
International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 
DOI: 10.5923/j.ijtmp.20201006.02 
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Abstract  The existence of black holes is based on singularity in the Schwarzschild metric at the Schwarzschild radius. 
Another singularity is at r = 0. These singularities of a spherically symmetric non-rotating, uncharged mass of radius R, are 
considered here. Considering Newton's shell theorem, the gravitational potential falls off linearly with r for r < 𝑅𝑅. The point 
r = 0 is an infinitesimally small location in space. No mass can be indefinitely condensed to this point. Thus, when 
investigating the concept of a mass, one has to consider its finite radius. By including the shell theorem for r < 𝑅𝑅, the 
singularity at r → 0 is removed. It is also shown, that a situation where rs < R but r𝑝𝑝ℎ >  𝑅𝑅 is possible. Therefore, the 
existence of a photon sphere light ring does not necessarily indicate a black hole. It is shown, that the condition for a 
gravitational collapse is R < 3

2
r𝑠𝑠, and not R < r𝑠𝑠. Further in this work, the question of maximal density is considered and 

compared to the quantum limit of mass density put by Planck's units as dictated from dimensional analysis. There are two 
main claims here: 1. Black holes (if exist) will result only if the Schwarzschild radius is larger than 2/3R. 2. General relativity 
leads to quantization of gravity. 
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1. Introduction 
The Schwarzschild solution appears to have singularities 

at r = 0 and r = rs , with rs = 2𝐺𝐺𝐺𝐺
𝑐𝑐2  which cause the metric to 

diverge at these radii. There is no problem as long as R > rs . 
The singularity at r = rs  divides the Schwarzschild 

coordinates in two disconnected regions. The exterior 
Schwarzschild solution with r > rs  is the one that is related 
to the gravitational fields of stars and planets. The interior 
Schwarzschild solution with 0 ≤ r < rs , which contains   
the singularity at r = 0, is completely separated from      
the outer region by the so-called singularity at r = rs .    
The Schwarzschild coordinates therefore give no physical 
connection between these two regions. 

The singularity at r = rs  is an illusion however; it is an 
instance of what is called a coordinate singularity. As the 
name implies, the singularity arises from a bad choice of 
coordinates or coordinate conditions. When changing to a 
different coordinate system, the metric becomes regular at r 
= rs  and can extend the external region to values of r smaller 
than 𝑟𝑟𝑠𝑠. Using a different coordinate transformation one can 
then relate the extended external region to the inner region.  

As will be shown later on, this so-called singularity is 
completely removed even for the Schwarzschild coordinates. 

The case r = 0 is different, however. If one asks that the 
solution be valid for all r, one runs into a true physical 
singularity, or gravitational singularity, at the origin. To see  
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whether this is a true singularity one must look at quantities 
that are independent of the choice of coordinates. One such 
important quantity is the Kretschmann invariant [19], which 
is given by Rα𝛽𝛽𝛽𝛽𝛽𝛽 R𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 . For a Schwarzschild black hole of 
mass M and radius R, the Kretschmann invariant is 
𝐾𝐾𝑟𝑟  = 48𝐺𝐺2𝑀𝑀2

𝑐𝑐4𝑅𝑅6  ≈ 842𝐺𝐺2

𝜌𝜌2𝑐𝑐4 . Obviously it is independent of the 
radius R, and is always greater than 0 (provided we accept 
the physical requirement that the density 𝜌𝜌 is never infinite). 

At r = 0 the curvature can become infinite, if and only if,  
it represents a point particle of zero mass. One cannot 
compress a finite mass into an infinitesimal point (of radius 
R = 0). Any finite mass should have a finite radius R > 0. 
Therefore, when looking into the point r = 0, one needs to 
consider the effects of the outer shells of matter which 
surround the r = 0 point. 

General relativity predicts that any object collapsing 
beyond a certain point (for stars this is the Schwarzschild 
radius) would form a black hole, inside which a singularity 
(covered by an event horizon) would be formed.  

As will be shown in the following, no such singularities 
exist. 

2. Spherically Symmetric, Non-rotating, 
Uncharged Spherical Body 

Consider a spherically symmetric, non-rotating, 
uncharged mass (a stellar object or an elementary particle). 

