in the x- and y-axes by a miniscule value). 

Is there a physical significance to this second property and 

will it be instrumental to understanding virtual particles?  

Do the two demarcations provide insight into the energy 

jumps associated with electrons? At this moment, we have 

established a new understanding of quantum phenomena, but 

how to translate these MQ descriptions is physically unclear. 

As a final note, Eq. (147) may be reduced given that 

nLr=84.9764 to resolve a blackbody demarcation of 
2
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With this, we find that the Informativity differential is also 

a unity expression, just as Eq. (61), and describes the 

expansion of the universe in relation to the fundamental 

measures, each expression as described by the Pythagorean 

Theorem. 

3.6. Metric Approach to Series of Sequences 

As demonstrated with both the fine structure constant and 

Planck’s reduced constant, a metric approach can be used to 

identify physically significant values. In turn, those values 

describe physical characteristics of our universe, such as the 

quantum of action h and the ground state orbital of an 

electron a0. Moreover, there exists a physical correlation 

between the approach (i.e., frames of reference) and what we 

measure; in the case of ħ, we have an 11σ correspondence 

to its presently measured value. While the application of 

counts of fundamental measures to the description of 

constants is new, we may at least consider what additional 

properties may be deduced. 

Table 8.  Repeating quantization ratio demarks for counts nθ up to 64 

nLr 
Whole unit Counts nθ Corresponding with Repeating 

Quantization Ratios 

3 6 

4 8 12 16 20 24 28 32 36 40 

7 14 21 

11 22 33 44 

15 30 45 60 75 90 105 

19 
38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 

323 342 361 380 399 418 437 456 … 627 

23 46 69 92 115 138 161 184 207 230 253 276 299 322 

26 52 

27 54 81 108 135 

31 62 93 

34 68 102 136 170 204 

35 70 

39 78 

41 82 

42 
84 126 168 210 252 294 336 378 420 462 504 546 588 630 

672 714 756 798 840 882 924 966 … 1050 

49 98 147 

50 100 150 200 

53 106 159 212 265 

58 116 

61 
122 183 244 305 366 427 488 549 610 671 732 793 854 915 

976 1037 1098 1159 1220 1281 … 6893 

64 128 

Consider, for instance, not a specific count series (i.e., 42, 

84, 126, ..., 42n, ...), but all count series of θsi. Among them, 

we look for repeating patterns in the quantization ratios. If 

the ratio values repeated indefinitely or were not otherwise 

constrained, they would be uninformative. However, there 

are constraints to the relationships that may exist. That is, the 

quantization ratios associated with each demark repeat up to 

a certain point. The corresponding series for the first 64 

counts are listed in Table 8. 
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A quantization ratio rq is calculated such that 

rq=nθθsi/RND(nθθsi). By example, consider the fine structure 

constant, which we have shown to be physically correlated 

with a count of 42. The quantization ratio is then 
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Carrying the operation out for each count … 1, 2, 3, 4, 5 … 

we can then compare the quantization ratios for matching 

values. In the case of the 42 series, there are matching ratios 

at nθ equal to 42, 84, 126, 168 … 42n … 1050. There are no 

more matching values above or below a series. This series  

is physically correlated to the fine structure constant, to 

Planck’s constant, to the blackbody demarcation, and by 

means of these constants to other phenomena. 

With respect to these results, we pose several questions. 

Why are all discovered phenomena associated with the 

42 count series? 

Such that the count nθ=42 identifies the series that 

corresponds to the fine structure constant and our 

understanding of the quantum of action, we find also that the 

first count value identifies the x-axis value associated with 

the charge coupling demarcation. Moreover, we find that, 

adjusted for measurement skewing described by the metric 

and Informativity differential, a count of 42 θsi may be used 

to identify the ground state orbital a0 of an electron. With 

these and other physical correlations, we may inquire if there 

is something unique to this series that all values thus far are 

physically correlated with only this series. 

Are there physical constants that are independent of the 

fundamental measures? 

Had the rate of expansion for our universe been something 

other than 2θsi, would that change some or all properties of 

the universe? Recall that quantization ratios are a function of 

fundamental measures and counts. Count properties such as 

the charge coupling demarcation and the Informativity 

differential are geometric, independent of the rate of 

expansion. For this reason, there exists a path to realize that 

some physical constants, and as such some phenomena, 

although they may differ in value, will exist regardless of the 

system parameters of our universe. 

Are discrete systems the cause of breaks in physical 

symmetry? 

Importantly, we note that a non-discrete universe would 

be symmetrically equal. However, a non-discrete universe 

with no external reference creates a discrete internal frame  

of reference. This leads to asymmetries; for instance, 

comparing counts of sequences starting with odd x-values 

(there are 21) to those starting with even x-values (there are 7) 

of the first 64 whole-unit values (see Table 8). It is 

conjectured that this lack of symmetry in discrete systems is 

the source of physical variations we observe in nature. 

O8: A universe with no external frame of reference will not 

be symmetrical in all aspects. 

We focus on the metric approach to consider whether both 

the geometry and the counts of fundamental measures     

are important when describing observed phenomena. For 

instance, consider a mass divided into three equal parts; the 

physical properties of the parts are affected by the division, 

many of those properties being a straight-forward division by 

three. For example, the effects of gravitation from each part 

are now one-third of the original whole. 

From another perspective, SR may be viewed as a 

geometric phenomenon that is consistent with certain 

numerical properties. That is, there are specific 

consequences to the observation of length, mass, and time 

relative to the numerical increase or decrease in velocity 

between the observer and target. For this reason, an 

investigation of the permitted counts associated with the 

description of phenomena is important. 

