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No Violation of Bell's Inequality  
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Abstract  Ven diagram description of sets logic cannot describe correctly a 3-phased sequential experiment of true-false 
filters. In a 3 filters experiment with sequence of filters A B and C, a particle can never arrive at C without passing first 
through B. Thus, when excluding particles from C, one should also consider those which never got into C in the first place. 
Hence, Bell's inequality is never violated, not even in the case of quantum pairs. Entanglement is due to hidden variables – 
time oscillations. 
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1. Introduction 
There are two issues in the attempts to explain the source 

of debate around the EPR paradox, that need to be explained. 
A thought experiment is always brought where a pair of 

electron positron is created with opposite momentum and 
spin, so that their initial total momentum and spin is null. 

This leads to a claimed contradiction of Heisenberg's 
uncertainty principle. Measurement of the spin of one 
particle in one direction (say z), leads to non-local 
knowledge of the spin of the second particle in same 
direction. Thereof, the second particle may have its spin in 
the conjugate direction (say x) measured as well. 

The claim is that this contradicts Heisenberg's uncertainty 
principle which forbids the measurement of two conjugate 
observables (𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑧𝑧  in the case of the second particle), 
simultaneously. 

As Heisenberg claims, no experiments that allow a 
simultaneous precise measurement of two conjugate 
quantities, then these quantities are also not simultaneously 
well-defined. 

The first mathematically exact formulation of the 
uncertainty relations is due to Robertson [1] who proved the 
theorem that for all normalized state vectors |ψ⟩ and for all 
observables (self-adjoint operators) A and B, the following 
inequality holds: 

(〈A2〉 − 〈A〉2)(〈B2〉 − 〈B〉2)  ≥  1/2〈[A, B]〉    (1) 
where 〈∘〉 ≡  ⟨𝜓𝜓| ∘ |𝜓𝜓⟩  denotes the expectation value in 
state |ψ⟩, and where [𝐴𝐴,𝐵𝐵] ≡  𝐴𝐴𝐴𝐴 −  𝐵𝐵𝐵𝐵  is the 
commutation operation. 

In quantum mechanics a system is supposed to be 
described by its wave function, also called its quantum state  
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or state vector. Given the state vector |ψ⟩, one can derive 
probability distributions for all the physical quantities 
pertaining to the system, usually called its observables,  
such as its position, momentum, angular momentum, spin, 
energy, etc. The operational meaning of these probability 
distributions is that they correspond to the distribution of the 
values obtained for these quantities in a long series of 
repetitions of the measurement. More precisely, one 
imagines a great number of copies of the system under 
consideration, all prepared in the same way. On each copy 
the observable, is measured. Generally, the outcomes of 
these measurements differ and a distribution of outcomes is 
obtained. The theoretical observable distribution derived 
from the quantum state is supposed to coincide with the 
hypothetical distribution of outcomes obtained in an infinite 
series of repetitions of the observable measurement. The 
same holds, mutatis mutandis, for all the physical quantities 
pertaining to the system. Note that no simultaneous 
measurements of two or more quantities are required in 
defining the operational meaning of the probability 
distributions. 

The uncertainty relations discussed above can be 
considered as statements about the spreads of the probability 
distributions of the several physical quantities arising from 
the same state. The uncertainty relation between the position 
and momentum of a system may be understood as the 
statement that the position and momentum distributions 
cannot both be arbitrarily narrow—No two separate 
observables of a system may be measured simultaneously. 

Notice that the uncertainty principle always refers to 
measurements and not to knowledge (information). 

As for Bell's inequality. It was this inequality that was 
used, in a thought experiment, to show that hidden variables 
cannot be used in order to explain the so-called entanglement. 
Namely, in a triple slit Stern-Gerlach experiment, the fact 
that the spin of the outgoing electron is somehow aware of 
the spin of the incoming electron. In other words, if hidden 
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variables existed, then one could explain this "spooky" 
connection between the electron states. But if hidden 
variables is negated, then one cannot explain this connection 
and one is led to weird conclusions about our understanding 
of quantum mechanics fundumantals. 

2. Information vs. Measurement 
The quantum measurement problem has been discussed 

extensively [3]. Many dynamical models were proposed 
over the years for elucidating quantum measurements. The 
approaches range from standard quantum theory, relying for 
instance on quantum statistical mechanics or on decoherence, 
to quantum-classical methods, to consistent histories and to 
modifications of the theory.  