Under spherical symmetry, and at a remote distance in 
empty space outside the object, the Schwarzschild metric 
[1,2,3] is given by: 



 International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 121 
 

 

𝑔𝑔𝜇𝜇𝜇𝜇 =

⎝

⎜⎜
⎛
�1 − 2𝐺𝐺𝐺𝐺

𝑟𝑟𝑐𝑐2 �  

 −1

�1−2𝐺𝐺𝐺𝐺
𝑟𝑟𝑐𝑐2 �

 

 −𝑟𝑟2  
 −𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ⎠

⎟⎟
⎞

 (1) 

This metric describes very well the gravitational effects of 
that mass on gravitational field curvature, and dynamics of 
moving particles, in the empty regions outside the object. 

However, it suffers of two problems: 

1.  At the Schwarzschild radius 𝑟𝑟𝑠𝑠 = 2𝐺𝐺𝐺𝐺
𝑐𝑐2 , the metric has 

a singularity. 
2.  At r  0, the metric diverges. 
The first singularity is not a real one, as it can be removed 

by appropriate coordinate transformations [5-13].  
The second singularity cannot be removed by coordinate 

transformation. It is an inherent singularity at r → 0 in any 
inverse square law central force problem of gravitational 
field). One so far have not been able to relate to the 
divergency problem of force which is inversely proportional 
to the square of the distance r from center of the field source. 

To solve this problem, we must investigate the behavior of 
the field inside the mass. 

If any mass source is finite in size, the solution to the 
potential as a function of distance must be modified, so that it 
includes the region where r < R, the radius of the mass. 

In addition, the Einstein field equation should be related to 
in non-empty space. But to a very good approximation, the 
Einstein equation in the inside of even the heaviest stellar 
objects can be considered same as empty space. 

This assumption will only be valid for a perfect fluid 
solution, where of the Tμν  tensor, only energy density is 
considered, while momentum density, shear stress, 
momentum flux and pressure are either null or irrelevant. 

3. Shell Theorem 
Let R be the radius of an uncharged non-rotating 

spherically symmetric mass, of given density 𝜌𝜌(𝑟𝑟), with    
r being the radial distance from center (at r = 0). 

Assuming this object has a volume 𝑣𝑣 =  4𝜋𝜋𝑟𝑟3

3
 and radius 

R, its average density will be 〈𝜌𝜌〉  =  3𝑀𝑀
4𝜋𝜋𝑅𝑅3  and since 

𝑀𝑀 =  ∫ 4𝜋𝜋𝑟𝑟2𝜌𝜌(𝑟𝑟) 𝑑𝑑𝑑𝑑𝑅𝑅
0  it is straightforward to see that 

𝑀𝑀 =  
4𝜋𝜋
3

 lim
𝑅𝑅⟶0

𝑅𝑅3 𝜌𝜌(0) 

This means that unless the density at the center 𝜌𝜌(0) is 
infinite, the mass must vanish (M = 0). 

The only case of M > 0 is possible if and only if 𝜌𝜌(0) is 
infinite. And if we assume physical continuity, then we may 
write  

lim
𝑅𝑅⟶0

𝑅𝑅3 𝜌𝜌(𝑅𝑅)  =  
3𝑀𝑀
4𝜋𝜋

 

In other words 

𝜌𝜌(𝑅𝑅)   =  
3𝑀𝑀

4𝜋𝜋𝑅𝑅3 

And for any finite mass M 
lim
𝑅𝑅⟶0

 𝜌𝜌(𝑅𝑅)  ⟶  ∞ 

However, as will be shown later, the density of any object 
must have an upper limit and it cannot become infinitely 
large. To resolve this contradiction, one must accept, that no 
mass can be condensed to a singular point r = 0. A mass will 
always have some finite density and a finite radius (volume). 

Therefore, when considering gravitation at r = 0, one must 
consider the effects of surrounding mass. Condensed as it 
might be, but still of finite density and surrounding r = 0. 

In classical mechanics, the shell theorem, proven already 
by Isaac Newton [14] states that: 

A spherically symmetric body affects external objects 
gravitationally as though all of its mass were concentrated at 
a point at its center. 

If the body is a spherically symmetric shell (i.e., a hollow 
ball), no net gravitational force is exerted by the shell on any 
object inside, regardless of the object's location within the 
shell. 