3.7. Extending Precision of the Physical Constants 

Using the metric approach, we were able to resolve values 

of several physical constants. For example, we resolved the 

fine structure constant as a count of θsi. Unfortunately, θsi is 

constrained to six digits of physical significance. Here, we 

reverse the calculation resolving a more precise value of θsi 

as a measure of the magnetic constant and the charge 

coupling demarcation ‘distance’ in the Target Frame, 

276Lr sin   .                       (151) 

The expression is an essential observation that can be 

validated for any given count nθ and corresponding θsi such 

that rq=1, nLrθsi=276. The value corresponds to αc
-1 defined 

with respect to the Target Frame. With this we may resolve 

the immeasurable distance associated with α. 

 
1/2

21L Lr LrQ n n   .                (152) 

  2
1/2

2
L Lr Lsi si si sirQ n n      .     (153) 

  
1/2

22 276 276si

si
LQ





 
 .           (154) 

Using the 2018 CODATA value for αc=7.2973525693 

10-3[1] then, 

  84 RND 42
1

2 L Lr si i
c

sQ n 


 ,     (155) 

  
1

84 RND 422
L Lr

c si si

Q n
 

 ,     (156) 

     
1 2

2
/

2

2
276 276 84 RND

2

42

*276 si

si si si

c






 


 

   
 

. (157) 

13.26239030395 kg m ssi  .         (158) 

Notably, a recent study resolves α to 81 parts per trillion, 
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α-1=137.035999206(11) [18] with respect to the recoil 

velocity of a rubidium atom that absorbs a photon. This 

measure demonstrated a strong disagreement with calculated 

values for αp (a difference of 1.28 10-11 greater than the 

presently accepted CODATA value of α-1=137.035999084 

(21) [1]) suggesting that measurements of the cesium atom 

demonstrate a stronger correlation to the fine structure 

constant. Morel, L., Yao, Z., Cladé, P. et al. Determination of 

the fine-structure constant with an accuracy of 81 parts per 

trillion. Nature 588, 61–65 (2020).  

https://doi.org/10.1038/s41586-020-2964-7. 

The charge coupling demarcation associated with the fine 

structure constant is then, 

84.600545699276 / 8Lr sin   .       (159) 

331.36731436664 10 mLr fn l  .       (160) 

The corresponding Informativity differential is at 

0.49999563388L LrQ n  .             (161) 

In addition to the quantum entanglement correlation, we 

now offer this second approach to the measurement of θsi. 

Using the expression for mf from Eq. (37), then 

82
2.1764325398 10 kg

c

si
fm

   .     (162) 

The remaining two measures, lf and tf are functions of G 

constrained to six digits. However, we may use Planck’s 

formula for the fine structure constant (Eq. 63) to resolve lf. 

We must also solve αp
−1 as a function of the new θsi. 

 1 84 RND 42 137.040785532p si si    . (163) 

Now with mf and αp as a function of the new value for θsi 

and with which the remaining values are measured, then 

0 351.61619991203 10 m
e p

f
f

m a
l

m


  .   (164) 

We use αp over αc in recognition that Planck’s expression 

should not be adjusted for the Informativity differential as 

demonstrated in Eq. (69). In turn, using the defined value for 

the speed of light leads to a value for fundamental time. 

445.39106426132 10 s
f

f

l
t

c

  .      (165) 

In that the value of c is defined we have interpreted this to 

have no effect on the precision of the result. Continuing, the 

gravitational constant when measured macroscopically is 

2 11 3 1 2c 6.67407794280 10 m kg s
f

f

l
G

m

    . (166) 

Moreover, the value of ħ such that all values derive from 

the measure of μ0, the blackbody demarcation nLr and c is 

2 2
1

84.976352961
2

si f si fl l 

 





 
 


  
 

,  (167) 

341.0545718177 10 Js .        (168) 

The value of αc from Eq. (156) is defined as a function of ħ, 

which makes this last calculation significant only for 

measured values of α not a function of ħ (i.e., αc=cμ0/2RK 

such that μ0 is measured directly). Moreover, to calculate a 

distance sensitive value that accounts for the Informativity 

differential we use the expanded form. We may, for instance, 

resolve ħf at the upper count bound. This value is 

approximately accurate for any macroscopic measurement. 

si f

L Lr

l

Q n


 ,              (169) 

342 1.05453498445 10 Jssi ff l  .   (170) 

There is always a series of measures that underpin each 

calculation. Our initial measure of θsi comes from the 2018 

CODATA definition of αc which depends on the measure of 

μ0. The electric constant is also a function of μ0 with ħ, e, and 

c being defined. As such, we cannot use our more refined 

values to then calculate elementary charge, the electric or 

magnetic constants. Doing so would create a loop. But we 

can improve our electromagnetic calculations. 

Recall that we needed to apply the differential after 

resolving an expression for the metric differential. This 

approximation is wholly contained within γ. With our new 

expressions for the electromagnetic constants, we can isolate 

gamma with respect to the measure of each constant 

independently. 

 
1

0γ= 2π 1.19967279331G 

 .       (171) 

20γ 1.199672793c 31
2π

G
 

  
 

.       (172) 

γ 2 1.19967279331ek G  .           (173) 

Notably, the value of γ is the same for all three 

measurements. Such that the most appropriate measurement 

is used for each solution, then 

12
0

1= 8.85418781280 10
2πγ

Fm
G

   . (174) 

6 -1
0 2

2πγ
1.2566370621 1

c
0 H m

G
   .  (175) 

9 2 28.9875517923 10 Nm C
γ

2
ek

G

  . (176) 

Table 9.  Electromagnetic constants as a function of the fundamental 
measures and γ 

Physical 

Constants 

Values 

ɛ0 (F m−1) μ0 (H m−1) ke (N m2 C−2) 

MQ 
8.85418781280 

×10−12 

1.2566370621×

10−6 

8.987551792

26×109 

2018 

CODATA 

8.8541878128(13) 

×10−12 

1.25663706212

(19)×10−6 

8.987551792

3(14)×109 
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We compare these results in Table 9. 