When we say that we know a certain parameter to have a 
given value, it means that we have accepted a given value 
which was delivered to us from some source (information). 
This is an information transfer. Information can only be 
verified by measurement. But if the information is deduced 
by us based on a given source, where we did not actually 
measure it, this means we have information without direct 
measurement. 

For example, suppose we are given an empty box. How do 
we know that the box is empty? 

By one of two options. Either we open the box and see in 
our own eyes (measure), or we are given (from a reliable 
source) the information about the box being empty. This 
information was obtained earlier, by another spectator, via 
measurement. For instance, the one who closed thr box 
earlier. 

So, in the case of the empty box, we can tell its discrete 
state at a given instance of time and a given position in space, 
without performing any measurement. 

There is no such thing as an expectation value for a given 
parameter, which value was obtained via a clean information 
transfer. If there is no noise involved, the information will be 
delivered clean and uninterrupted. 

When two observables are represented by two 
non-commuting operators, the two observables cannot be 
measured simultaneously. However, measurement is not 
equivalent to knowledge. 

We may know simultaneously the values of two 
non-commuting observables, but we cannot measure then 
simultaneously. 

Heisenberg uncertainty principle is valid as long as one 
refers to measurements, not for information. 

An example: 
Suppose Alice and Bob have a single coin to hold. Only 

one of them can have it. This means that if for instance Alice 
holds the coin, she knows by measurement (i.e. by way of 
looking or feeling), that she has it and knows without 
measurement, that Bob does not have it. 

Likewise, Bob knows by measurement that he does not 
have the coin, and by deduction without measurement, that 
Alice got it. 

Let |A> represent the state of Alice hand and |B> represent 
the state of Bob's hand. Clearly σz is the operator which 
reveals the coin's position. 
σz|B> = �1

0� if Alice has the coin, and σz|B> = �0
1� if 

she doesn't have it. 
In this case we are bluffing the reality. Instead of saying 

that Alice is certain about the fact of having the coin at her 
hand, we are allowing a false probabilistic description of the 
situation. 

We are saying that Alice has a probability of 100% of 
having the coin at her hand. This means that according to 
quantum probabilistic description of reality, instead of using 
a False-True logic, we are using a probabilistic description of 
discrete logic. 

This is what we call "Schrodinger's Cat" gedanken 
experiment. 

One cannot allocate quantum description to discrete logic. 
Otherwise one gets impossible results. 

Therefore, in the case of the pair production, there is no 
violation of Heisenberg's uncertainty principle. Knowledge 
of the spin state is not equivalent to an act of measuring it. 

This is the difference between measurement and 
information. 

3. Bell's Arguments 
The paradox of Einstein, Podolsky and Rosen was 

advanced as an argument that quantum mechanics could  
not be a complete theory but should be supplemented by 
additional variables. These additional variables were to 
restore to the theory causality and locality. In his work [2], 
Bell claimed that the additional variables idea is 
incompatible with the statistical predictions of quantum 
mechanics. It is the requirement of locality, or more 
precisely that the result of a measurement on one system be 
unaffected by operations on a distant system with which it 
has interacted in the past, that creates the essential difficulty.  

Consider a pair of spin one-half particles formed somehow 
in the singlet spin state and moving freely in opposite 
directions. Measurements can be made, say by Stern-Gerlach 
magnets, on selected components of the spins σ1 and σ2. If 
measurement of the component σ1 ⋅ n� , where n�  is some unit 
vector, yields the value + 1 then, according to quantum 
mechanics, measurement of σ2 ⋅ n�  must yield the value -1 
and vice versa. 

Now, when stating the above statement about the actual 
results of measuring spins, one should remember that the 
results are always statistical. It is only by repetition of the 
measurements over a large number of times, that one gets the 
expectation values +1 or -1. One cannot tell the outcome of a 
single measurement unless it is repeated many times. 