A corollary is that inside a solid sphere of constant density, 
the gravitational force within the object varies linearly with 
distance from the center, becoming zero by symmetry at the 
center of mass. 

Due to the shell theorem, the gravitational potential of a 
spherically symmetric object of mass M and radius R, as a 
function of distance r, from the object's center is given by: 

𝛷𝛷(𝑟𝑟) = −𝐺𝐺𝐺𝐺
𝑅𝑅3

⎩
⎪
⎨

⎪
⎧

1
2

(3𝑅𝑅2 −  𝑟𝑟2) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ≤ 𝑅𝑅
 
 

𝑅𝑅3

𝑟𝑟
                    𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 > 𝑅𝑅

�     (2) 

The result for r < R is obtained by summation of the 
potential at some point p inside the mass from its spherical 
shell between R and r, and the remaining mass inside sphere 
of radius r. 

The potential at point p due to the shell is given by 
𝛷𝛷𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (𝑝𝑝) =  −2𝜋𝜋𝜋𝜋𝜋𝜋(𝑅𝑅2 − 𝑟𝑟2)       (3) 

The potential at same point p due to the remaining inner 
sphere is given by 

𝛷𝛷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝) =  −4𝜋𝜋𝜋𝜋𝜋𝜋𝑟𝑟2             (4) 
The total potential at point p inside the sphere is a 

superposition of both Φ𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (𝑝𝑝), and Φ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝). Thus, (for  
r < R): 

𝛷𝛷𝑝𝑝(𝑟𝑟) = 𝛷𝛷𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝛷𝛷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑟𝑟) =  −4𝜋𝜋𝜋𝜋𝜋𝜋 �𝑅𝑅
2

2
− 𝑟𝑟2

6
�  (5) 

𝛷𝛷𝑝𝑝(𝑟𝑟) =  − 3𝐺𝐺𝐺𝐺
2𝑅𝑅3  �𝑅𝑅2 − 1

2
𝑟𝑟2�        (6) 
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4. The Identification of 𝚽𝚽(𝐫𝐫) as the 
Gravitational Potential 

In the Schwarzschild metric, the 𝑔𝑔00 term is a function of 
the distance r and one may write: 

𝑔𝑔00(𝑟𝑟) =  �1 + 2𝛷𝛷(𝑟𝑟)
𝑐𝑐2 �            (7) 

First argument – dimensions 
𝛷𝛷(𝑟𝑟)  is a function of distance r, and must have the 

dimensions of 𝑐𝑐2 . It must obey the constraint of 
lim𝑟𝑟⟶∞𝛷𝛷(𝑟𝑟)  ⟶  0  as should be the case at infinite 
distance in empty flat space. 

Its units should be [G][Kg]/[m] in order to make 𝛷𝛷(𝑟𝑟)
𝑐𝑐2  

dimensionless. 
We therefore have a good reason to assume that 𝛷𝛷(𝑟𝑟) is 

the gravitational potential due to a spherically symmetric 
object, independent of the size and of the density of that 
object. Exactly as described by eq. 2. 
Second argument- Einstein equation under spherical 
symmetry 

For a curved spacetime, based on the Riemann tensor,    
it can be shown that 𝛷𝛷(𝑟𝑟)  must have the form of a 
gravitational potential (see Appendix 1). 

Following these arguments, it is justified to identify 𝛷𝛷(𝑟𝑟), 
as the gravitational potential of the field created by a 
spherically symmetric non-rotating uncharged mass. 

5. Inside the Sphere (r < R) 
In the case where r < R (inside the mass), 𝕂𝕂 ≠ 0 where 

𝕂𝕂 = 16πG
𝑐𝑐2   

G=6.6743 × x10−11  and so 𝕂𝕂 ≈ 37 x10−27 , so unless 
the internal density 𝜌𝜌 is of the order of 1027  Kg/m3, the 
equation can be solved with the assumption of 𝕂𝕂𝜌𝜌 = 0. 

Even the heaviest neutron stars have overall densities of 
the order of 6 x1017 Kg/m3. For elementary particles, the 
neutron for instance, has density of approximately 3 x1017 
Kg/m3. So, for all practical calculations one may assume 
𝕂𝕂 = 0 inside any mass (that is, for r < R). 