There are many values that may be described as a 

combination of these, now with more precise results. For 

instance, the ΛCDM distributions are now resolvable ([11], 

Eqs. 82-86) to twelve digits of physical significance, 

2

2

2
68.3624161047%

2

si
dkm

si











,     (177) 

2

4
31.6375838953%

2
obs

si
 


,      (178) 

4.84883489523%
2

obs
vis

si


   ,        (179) 

26.7887490001%uobs obs vis     .  (180) 

Lastly, some values in this paper quote the 2010 

CODATA results. There have been changes in the 2018 

measure of G reflecting new measurement techniques that 

are more subject to the effects of the Informativity 

differential. That is, there are calculated values, some terms 

measured macroscopically while others measured quantumly. 

As such, we have endeavored to use measures that are least 

affected by the Informativity differential. 

3.8. Particles vs. Waves 

We have provided expressions that correlate particle and 

wave phenomena. Invariably, they differ by a constant, 2π. 

What does this describe? Why are there so many phenomena 

that differ by this value? And what is the physical 

significance of this difference? The answers to these 

questions are at the heart of particle/wave duality. They arise 

from a geometry that underlies the universe. 

To better grasp the scope of physical phenomena that 

differ by this value we will review. Firstly, consider energy, 

that is the energy of a fundamental unit of mass mf and a 

corresponding quantum of light ([7], Eqs. 48-51). 

2 2 c
c c

c

si si
m M M

L Lr L Lr

E m n n
Q n Q n

    
     

   
, (181) 

2 cm siE  ,                            (182) 

1
l f fM fE h v hn t  ,                     (183) 

22 1

/ π

c

2 2π

si fm si

l f f

f

f f

lE

E h t h


    .        (184) 

Their difference is 2π. Moreover, n is not a whole unit 

value, at least not in terms of counts. Written using Planck’s 

expression E=nhv, we find that n is 1/2π when describing 

mass. Therefore 2π appears in expressions describing 

electromagnetic phenomena. 

1

2π 2π 2π

l
m

h vE f
E h vf  

 
 
 

.        (185) 

Note also that expansion of the expression to describe the 

energy of light reflects Einstein’s equation E=mc2. Such that 

El=2πEm (Eq. 184) and Em=2θsic (Eq. 182), then  

2
2

2

2π
4π 2πc c

f f
l si f

f

l m
E m

t
   .   (186) 

Importantly, the value of 2π is what distinguishes the 

energy of mass mf from that of light.  

Consider now the phenomenon of force. This relation, 

resolved earlier in the paper, describes how gravitation and 

electromagnetism are correlated. 

02πG   .                  (187) 

Once again, the two phenomena are separated in value by 

2π. Gamma, incidentally, is used to indicate four geometries 

instrumental to the calculation, but not representative of the 

intrinsic properties of either phenomenon.  

Consider now the CMB power spectrum. As presented in 

Appendix F, we observe that the x-axis coordinate of the 

peak of each curve is distinguished as a function of π. 
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This is not unexpected with electromagnetic descriptions, 

but we have demonstrated that these descriptions are 

temporal in origin. Moreover, there is a relativistic offset. 

Applying the offset to each x-value, 
2/3

π

si

 
 
 

,                 (193) 

we account for the skewing effects of measure between 

the earliest and present epochs ([11], Eq. 90). 

Let us now consider what a particle is in terms of energy. 

The energy of a fundamental unit of mass is Em=2θsic. 

Notably, such that 2θsi is the rate of universal expansion HU 

and c is the velocity of all points relative to observers at the 

visible bound – a system perimeter, that spacetime where 

there is no information beyond the bound, we find that Em is 

the product of the expansion parameter and the perimeter 

velocity.  

cm UE H .              (194) 
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What, then, is mass? What is the relation between mf and a 

universe? Is there a greater physical significance to π? 

 

Figure 5.  Arc length of a circle of radius lf, subtending angle θ radians 

That is, we bring together a suite of phenomena each 

which carry the value of π across multiple disciplines: energy, 

gravitation, electromagnetism, cosmology, and epochs. We 

correlate them, demonstrating that it is π which stands 

between them. Yet, we also describe π as a geometry 

reflective of a description of a circle. As described in Fig. 5, 

such that the circumference of a circle is C=2πr, it is that 

geometry which describes this difference as a ratio, the 

circumference divided by the radius. Moreover, given the 

radius of a circle equal to lf, we find that the radian measure 

θsi corresponds to half of a quantum of energy ħ/2, again h 

divided by 2π (i.e., C/r). We typically refer to this as its 

angular momentum. From each of these observations, we 

may observe that 

O9: Phenomena come in pairs separated in value by 2π. 

In all cases, we find it an inevitable conclusion that energy, 

mass, and force each present themselves in pairs, partner 

phenomena separated by a geometry of 2π, C/r. 

3.9. Singularities 

Singularities in modern theory are encountered in 

situations such as General Relativity (GR) [19] when used to 

describe phenomena at the extreme of the measurement 

domain (i.e., the center of a black hole or the universe as a 

quantum singularity). 

Notably, MQ is a discrete nomenclature, a physically 

significant description of phenomena as counts of three 

fundamental measures, lf, mf and tf. In that there are       

no fractional counts of physical significance in the 

Measurement Frame, there are no opportunities for 

singularities. The value of any count in an expression starts 

with one and has an upper bound which does not exceed the 

Planck frequency, 1/tf. 