Thus, measuring the spin of the first particle of the pair in 
a direction 𝑛𝑛�, and the spin of the second particle in direction 
𝑚𝑚� , the quantum mechanical description of the probability of 
finding the spin of the second particle in the 𝑚𝑚�  direction, 
provided that spin of the first spin was in the 𝑛𝑛� direction. 
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Thus, the expectation value for such a result will depend 
on the actual number of experiment n and the probability 

𝑃𝑃(2𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚 𝑖𝑖𝑖𝑖 1 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛)  
= |⟨𝜎𝜎2 ⋅ 𝑚𝑚� |𝜎𝜎1 ⋅ 𝑛𝑛�⟩|2 

In other words,  
N(1 in direction n, 2 in direction m) will be 

n|⟨𝜎𝜎2 ⋅ 𝑚𝑚� |𝜎𝜎1 ⋅ 𝑛𝑛�⟩|2 
If one selects direction 𝑛𝑛� to be up in the +Z direction, then 

one may phrase the above as follows. 
What is the expected number of spins with an up (+Z) 

spins for the first particle and spin up in for the second 
particle, if the second particle is measured in the m direction, 
tilted by an angle at 𝜃𝜃  degrees with respect to the +Z 
direction. 

The answer is 

N(1 up in +Z, 2 up in 𝜃𝜃) = 𝑛𝑛 �1+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

�     (2) 

As a matter of fact, no single spin can be tilted in any 
direction 𝜃𝜃. It is rather the average outcome of spins up 
and down that results in a component in the 𝜃𝜃 direction. 

In the most general form, if the spin of the entering particle 
is tilted at an angle 𝜃𝜃1 with respect to the +Z axis, then the 
probability of the outgoing spin to be tilted at an angle 𝜃𝜃2 
with respect to the +Z axis, is given by 

𝐏𝐏{tilted in θ2 |tilted in θ1}  = 1+cos (θ1−θ2)
2

    (3) 

4. Bell's Inequality Application is False 
John Bell [2] is generally credited to have accomplished 

the remarkable “proof” that any theory of physics, which is 
both Einstein local and “realistic” (counterfactually definite), 
results in a strong upper bound to the correlations that    
are measured in space and time. He thus predicts that 
Einstein-Podolsky-Rosen experiments cannot violate Bell- 
type inequalities. counterexamples to this claim, based on 
discrete-event computer simulations. Our model-results  
fully agree with the predictions of quantum theory for 
Einstein-Podolsky-Rosen-Bohm experiments and are free of 
the detection- or a coincidence-loophole. The problem with 
the "proof" of the violation of Bell's inequality, lies in its 
application [5,6]. 

Bell's inequality states that for any partly overlapping sets 
A, B and C, the number of member elements of the sets: 

N(A,B') + N(B,C') ≥ N(A,C')        (4) 
where primes indicate the logical NOT. 

Bell's inequality is correct for sets that represent a state of 
elements that do not represent their positions in a chain of 
experiments. 

For instance, for a setup with two filters A and B, the 
common set 𝐴𝐴 ∩ 𝐵𝐵 is the same in the Venn diagram for both 
experiment setups, but the experiments will yield different 
results for 𝑁𝑁(𝐴𝐴,𝐵𝐵�) and 𝑁𝑁(𝐵𝐵, 𝐴̅𝐴). 

 

For example, if A transfers 70% and B transfers 10%, then 
for every 1000, incoming particles, 𝑁𝑁(𝐴𝐴,𝐵𝐵�) = 630 while 
𝑁𝑁(𝐵𝐵, 𝐴̅𝐴) = 30. 

One cannot describe a quantum mechanical system 
classically. But since the outcome of an experiment must 
have a definite value each time the experiment is performed, 
though one can never tell the exact result of each individual 
experiment, one may assign a certain unknown outcome 
each time and repeat it with random outcome. It will be the 
statistical expectation value, that connect the quantum 
mechanical values with the real classical results. 

Let us look at the following example. 
Create a table of possible outcomes in a 3-filters 

experiment. 
Filter A: pass or fail 
Filter B: pass or fail 
Filter C: pass or fail 
The three filters are placed one after the other, so that the 

entering particle, if successful, has to go through all three 
filters. 

Notice however, that the events in this scenario do not 
occur simultaneously. Therefore, one must be careful in 
counting the sets of events to be included in the totality of 
elements in the set. 

 

There are n particles entering from the left. There are nA 
particles passing filter A and n-nA particles blocked.  

There are nA particles entering filter B, and nB passing 
filter B while nA-nB blocked. 

Finally, there are nB particles entering filter C, and nC 
passing filter C while nB-nC blocked. 

In the following, N(A,B') stands for the number of 
occurrences of A but not B. N(B,C') stands for the number of 
occurrences of B but not C. N(A,C') stands for the number of 
occurrences of A but not C. 