For the internal pressure p, as long as the internal pressure 
is much less than 1024 𝑃𝑃𝑃𝑃 , 𝕂𝕂p = 0 . For the Sun for 
instance, the internal core pressure is p1011 𝑃𝑃𝑃𝑃. 

Finding the solution of the homogeneous differential 
equation with 𝕂𝕂ρ = 0,𝕂𝕂p = 0 , will lead to the 
non-homogeneous solution with 𝕂𝕂 = constant. But we will 
concentrate on the homogeneous solution, since 𝕂𝕂 ≈ 0. 

In case of a constant 𝕂𝕂, the non-homogeneous solution 
can be found. 

This is the case for a perfect fluid. 
Under the assumption of 𝕂𝕂 ≈ 0, for the interior of the 

sphere, the time separation inside the sphere is given by 
dτ2 = gμνdxμdxν : 

𝑑𝑑𝑑𝑑2 = �1 + 2𝛷𝛷(𝑟𝑟)
𝑐𝑐2 � 𝑑𝑑𝑑𝑑2  

− 1
𝑐𝑐2 (ℎ(𝑟𝑟)𝑟𝑟2𝑑𝑑𝑑𝑑 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2)      (8) 

6. Modified Schwarzschild Metric 
Inserting the expression for 𝛷𝛷(𝑟𝑟): 

𝛷𝛷(𝑟𝑟) =  −4𝜋𝜋𝜋𝜋𝜋𝜋 �𝑅𝑅
2

2
− 𝑟𝑟2

6
� (for (r ≤ R) 

𝛷𝛷(𝑟𝑟) =  −4𝜋𝜋𝜋𝜋𝜋𝜋 �𝑅𝑅
3

3𝑟𝑟
� (for (r > R) 

The Schwarzschild metric inside the sphere (r ≤ R) 
becomes 

 𝑑𝑑𝑑𝑑2 = �1 − 3
2

 𝑟𝑟𝑠𝑠
𝑅𝑅

 �1 − 1
3

 �𝑟𝑟
𝑅𝑅
�

2
��𝑑𝑑𝑑𝑑2  

− 1
𝑐𝑐2 (ℎ(𝑟𝑟)𝑟𝑟2𝑑𝑑𝑑𝑑 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2)     (9) 

while outside the sphere (r > R) it becomes 

 𝑑𝑑𝑑𝑑2 = �1 −
 𝑟𝑟𝑠𝑠
𝑟𝑟

 � 𝑑𝑑𝑑𝑑2 

− 1
𝑐𝑐2 (ℎ(𝑟𝑟)𝑟𝑟2𝑑𝑑𝑑𝑑 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2)   (10) 

There are now three different possibilities, depicted in the 
following: 

A a situation where both 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑝𝑝ℎ  are inside the objects 
radius R. 𝑟𝑟𝑠𝑠 < 𝑟𝑟𝑝𝑝ℎ  < R. This is a standard object. 

B - a situation where 𝑟𝑟𝑠𝑠  is inside the object's radius R   
(a standard object) while 𝑟𝑟𝑝𝑝ℎ  is outside the object. 𝑟𝑟𝑠𝑠 < R 
< 𝑟𝑟𝑝𝑝ℎ . 

C - a situation of a black hole, where both 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑝𝑝ℎ  are 
outside R. 𝑅𝑅 < 𝑟𝑟𝑠𝑠 <  𝑟𝑟𝑝𝑝ℎ . Therefore, B represents a possible 
situation where a photon sphere light ring exists around a 
standard (not a black hole) body. 

For said cases, the photon sphere radius rph = 3
2

rs  may 
fall inside or outside R. 

 
A Standard object 𝑟𝑟𝑠𝑠 <R rph  <R 

B Standard object surrounded 
by white ring 𝑟𝑟𝑠𝑠 <R R < rph  

C Black hole 𝑟𝑟𝑠𝑠 >R rph  >R 
 
Case A is a standard object, with both 𝑟𝑟𝑠𝑠, and 𝑟𝑟𝑝𝑝ℎ  falling 

inside R. 
Case B is a white object, with 𝑟𝑟𝑠𝑠 falling inside R but 𝑟𝑟𝑝𝑝ℎ  

falling outside R. Light is trapped in the photon sphere, 
causing the object to have a white glowing ring around it. 
There is no gravitational collapse. 