A demonstration of the issue as occurs in GR may be 

better understood in analysis of the expression for escape 

velocity ve. Consider the velocity bound such that v=c. Then 
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We recognized that the observer and the target cannot both 

occupy the same space at the same time. Thus, the count 

value for nLr must be greater than 0. Moreover, nLr must be 

greater than two times nM, nM also greater than 0. To correlate 

this to relativity, the measurement distortion expressions ([8], 

Eqs. 31-34) also described by SR are 
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The counts correspond to their classical counterparts such 

that 
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And using the escape velocity expression, then 
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Their mathematical and physical equivalence are then 

demonstrated by their combination. Notably, the 

presentation is intentionally simplistic. A more exhaustive 

presentation is available in the second paper, ‘Measurement 

Quantization Unifies Relativistic Effects …’ [8]. 
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We find then, no opportunity for a speed parameter     

in relativistic expressions to present singularities. All 

descriptions of phenomena must satisfy nLr≥1, nM≥1 and 

nT≥1 such that all counts are whole unit. The root cause of 

singularities arises as a by-product of a non-discrete 

nomenclature when describing phenomena. MQ recognizes 

the physical significance of discrete measure and 
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respectively modifies modern nomenclature with a more 

precise terminology. Physically significant bounds are then 

more easily recognized. This physically significant rule set 

does not allow singularities and preserves an understanding 

of the properties that underlie what is being described. 

4. Discussion 

In this paper, we use MQ to resolve physically significant 

descriptions of the constants of nature. We developed a 

foundation for their origin—a differential between the 

discrete framework of the observer and the non-discrete 

framework of the universe—and various relations, variations 

of the fundamental expression. Importantly, we complete a 

picture of what were formally unanswered questions: Why 

do the physical constants exist? Why do the laws of nature 

exist? Why is the universe symmetrical and where is it 

nonsymmetrical? Why does the use of classical mechanics 

present singularities? 

While these questions were at some point intangible, we 

now look to new questions. Why is the blackbody 

demarcation at 42θsi? Why is the fine structure constant a 

function at 42θsi? Why is Planck’s expression for α a 

differential of the fine structure constant, a function of 42θsi? 

And finally, why is the ground state orbital of an atom a 

function of 42θsi? 

A review of Table 8 offers some possibilities. If starting 

values are conjectured to be based on orbitals for the atom 

(which then need adjustment for the effects of force), it 

follows that the universe might have corresponded to any 

count series, for example, 41θsi or 39θsi. However, these 

series afford only two orbitals for atoms. It may also be 

conjectured that there is no preferential series. The universe 

could have just as easily corresponded to the 19θsi or 61θsi 

count series. This leads to the question, why are there so 

many odd count series compared with even, 21 to 7 for the 

first 64 whole-unit counts? Is this lack of symmetry at the 

root of the matter/anti-matter differential? These questions 

are purely speculative, intended to spark interest for further 

investigations. Conversely, the presentation addresses only 

verifiable results with straight-forward physical correlations. 

Among other discoveries, the greatest challenge we   

have encountered is a better understanding of unification. 

We may agree that unification involves a description of  

each phenomenon correlated with an equality. In that the 

phenomena are physically distinct, there will be some count 

of additional phenomena that distinguish them. Nonetheless, 

as demonstrated in Eqs. (105)–(108), it is easy to correlate 

phenomena and identify other phenomena that distinguish 

them. Thus, a more fundamental definition is needed. 

Perhaps unification requires a shared fundamental 

nomenclature and physically significant distinct terms 

independent of the correlated terms. Perhaps some element 

of naturalness and/or elegance is prerequisite to the solution. 

Are these the ground rules for unification? If agreed, then 

have we completed unification of the four forces or are we 

just beginning? We should consider the latter. 

Finally, the attentive reader will note that there is no intent 

to push geometry into the spotlight. The correlation of so 

many phenomena to numerical qualities is not our focus.  

We emphasize, as has long been the tradition of science,  

that finding the best math that describes the world around   

us is our greatest endeavor. That more of nature appears 

geometric is irrelevant. 

5. Glossary of Terms 

Blackbody demarcation 

That distance at 84.9764lf, (Appendix D) corresponding to 

the measure of blackbody radiation, the value of 

QLnLr=0.499996 and the value of ħ as we recognize it today. 

Charge coupling demarcation 

That distance at 84.6005, corresponding to the measure of 

the fine structure constant and the value of QLnLr=0.499996.  

Fundamental expression 

The simplest expression that relates the three measures, 

length lf, mass mf, and time tf. The expression is lfmf=2θsitf 

such that the value of θsi is 3.26239. 

Informativity 

A field of science that recognizes the physical significance 

of nature as a consequence of mathematical form. We use 

Measurement Quantization (MQ) as an approach to describe 

the discrete properties of nature revealing how nature and 

mathematical form are correlated. This is achieved with a 

nomenclature of counts of physically significant 

fundamental units of measure applied to the existing 

classical laws of modern theory.  

Notably, MQ is just one approach. Other approaches are 

likely to arise specific to quantum theory, information theory 

and high energy physics. Regardless of the approach, we 

identify the science of Informativity as any discipline that 

recognizes the constants and laws of nature as a consequence 

of mathematical form. 

Informativity differential 

A skewing of the measure of length because of the 

discreteness of measure. The effect is geometric and may be 

described as a count of lf such that QLnLr=((1+nLr
2)1/2-nLr)nLr. 

QL is the non-discrete count of lf that is lost at each count of tf 

with respect to elapsed time. This effect is known as gravity, 

although the differential itself is also recognized as a 

skewing of measure in a fashion like relativity, except with 

respect to distance, not motion. 