By looking at the drawing it is clear that 
N(A,B') = nA+(nA-nB)             (5) 
N(B,C') = nB+(nB-nC)             (6) 
N(A,C') = nA+(nA-nB) + (nB-nC)     (7) 
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Notice that in this case one has to count both particles that 
failed B and those that failed C. This is a consequence of the 
fact that the counting of elements in the set depends on their 
order in the chain of events. Otherwise, some members of the 
set will be excluded 

N(A, B') = 2nA -nB            (8) 
N(B, C') = 2nB -nC            (9) 
N(A, C') = 2nA –nC           (10) 

Hence, 
N(A, B') + N(B, C') = 2nA – nB + 2nB - nC = 2nA+ nB 

-nC, and since 2nA+ nB -nC ≥ 2nA -nC (withe equality only 
if nB=0).  

Therefore. Irrespective of the ratios, it is always true that 
N(A,B') + N(B,C') ≥ N(A,C')       (11) 

This is in accordance with Bell's inequality. No violation 
of the inequality occurs. Not even if we repeat the above 
experiment a large number of times. In this case, the numbers 
nA, nB and nC may vary according to the probabilistic 
distribution function of the experiment at each filter, but the 
inequality will still hold provide we replace nA, nB and nC 
with their expectation values <nA>, <nB> and <nC> 
respectively. 

In all theoretical explanations of spins or polarization, one 
must be careful in the calculation of the N(A, C') term. It 
must include those elements of N(B,C') as well. 

As mentioned, the order of the filters in the chain is 
important for the end result. For instance, an experiment 
setup as described in the following figure: 

 

Has a completely different logic if one tries to conclude 
anything about the expected numbers of particles in a given 
state. In this setup, the filters B and C are disconnected 
logically. Particles leaving A with spin-up in the direction of 
B, will never arrive filter C, and likewise, particles leaving A 
with spin-up in the direction of C, will never arrive filter B. 
Therefore, the meaning of 𝑁𝑁(𝐴𝐴, 𝐶̅𝐶) has a different meaning 
than in the previous sequential experimntal setup. 

At every filter, there is a certain probability for the 
outcome. This probability depends on the angle between the 
two filters and maybe some other qualities of the filter. 

If for a given filter, the probability of transfer is designated 
by p, then for the three filters A, B, and C we have the 
transfer probabilities given by PA PB and PC respectively. 

Therefore: 
𝑁𝑁(𝐴𝐴,𝐵𝐵�)  =  𝑛𝑛𝑃𝑃𝐴𝐴(1 − 𝑃𝑃𝐵𝐵)           (12) 
𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  =  𝑛𝑛𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝑃𝑃𝐶𝐶)         (13) 

𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  =  𝑛𝑛𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝑃𝑃𝐶𝐶)  +  𝑛𝑛𝑃𝑃𝐴𝐴(1 − 𝑃𝑃𝐵𝐵)  (14) 
The third equation includes those particles that have 

passed A but have not passed B, as part of the number of 
particles that pass A but do not pass C. 

𝑁𝑁(𝐴𝐴,𝐵𝐵�)  + 𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  =  𝑛𝑛𝑃𝑃𝐴𝐴(1 − 𝑃𝑃𝐶𝐶)     (15) 
𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  =  𝑛𝑛𝑃𝑃𝐴𝐴(1 − 𝑃𝑃𝐵𝐵𝑃𝑃𝐶𝐶)         (16) 

Thus 
𝑁𝑁(𝐴𝐴,𝐵𝐵�) + 𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  ≤  𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)       (17) 

And Bell's inequality is violated. 
The entering particle is a spin half particle. It enters a 

magnetic field directed in the +Z direction. The outcoming 
particles from an experiment over n incoming particles (or of 
n repetitive experiments with a single particle) has a 50% 
chance of coming out as a spin up particle. This is not a 
deterministic outcome but rather statistical. So, we denote 
the number of spin-up outcome by 𝑛𝑛𝐴𝐴

𝑢𝑢𝑢𝑢  and the number of 
spin-down outcome, by 𝑛𝑛𝐴𝐴𝑑𝑑𝑑𝑑 . 

The beam of 𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢  enters a second filter B, of magnetic 

field tilted by 𝜃𝜃 degrees to the +Z direction. By quantum 
mechanics, we know the probability of outcome in an up 
state as given by �1+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2
�, but we do not calculate it. Let us 

assume that the number of outcoming spin-up particles will 
be 𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  and the number of spin-down particles will be 𝑛𝑛𝐵𝐵𝑑𝑑𝑑𝑑 . 
Obviously, 𝑛𝑛𝐵𝐵𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐴𝐴

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐵𝐵
𝑢𝑢𝑢𝑢 . 