Case C is a true black body, with both 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑝𝑝ℎ  falling 
outside R. 

Case A, both 𝑟𝑟𝑠𝑠  and 𝑟𝑟𝑝𝑝ℎ  are inside R (holds for most 
stellar objects – but not for black holes). One obtains: 

𝑑𝑑𝑑𝑑2 = �1 − 3
2

 𝑟𝑟𝑠𝑠
𝑅𝑅

 �1 − 1
3

 �𝑟𝑟
𝑅𝑅
�

2
��𝑑𝑑𝑑𝑑2  

− 1
𝑐𝑐2 (ℎ(𝑟𝑟)𝑟𝑟2𝑑𝑑𝑑𝑑 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2)  (11) 

Picking the coordinate system so that the radius r is along 
the x axis, the 𝜃𝜃 and 𝜑𝜑 terms are zero 

In other words, for r > R 

𝑑𝑑𝑑𝑑2 =  𝑑𝑑𝑑𝑑2  �1 −  𝑟𝑟𝑠𝑠
𝑟𝑟
�           (12) 
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while for r ≤ R: 

𝑑𝑑𝑑𝑑2 =  𝑑𝑑𝑑𝑑2  �1 − 3
2

 𝑟𝑟𝑠𝑠
𝑅𝑅
�1 − 1

3
 �𝑟𝑟
𝑅𝑅
�

2
��    (13) 

Obviously, for r = R, dτ2 =  �1 −  rs
𝑅𝑅
�, for both. 

Investigating the condition  

1 −  
rph

𝑅𝑅
�1 −

1
3

 �
𝑟𝑟
𝑅𝑅
�

2
�  >  0 

we see that in Case B, for all 𝑟𝑟 ∈  [0,𝑅𝑅] and as long as 
𝑟𝑟𝑠𝑠  ≤  2

3
𝑅𝑅 there is no singularity in the Schwarzschild metric. 

At 𝑟𝑟𝑠𝑠  =  2
3
𝑅𝑅 (and 𝑟𝑟𝑝𝑝ℎ  = 𝑅𝑅). dτ2 becomes zero, and the 

object evaporates into photons (dτ =  0). Thus, 𝑟𝑟𝑠𝑠  >  2
3
𝑅𝑅 is 

the condition for a gravitational collapse. As long as 
𝑟𝑟𝑠𝑠  <  2

3
𝑅𝑅  the object is a standard object and does not 

undergo any gravitational collapse. This, in contrast to the 
current assertion (for r > R), is based on Eq. 37, which states 
that 𝑟𝑟𝑠𝑠  >  𝑅𝑅, is the condition for a gravitational collapse. 

We see that as long as the photon sphere is inside the 
object ( rph  ∈  [0,𝑅𝑅]) , the Schwarzschild radius 𝑟𝑟𝑠𝑠  ∈
 [0, 2

3
𝑅𝑅]. In other words, as long as the photon sphere does 

not show, the object is stable and does not suffer 
gravitational collapse. Once the photon sphere shows up 
(rph  >  𝑅𝑅), the object undergoes gravitational collapse. 

Anywhere in the region where 𝑟𝑟𝑠𝑠  ∈  [2
3
𝑅𝑅,𝑅𝑅] the object 

undergoes gravitational collapse, and since rph  =  3/2 𝑅𝑅, 
the photon sphere is outside the object, creating a bright light 
ring outside R, at r = 𝑟𝑟𝑝𝑝ℎ . 

Near the sphere's center, where r → 0 and r < R, one has 

𝑑𝑑𝑑𝑑2 =  𝑑𝑑𝑑𝑑2  �1 −  
𝑟𝑟𝑝𝑝ℎ
𝑅𝑅
�             (14) 

And, as long as, rph  <  𝑅𝑅, 𝑑𝑑𝑑𝑑 > 0. It may be re-written as: 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 ��1 −  4𝜋𝜋𝜋𝜋𝜋𝜋
𝑐𝑐2 𝑅𝑅2�          (15) 

 
Figure 1.  For an object of radius R=3(*). The lines represent the behavior 
of dτ, for the cases where 𝑟𝑟𝑠𝑠 < R (A-STNDRD) and 𝑟𝑟𝑠𝑠 > 2/3R (B-WH). As 
can be seen, in case B, the inner part of the object is below the horizon 
(dτ = 0), but some of the the external part is not. This case allows for the 
photon sphere to be visible outside the body and yet the object is not a black 
hole yet. In this figure, dτ < 0 is set to dτ = 0. *(The dimensions are 
relative only) 

In the case of infinitesimally small r, we see that the time 
component becomes independent of the distance r from the 
origin. In any case, the divergence at r → 0 is removed. 