Metric differential 

Follows the same geometric displacement described by 

the Informativity differential but is calculated as a difference 

between a discrete and non-discrete count n of a fundamental 

measure. 

RND 

The term RND is used often in MQ and meant to describe 
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a physical process whereby the measure of an object at a 

non-discrete distance appears to be at the nearest count of   

a fundamental measure. Thus, if a calculated value has 

remainder less than one half, the lower count is measured. If 

a calculated value has a remainder greater than one half,   

the upper count is measured. A calculated value with a 

remainder equal to one half has an uncertain count value, 

either above or below the non-discrete value. Counts apply to 

all dimensions, but with respect to distance all calculated 

values are less than one half and as such round down. 

Self-referencing 

An expression defined with respect to the observer’s 

inertial frame of reference. 

Self-defining 

An expression defined with respect to the universe as a 

frame of reference. 

System parameters 

Any constant value associated with a self-defining 

expression (i.e., θsi). 

MQ nomenclature 

A nomenclature of all fundamental units of measure—lf,, 

mf , tf, and θsi—which are discrete, countable, and may be 

used exclusively to describe all observed phenomena in the 

universe. The acronym MQ stands for measurement 

quantization. The nomenclature is applied to the well-tested 

and strongly supported laws of classical mechanics. 

Quantization ratio 

The ratio is a numerical representation of the relation 

between the discrete and non-discrete frameworks, a 

function of the count n of a fundamental measure, typically 

θsi or lf. The ratio nθsi/RND(nθsi) is defined with RND(*) 

denoting the value of the argument rounded to the nearest 

whole-unit. 

Demark—Given a plot of quantization ratios, there is a 

repeating pattern. Demark identifies the first point in each 

pattern such that y=1, with the average of a discrete set of 

points immediately to the left y<1 and the average of a 

discrete set of points immediately to the right y>1. 

Sequence—A plot of quantization ratios comprising 

points including both beginning and end demarks. 

Series—The set of sequences for which the beginning 

demarks share identical quantization ratios. The series may 

be distinguished as having a base demark B with repeating 

demarks such that each demark in the series is a whole unit 

count n of the base (i.e., nB: 42, 84, 126, …, 1050). 

Frameworks 

Reference framework—This is the framework of the 

observer. With respect to the traditional understanding, this 

framework differs only in that measure is a count function of 

discrete length measures equal to one. It shares those 

properties of the self-referencing frame of reference but in 

relation to the inertial frame of the observer. 

Measurement framework—This framework shares 

properties with the Reference Framework. It is characterized 

as some known count of the reference length measure. 

Target framework—This framework is characterized by 

the property of measure of non-discreteness, that being the 

framework of the universe that contains the phenomenon. It 

shares those properties of the self-defining frame of reference 

but in relation to a local phenomenon. 

Self-referencing frame of reference—A system of 

geometric axes anchored with respect to objects within the 

universe to which measurements of size, position or motion 

can be made. One may assign expressions comprising 

physically significant terms. However, those terms are 

defined with respect to other terms (i.e., ħ, ɛ0, μ0, α, lf, mf, tf) 

such that there exists no external anchor with which to 

resolve any term independently. 

Self-defining frame of reference—A system of geometric 

axes anchored with respect to the universe to which 

measurements of size, position or motion can be made. One 

may assign expressions comprising physically significant 

terms. Those terms, also known as system parameters,    

are defined numerically with respect to properties of the 

universe (i.e., rate of universal expansion 2θsi, age of the 

universe AU), but have no relation with respect to phenomena 

external to the universe. 
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Appendices 

APPENDIX A: INFORMATIVITY DIFFERENTIAL QLnLr 

([11], Appendix A) 

In analysis of Heisenberg’s uncertainty principle, we 

resolve properties of measure demonstrating discreteness, 

countability and in relation to three frames of reference. 

Notably, the physical significance of discrete measure also 

demonstrates that there is a skew between such a description 

and that of an expression not constrained by a whole-unit 

count of fundamental measures. We find that difference best 

described by QLnLr and refer to this term as the Informativity 

differential. Resolving the limits to QLnLr is valuable when 

working with MQ expressions. 

We approach this goal by recognizing that the product of 

QLnLr (Eqs. 30 and 31) is 

21L Lr Lb Lb LbQ n n n n    
 

.      (A1) 

Recall that there are three frames involved in a description 

of measure, such that Side a is the reference count nLa, Side b 

is some count nLb of that reference and Side c is the measured 

count, such that nLc=nLr+QL and nLb=nLr. Such that we wish 

to describe Side c, we drop the nLb term and adopt the term 

nLr in that r is more commonly associated with the measure 

of distance. 

We verify that nLb=nLr such that the highest value for QL is 
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nLb=1 where (1+12)0.5–1≈0.414 and the ‘observed’ distance 

of Side c – a count nLc of lf – is always rounded to the nearest 

integer value. That value is equal to the count nLr. It is 

QL=√2-1 at its highest and quickly approaches 0 with 

increasing nLr. 

21L Lr Lr Lr LrQ n n n n    
 

.      (A2) 

At the lower limit nLr=1, then limr=1f(QLnLr) =√2−1.  

Conversely, dividing by nLr, adding nLr, squaring, 

subtracting nLr
2, and dividing by 2, we find that the upper 

limit is 

2
1

2 2

L
L Lr

Q
Q n  .            (A3) 

In analysis of this expression, we recognize with 

increasing nLr that QL decreases to 0. The left term drops out 

such that the Informativity differential QLnLr approaches 0.5. 