Finally, the number of outcoming spin-up particles from 
the third filter C, tilted by an angle 𝜃𝜃′ degrees to the +Z is 
dictated by the probability �1+𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃−𝜃𝜃′)

2
�. We assume the 

number of outcoming particles with spin-up to be 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢 . 

Obviously, 𝑛𝑛𝐶𝐶𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐵𝐵
𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶

𝑢𝑢𝑢𝑢 . 

 

It will now be assigned a value TRUE for particles passing 
a filter in the up state and a value of FALSE to particles 
passing a filter in a spin down state. 

Therefore, 𝑁𝑁(𝐴𝐴,𝐵𝐵�)  = 𝑛𝑛𝐵𝐵𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢 . Likewise, 
𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  = 𝑛𝑛𝐶𝐶𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢 . 

Lastly, 𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  = 𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢  +  (𝑛𝑛𝐴𝐴

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐵𝐵
𝑢𝑢𝑢𝑢 )  + (𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢 ).  

𝑁𝑁(𝐴𝐴,𝐵𝐵�)  +  𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  =  𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢 − 𝑛𝑛𝐶𝐶

𝑢𝑢𝑢𝑢  
Whereas 

𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  = 2𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶

𝑢𝑢𝑢𝑢  
Therefore 

𝑁𝑁(𝐴𝐴,𝐵𝐵�)  +  𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  ≥  𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)        (18) 
With equality only when 𝑛𝑛𝐴𝐴

𝑢𝑢𝑢𝑢  = 0. 
The above is true for a single particle experiment, repeated 

n times, as well as for a single experiment with a multitude of 
n particles. 
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The numbers 𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢 , 𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  and 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢  may vary from 

experiment to experiment but the resulting expectation 
values will always be true. 

In the case where a direct arrival to C is possible (not 
through B) 
𝑁𝑁(𝐴𝐴,𝐵𝐵�)  = 𝑛𝑛𝐵𝐵𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐴𝐴

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐵𝐵
𝑢𝑢𝑢𝑢 . 

𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  = 𝑛𝑛𝐶𝐶𝑑𝑑𝑑𝑑  =  𝑛𝑛𝐵𝐵
𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶

𝑢𝑢𝑢𝑢 . 

𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  = 𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢  + 𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢 .  

𝑁𝑁(𝐴𝐴,𝐵𝐵�)  +  𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  =  𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢 − 𝑛𝑛𝐶𝐶

𝑢𝑢𝑢𝑢 . 
Whereas 

𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)  = 𝑛𝑛𝐴𝐴
𝑢𝑢𝑢𝑢 + 𝑛𝑛𝐵𝐵

𝑢𝑢𝑢𝑢  − 𝑛𝑛𝐶𝐶
𝑢𝑢𝑢𝑢  

Therefore 
𝑁𝑁(𝐴𝐴,𝐵𝐵�)  +  𝑁𝑁(𝐵𝐵, 𝐶̅𝐶)  <  𝑁𝑁(𝐴𝐴, 𝐶̅𝐶)       (19) 

So, only under this "direct" case, Bell's inequality is 
violated. 

It can be seen, that the Bell inequality is violated, but not 
because of quantum mechanical reasons. Rather, it is 
because of a fundamental mistake caused by the omission 
from the calculation, of particles failing to pass B (and 
evidently fail to pass C). 

5. Conclusions 
Bell's inequality is not violated by quantum arguments and 

the validity of hidden variables should not be ruled out. 
The fact that two independent electron positron pair retain 

the so-called entanglement is nothing but a result of their 
simultaneous creation instance. 

An electron positron pair that is not a result of a 
simultaneous creation incident will not have any 
entanglement. 

Yet, the option of a simultaneous pair production is the 
subject of experimental tests [8], and its application to 
cyphering has been suggested [9]. 

There must be some time mechanism (oscillation) which 

keeps track of the state of each particle in the pair. As long as 
there is no external interference, the two particles will keep 
their original state at the mutual creation moment. 

The case of a pair that eventually decayed into a common 
singlet state is ruled out, since if the pair are together long 
enough for a mutual exchange to occur and bring them into 
the singlet state, they must remain together and will not part 
away without an external intervention. 
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