The proper time 𝑑𝑑𝑑𝑑, must remain well defined. Therefore, 
an upper limit on the density must exist for a given radius R, 
otherwise the expression for 𝑑𝑑𝑑𝑑 becomes undefined. 

Notice that this assertion leads to the constraint  

𝜌𝜌 ≤  𝑐𝑐2

4𝜋𝜋𝜋𝜋𝑅𝑅2               (16) 

In other words, there is an upper limit on the density 𝜌𝜌, of 
any object with radius R. When 𝑅𝑅 → 0, the density may 
increase indefinitely, but as will be shown next, there is an 
upper limit on the density. 

7. Density must have an Upper Limit 
Simple dimensional arguments show that the physical 

phenomena where quantum gravitational effects become 
relevant are those characterized by the Planck length 

ℓ𝑝𝑝 = �ℏ𝐺𝐺
𝑐𝑐3 = 1.616𝑥𝑥10−35 m. Here ℏ is the Planck constant 

that governs the scale of the quantum effects, G is the 
Newton constant that governs the strength of the 
gravitational force, and c is the speed of light, that governs 
the scale of the relativistic effects. The Planck length is many 
times smaller than what current technology is capable of 
observing. physical effects at scales that are so small. 
Because of this, we have no direct experimental guidance for 
building a quantum theory of gravity [16].  

Suppose there exists a quantum minimum for distance. 
We call it the Planck length and denote it by ℓ𝑝𝑝 . 

It is given by 

ℓ𝑝𝑝 =  �ℏ𝐺𝐺
𝑐𝑐

= 1.616𝑥𝑥10−35  m. 

Define in addition the Planck mass 

Planck's mass 𝑚𝑚𝑝𝑝 =  �ℏ𝑐𝑐
𝐺𝐺

= 2.176𝑥𝑥10−8 Kg. 

If this assumption is true, then the minimal spherical 
volume possible is 

𝑉𝑉 =
4𝜋𝜋ℓ𝑝𝑝

3

3
 

Let 𝑚𝑚′ denote the mass of this volume, so its density will 
be given by 

𝜌𝜌𝑃𝑃 =
3𝑚𝑚′

4𝜋𝜋ℓ𝑝𝑝
3 

Since by assumption ℓ𝑝𝑝  is the minimal length possible in 
nature, then for any mass m' the density 𝜌𝜌𝑃𝑃 is the maximum 
possible. 

It can be showed, that for a classical spherically symmetric 
object of mass m' and radius R, the general relativistic limit 
gives 

𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑑𝑑 ��1 −  4𝜋𝜋𝜋𝜋𝜋𝜋
𝑐𝑐2 𝑅𝑅2�        (17) 

Since the expression in brackets must be real, we arrive at 
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the restriction: 

1 −  4𝜋𝜋𝜋𝜋𝜋𝜋
𝑐𝑐2 𝑅𝑅2  ≥ 0              (18) 

And therefore 

 𝜌𝜌 ≤ 𝑐𝑐2

4𝜋𝜋𝜋𝜋𝑅𝑅2                  (19) 

For an object of any given mass m' and radius R we have 

𝜌𝜌 =  𝑚𝑚′
𝑉𝑉 

= 3𝑚𝑚′
4𝜋𝜋𝑅𝑅3 

                (20) 

Since for any mass m' of radius R one must have, by Eq. 
16 above,  

𝜌𝜌 = 3𝑚𝑚′
4𝜋𝜋𝑅𝑅3 

 ≤  𝑐𝑐2

4𝜋𝜋𝜋𝜋𝑅𝑅2              (21) 

The result is that for any mass m' 

𝑚𝑚′(𝑅𝑅)  ≤  𝑅𝑅𝑅𝑅
2

𝐺𝐺
                (22) 

Obviously, the smaller the radius R, the smaller the 
allowed mass m'. 