At 2,247 lf the value of QLnLr rounds to 0.5 to six significant 

digits, with no difference in the ninth digit at 104 lf. 

APPENDIX B: MEASUREMENT OF θsi ([11], Appendix 

B) 

In addition to a physical correlation of θsi with measure of 

the magnetic constant (Eq. 157), we have correlated θsi in 

value with respect to X-rays in maximally entangled states as 

described by Bell. Measurements were taken by Shwartz and 

Harris and published in their 2011 paper [3]. Within it, they 

also offer a model that describes their results. 

We will now describe a second dimensional quality of θsi, 

a numerical correlation in its value as a momentum with 

respect to the angle of polarization of X-rays when satisfying 

a maximally entangled Bell state. Correlated to the lattice 

vector 𝐺 , two vectors are described: one, a polarization of 

the electric field in the scattering plane and two, the 

polarization of the electric field orthogonal to the scattering 

plane. This new approach allows us to offer a new expression 

for θsi such that the two vectors differ in sign, a division of 

the magnitude of the coordinate components of the pump 

wavevector. Thus, the x and y components are respectively 

the arccosine and arcsine of the lattice vector and may be 

described as (−npxcos(θ), npysin(θ)).  

With this we resolve the magnitude of each vector, the 

pump, signal and idler. We denote the vectors (a function of 

the pump frequency or the phase matching properties of the 

nonlinear optical crystal) with the symbol n and distinguish 

the signals with the subscript p, s or i. To identify the 

coordinate axes, we add an x or y. 

arccos x

sx ix px

G

n n n


 
 
   

 ,      (B1) 

arcsin
y

iy iy py

G

n n n


 
 
   

 ,      (B2) 

The component vectors yields are then 

 

      cos sin,sx ix px iy iy pyn n Gn n n n     ,                                  (B3) 

            cos cos cos sin sin sin,sx ix px iy iy pyn n n n n n G         ,              (B4) 

              cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n n G        ,            (B5) 

              cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n n G        .            (B6) 

We complete the reduction in three steps. First, we move the pump coordinate to the right alongside the lattice vector. We 

then take the angular difference of the y-component to make the sine positive. And finally, we match the form found in the 

x-component. 

              cos , sin cos , sin cos , s2 inπ 2πsx sy ix iy px pyn n n Gn n n          .    (B7) 

 

With this we resolve that θs=θi. Notably, we also see that 

the pump angle is θp=2π−θ. And such that the pump is split 

evenly, we recognize that the momentum of the beam is 

divided. Thus, the angles of the k vectors with respect to the 

atomic pane must equal half the momentum of the entangled 

photons (i.e., S). Such that θsi=mflf/tf, then 

3
1

2 2

f f
f

f

l c l
S m

G t

 
   

 
 

.             (B8) 

Referring to the Shwartz and Harris model, we recognize 

that one additional data row may be resolved also using this 

approach. Using Eq. (B5) as described in line 2 of Table 10, 

we recognize that the respective angles for the signal and 

idler are precisely a function of the measure at maximal 

entanglement θMax. And by subtracting each angle from π 

(i.e., π−θp, π−θs, π−θi) we resolve line 1. 

Table 10.  Predicted radian measures of the k vectors of the pump, signal 
and idler for the maximally entangled polarization at the degenerate 
frequency of X-rays 

 
θp θs θi 

π−θMax 
(lfc

3/2G)−π 

(0.1208) 

π −(lfc
3/2G) 

(−0.1208) 

π−(lfc
3/2G) 

(−0.1208) 

θMax 
2π−(lfc

3/2G) 

(3.02079) 

(lfc
3/2G) 

(3.26239) 

(lfc
3/2G) 

(3.26239) 

In Table 11, we describe the Shwartz and Harris 

projections with respect to two of five Bell states they 
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identify as generating entangled photons. For consistency, 

we also adopt their nomenclature, such that |H> is the 

polarization of the electric field of the X-ray in the scattering 

plane and |V> is the polarization orthogonal to the scattering 

plane, which contains the incident k vector and the lattice k 

vector 𝐺 . 

Table 11.  Angle setting in radians of the k vectors of the pump, signal, and 
idler for maximally entangled polarization states at the degenerate 
frequency [3] 

Bell’s State θp θs θi 

(|Hs, Vi > +|Vs, Hi >)/√2 0.1208 −0.1208 −0.1208 

 
3.02079 3.26239 3.26239 

The MQ descriptions match the Shwartz and Harris 

measures to six digits, the extent with which each model has 

physical significance. Notably, with respect to the 

measurement data, Shwartz and Harris note that the error in 

measure is less than 2 micro-radians. 

On top of the correlation already presented between 

gravitation and electromagnetism, the Shwartz and Harris 

correlation continues to add to our physical understanding  

of θsi as having a distinct measurable value but differing 

dimensional qualities as a function of the phenomenon being 

measured. In this case, we find angular measure correlated  

to the scalar constant S=lpc
3/2G, a composition of the 

fundamental length lp, the speed of light c, and the 

gravitational constant G. By demonstration only, using the 

2010 CODATA [2], the calculation matches the Shwartz and 

Harris results. 

35 3

1

1

3

12 2 6.6740

1.6161

8 10

99 10 (299792458)

kg3.26239  m s

pl c
S

G







 



.   (B9) 

As noted previously in this paper, newer approaches to the 

measure of G reflected in the 2014 and 2018 CODATA are 

affected significantly by the Informativity differential. For 

this reason, we consistently adopt comparisons with the 2010 

CODATA when discussing measures that include G. 

APPENDIX C: FUNDAMENTAL MEASURES ([10], Sec. 

3.4) 

We may resolve the fundamental measures using only our 

initial observations regarding an MQ description of quantum 

gravity and its relation to Newton’s expression for G.   

Such that G/r2=QLc3/rθsi (Eq. 34), then factoring out the 

Informativity differential limnLr→∞f(QLnLr)=1/2 (Appendix A) 

we resolve that 

 
3 33 3

2
c cc c

2si s

f fL L
Lr f L Lr

i si si

l lQ Q
G r n l Q n

r   
   . (C1) 

Given that G=c3tf/mf (Eq. 16), then 
3 3c

2

cf f

f si

t l

m 
 ,               (C2) 

2 sif f fl m t .             (C3) 

We identify this as the fundamental expression.  

Notably, we can also resolve the expression from Eq. (34), 

but this assumes a physical correlation with respect to the 

Newton description. Thus, we start with Eq. (33) and resolve 

that G=c3tf/mf as a physically significant description with 

respect to our expression of quantum gravity. This may then 

be extended. Such that the Informativity differential 

limnLr→∞f(QLnLr)=1/2, then 
33 3

f fL L L

si Lr f si Lr f si f f

c t mQ c Q c Q

r n l n l m t  
  ,     (C4) 

3
fL L

si Lr f si f

mQ c Q
G

r n l t 
 ,                (C5) 

3

fsi L
f

Lr si fL

mr Q
l G

n tQ c




 ,               (C6) 

3 2

Lr f si f fL
f

Lr si fL

n l m mQ
l G G

n tQ c c




  ,      (C7) 

2 3

2 21 f
f

si si

f

t G
l G

lc c

 
  .             (C8) 

For all macroscopic distance, the fundamental measures 

are 
11

35

3 3

2 2 6.67408 10 3.26239
1.61620 10 m

(299792458c )

si
f

G
l

 
  , 

(C9) 
11

4 4

44

2 2 6.67408 10 3.26239

(299792458)

5.39106 0

c

1

c

s

f si
f

l G
t

 



 
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



,     (C10) 

3
82 2 3.26239

2.17643 10 kg
299792458

c

c

si
f fm t

G

    . (C11) 

APPENDIX D: BLACKBODY DEMARCATION ([10], 

Appendix B) 

The measure of Planck’s constant corresponds to a 

physical interaction at a specific distance. That distance is a 

count of lf (Eq. 31) where nLb rounds to nLr and 

33 3
13.26239 kg m s

2

cc fL
si L Lr f

lQ rc
Q n l

G G G
 

 
    

 
 

. 

(D1) 

We have substitute ħ/lf
2 from Planck’s relation (Eq. 1). 

Thus 

 
1/2

21L Lr LrQ n n   ,               (D2) 

3

2

c
si L Lr f L Lr f

f

Q n l Q n l
G l


  
   

      

,    (D3) 

 
1/2

21

si f si f
Lr
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Lr Lr

l l
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Q
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 
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 
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 
1/2

2 4 2 si f
Lr Lr Lr

l
n n n


   ,          (D5) 
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   
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,                       (D7) 
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,  (D8) 

84.9764Lrn  .                               (D9) 

APPENDIX E: OBSERVABLE MASS BOUND ([9], Appx. 

5.3) 

In classical theory we recognize that no phenomenon may 

have a relative change in position greater than the speed of 

light. When we apply a MQ nomenclature to a description of 

relative motion, we would characterize such a change as an 

‘observed measure count’ of lf per count of tf. Within the 

field of classical theory, such concepts are commonly 

recognized although the Planck Units have no known 

physical significance. 

With this presentation, we add to our understanding of 

nature that the fundamental units are physically significant. 

Counts of the fundamental measures are important and give 

rise to the properties and characterization of observed 

phenomena. It is with this understanding that we recognize 

there also exists an upper ‘observed measure count’ of mf per 

count of tf.  

We call the upper count bound of lf to tf the length 

frequency. We call the upper count bound of mf to tf the mass 

frequency. Developing an expression that describes these 

phenomena may at first seem straight-forward, but when 

accounting for the relative view of an observer in a spacetime, 

it becomes more complex. There are several questions that 

one can engage to untangle why. 

Such that the count of mf has an upper count bound, what 

happens when the observable mass exceeds this bound? 

Does that mean that the excess mass is invisible? And what 

expressions describe a mass distribution that is uneven, for 

instance, an observer in a galaxy? These questions are central 

to understanding dark matter and are discussed in this paper, 

‘Measurement Quantization Describes Galactic Rotational 

Velocities …’ [9]. For our needs, we will resolve only an 

expression describing observable mass. This will allow us to 

resolve the relation between mass and time at the bound c. 

Such that G=c3tf/mf, then the escape velocity is equal to the 

classical velocity bound at c. 

3 2

3 2
c

f f M f f M M

f Lr f Lr Lrf f

l t n m l n nGM
v

R m n l n nt t
    .  (E1) 

The mass-to-length count bound with respect to the escape 

velocity is then 

1/2
2GM

v
r

 
  
 

,             (E2) 

1/2 1/2
3 2c

c

nc 2n2
c M siL M
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



   
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   

,   (E3) 

2nM Lrn .               (E4) 

Notably, the smallest count of mf with respect to lf may not 

be less than the precision of the reference mf=2.17647x10-8 

kg. Then, 

8

Mb7

2.17643 10 units 1 unit 1
n

1 unit 1/4.59468 10 units

f f

f ff

m m

l ml



   . (E5) 

Correlating both bounds the ratio is then 2 units of mf per 

unit of lf such that 1/(1/mf). Thus, 2(1/(1/mf))=2mf. Moreover, 

such that nMb and mf are equal in value without units, then the 

classical velocity bound is 

c c 2M
bc f

Lr

n
v m

n
  .          (E6) 

The expansion of space HU=2θsi ([9], Eq. 27) is not 

included in the expression. Given that HU is relative to the 

diameter of the universe, divide by 2. Then, the radial 

expansion respective of orbital and escape velocity vb may be 

written in two ways. The fundamental expression may be 

used to convert between them. 