For the minimal possible length (according to Planck) 
𝑅𝑅 = ℓ𝑝𝑝  one obtains: 

𝑚𝑚′ ≤  ℓ𝑝𝑝 𝑐𝑐
2

𝐺𝐺
                (23) 

Recall now, by Planck's dimensionality analysis) that 

ℓ𝑝𝑝 =  �ℏ𝐺𝐺
𝑐𝑐

 and 𝑚𝑚𝑝𝑝 =  �ℏ𝑐𝑐
𝐺𝐺

 so 

𝑚𝑚𝑝𝑝

 ℓ𝑝𝑝
=  𝑐𝑐

2

𝐺𝐺
                 (24) 

Therefore 

𝑚𝑚′ ≤  ℓ𝑝𝑝 𝑐𝑐
2

𝐺𝐺
= 𝑚𝑚𝑝𝑝               (25) 

Therefore, for any mass m' (with radius ℓ𝑝𝑝) 

𝑚𝑚′ ≤  𝑚𝑚𝑝𝑝                 (26) 

And since  

𝜌𝜌 =  𝑚𝑚′
𝑉𝑉 

 ≤  𝑚𝑚𝑝𝑝

𝑉𝑉 
=  𝜌𝜌𝑃𝑃           (27) 

We have the result that 𝜌𝜌𝑃𝑃  is the maximal possible 
density, namely Planck density. 

In other words, for any given radius R, the mass m'(R) 
becomes smaller and smaller with R, but when one reaches 
the smallest possible radius ℓ𝑝𝑝 , the mass must be smaller 
than the Planck mass 𝑚𝑚𝑝𝑝 , and so, the density will always be 
smaller than the Planck density 𝜌𝜌𝑃𝑃.  

One can reduce the radius R, but the density will never 
exceed the Planck density. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅→ℓ𝑝𝑝 𝜌𝜌(𝑅𝑅) =  �ℓ𝑝𝑝
𝑅𝑅
�

3
𝜌𝜌𝑃𝑃        (28) 

Assume next, that the sphere has density 𝜌𝜌(𝑟𝑟), which 
varies with distance r from its center. 

Assume the sphere is of minimal possible radius ℓ𝑝𝑝 . 
We need to calculate the radius R of a quantized particle 

by its average normalized density so that we obtain a reduced 
average radius. 

By comparing the integrated variable density over the 
Planck radius, to a volume, with constant density 𝜌𝜌0  one 

obtains: 

4𝜋𝜋 ∫ 𝑟𝑟2ℓ𝑝𝑝
0 𝜌𝜌(𝑟𝑟)𝑑𝑑𝑑𝑑 =  4𝜋𝜋𝜌𝜌0ℓ𝑝𝑝

3

3
         (29) 

By definition, the average classical distance 〈𝑟𝑟2〉 is given 
by the integral over the normalized density: 

〈𝑟𝑟2〉 ≝ 1
ℓ𝑝𝑝
∫ 𝑟𝑟2ℓ𝑝𝑝

0 𝜌𝜌(𝑟𝑟) 𝜌𝜌0⁄ 𝑑𝑑𝑑𝑑         (30) 

Thus 

4𝜋𝜋ℓ𝑝𝑝𝜌𝜌0〈𝑟𝑟2〉 =  4𝜋𝜋𝜌𝜌0ℓ𝑝𝑝
3

3
          (31) 

and so 

〈𝑟𝑟〉 = �〈𝑟𝑟2〉 =  1
√3
ℓ𝑝𝑝           (32) 

Hence, the actual measured classical radius R is given by 

𝑅𝑅 = 〈𝑟𝑟〉 =  1
√3
ℓ𝑝𝑝              (33) 

The above result shows how the lower limit of the 
classical gravitation theory by Einstein, is related to the 
Planck length, which is a quantum phenomenon posed by 
dimensional analysis of the universe constants. 

Therefore, classical relativity and the relationship between 
the universal constants leads to quantization of space. 

8. Quantization by Planck's Units and 
Maximal Density Limit 

In the limit where R → 0, one needs to consider quantum 
limits and the uncertainty principle. 