12 204.054 km scb si fv m   ,      (E7) 

1204c .05 sc 4 kmb f siv m    .      (E8) 

Both θsi and our substitution of mf for nMb carry no units. 

The expression describes the velocity bound corresponding 

to the upper count bound of mf that may be discerned at a 

point in space. The corresponding mass bound is then vb 

equal to the same as expressed with Newton’s expression.  

( )
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b f R
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We observe that mf in Eq. (E9) is a dimensionless 

substitute for nMb. There are no units. But, in Eq. (E12) where 

R in meters cancels with lf in meters, we are left with mf
2  
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and a single kilograms describing Mb-f(R). But in Eq. (E9)  

we introduced the fundamental expression θsi=lfmf/2tf. 

Cancellations leave both R, tf and an additional mf 

dimensionless. The result is kilograms, 

2 3
2

( ) 2
f f

b f R si si
f f

m mkg
M R m R kg

l m t
    .   (E14) 

APPENDIX F: POWER SPECTRUM DISTRIBUTIONS 

([7], Sec. 3.11) 

Before we begin, there exists a significant question 

regarding the value of the cosmological constant. New 

insights into its value may be resolved when considering 

Einstein’s observation that the speed of light is constant for 

all observers. We extend this observation to recognize all 

frames of reference for which an observer may consider. 

It follows that the upper bound rate nL/nT of lf per tf at 

which two phenomena may regress with for all inertial 

frames, including those considered at the leading edge of a 

system, must equal c. Moreover, the relation between length 

and time in the Measurement Frame is described by the 

fundamental expression. 

2
csi

fm


 .              (F1) 

But, as we recognize, the speed of light is constant for all 

observers in consideration of all frames. Thus, in addition to 

the observer’s Measurement Frame, light is also constant as 

described with respect to the observer’s Target Frame. This 

implies that, 

O10: Any measure other than that described by the 

fundamental expression would describe observers that 

observe a speed of light other than c. 

We also recognize that the universe as defined by that 

space traveled by light since the Big Bang is physically 

significant. This does not mean that matter occupies all space 

in the Target Frame of all observers. We recognize that the 

presence of mass may differ from the space described by the 

fundamental expression when defined relative to the Target 

Frame and as such distinguish universal expansion (i.e. the 

expansion of the universe) from stellar expansion (i.e. the 

expansion of galaxies away from one another). 

Replacing distance and elapsed time as used in the 

Measurement Frame with those terms corresponding to the 

Target Frame nTtf=AU, nLlf=DU (i.e. the diameter DU and age 

AU of the universe), then 
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To break down the terms in the parenthesis, we note that 

mf=2θsi/c when defined with respect to the Target Frame 

follows c=nLulf/nTutf=(nLu/nTu)c. Thus, 

c

2 si Tu
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n
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
 ,              (F5) 

But as there exists no reference for mu external to the 

universe, we recognize that mu=1 in the Target Frame of the 

universe, a self-defining unity expression. We may then 

organize terms on the right side of the equality such that 
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Now, with the fundamental expression describing the 

relation between each dimension as a function of the 

Measurement and Target Frames, we may reduce the terms 

in the parenthesis of Eq. (F4) to resolve that 
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Given an age of the universe equal to 13.799±0.021 billion 

years [5], then 

2 2 3.26239 13.799 90.035 blyU si UD      , (F9) 
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Notably, the same ‘unity’ arguments may be made with 

respect to length and time, but unlike that made with respect 

to mass, such that the relation between the remaining 

dimensions length and time (i.e. c=lf/tf) is a known constant, 

the relation between time and mass as well as mass and 

length are not so easily measured. It is only because of the 

known value of c that this argument can be carried out.  

Moreover, note that the constancy of c for all observers  

is reflected in c=(DU/AUmf) (Eq. F10) such that DU/AU 

describes the rate of universal expansion. Thus, 

O11: Physical support for the constancy of light in all frames 

exists only in a flat universe. 

O12: The rate of universal expansion when defined with 

respect to the system is constant, DU/AU=cmf=6.52478 ly/y. 

With this, we may then approach a description of the 

universe as a function of the system volume (i.e., as 

described by the fundamental expression) and the critical 

density defined with respect to that space. Such that 

VU=(4/3)πRU
3, G=c3tf/mf from (Eq. 16), RU/AU=θsic ([11], 

Eq. 44), and where the critical density of a flat universe 

ρc=Hf2/8πG [20] is a function of the Hubble frequency ([7], 

Eq. 60), then 

O U m U c obsM V V M ,                     (F11) 
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
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Organizing this expression in combination with the 

observation that the sum of the dark and observable 

distributions must equal 1, then 

22 2dkm obs si Ω Ω ,            (F17) 

1dkm obs Ω Ω .               (F18) 

We may combine the two expressions to resolve their 

distribution values. 
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obs

si
 


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Finally, such that the leading edge of the universe is 

expanding at the speed of light vU=c and such that 2θsic 

defines the ratio of the observable relative to the visible 

Mobs/Mvis (i.e., two times the RU/AU=θsic referenced in the 

first paragraph) we may use these constraints to resolve the 

remaining distributions. Note, Ωtot=1; as such, the term may 

be dropped. 
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1
4.84884%

2 2

obs obs
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Ω
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63.3624 4.84884 26.78876%uobs obs vis    Ω Ω Ω . (F24) 
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