Planck's mass 𝑚𝑚𝑝𝑝 =  �ℏ𝑐𝑐
𝐺𝐺

= 2.176𝑥𝑥10−8 Kg. 

Planck's length ℓ𝑝𝑝 =  �ℏ𝐺𝐺
𝑐𝑐

= 1.616𝑥𝑥10−35 m. 

However, dimensional analysis can only determine the 
Planck's units up to a dimensionless multiplicative factor. 
For instance, use h instead of ℏ. 

Based on Planck's units one obtains Planck's maximal 
density 𝜌𝜌𝑃𝑃   as Planck's mass/Planck's volume (assuming ℓ𝑝𝑝  
is the lowest possible physical distance, leads to the maximal 
possible physical density assumption). 

𝜌𝜌𝑃𝑃 = 𝑚𝑚𝑝𝑝

4𝜋𝜋ℓ𝑝𝑝
3 3⁄

 =  1.23074𝑥𝑥10+96      (34) 

(If one uses the Planck constant instead of the reduced 
Planck's constant, the Planck density will be modified by a 
factor of 2𝜋𝜋). 

Since one must assume that Planck's density is the 
maximum possible density allowed, we now ask, what 
should the minimum classical radius R be, in order for 
 𝜌𝜌 ≤ 𝜌𝜌𝑃𝑃 . (any classical density cannot exceed the Planck 
density). 

Therefore: 

𝜌𝜌 =  𝑐𝑐2

4𝜋𝜋𝜋𝜋𝑅𝑅2 ≤  𝜌𝜌𝑃𝑃 = 3𝑚𝑚𝑝𝑝

4𝜋𝜋ℓ𝑝𝑝
3         (35) 

Doing the calculation, we find that one must have 
R ≥ 1

√3
ℓ𝑝𝑝 = 0.93325𝑥𝑥10−35 m. 
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Compared to Planck's length ℓ𝑝𝑝 =  1.61625𝑥𝑥10−35  m, 
the classically derived radius R is smaller than the allowed 
Planck's length ℓ𝑝𝑝 , by an unexplained factor of 0.5774. 

These calculations were based on the assumptions of 
negligible 𝕂𝕂 = 16πG

𝑐𝑐2 𝜌𝜌, and R → 0 (r < R). 
It seems now, that the classical solution to the metric of a 

spherically symmetric object, puts a lower limit on the radius 
R of an object. It looks like there is a sort of quantization 
limit to small scale objects in spacetime. 

Instead of having 𝑅𝑅 ≥ ℓ𝑝𝑝 , we find 𝑅𝑅 ≥ 0.5774 ℓ𝑝𝑝 . 
The reason for this 0.5774 factor is due to the fact that we 

have assumed a constant density inside the sphere. If instead 
we assume variation in density with radius (highest density 
at r → 0and then it falls off to zero at ℓ𝑝𝑝 ). We need to 
calculate the radius R of a quantized particle by its average 
density so that we obtain a reduced average radius. 

By comparing the integrated variable density over the 
Planck radius, to the same volume, but with a constant 
average density 𝜌𝜌0 one obtains (see paragraph VI on density 
upper limit)): 

𝑅𝑅 = 〈𝑟𝑟〉 =  1
√3
ℓ𝑝𝑝               (36) 

Since 0.5774 = 1
√3

, it is now clear where the reduction 
factor came from. 

The above result shows how the lower limit of the 
classical gravitation theory by Einstein, (Schwarzschild 
radius), and the dimensional constraints between the 
constants of the universe, result in a quantized material 
space. 

9. A Tunneled Sphere "Thought 
Experiment" 

Consider a sphere with a thin penetrating tunnel through 
center of sphere between opposite surfaces. 

The sphere of radius R and of mass M will exert a 
gravitational attractive force on a remote particle. The force 
will be directed towards the center of the sphere, as if all of 
its mass is concentrated at its center (where r = 0). 

The attracted particle will be accelerated until it reaches 
the surface, but then will continue its path through the hole. It 
will continue with no acceleration inside the shell and then 
come out through the opposite hole. 

On its journey, the particle will pass twice the 
Schwarzschild radius 𝑟𝑟𝑠𝑠 = 𝐺𝐺𝐺𝐺

𝑐𝑐2  on its way towards the center 
and on its way out. 

The metric of this shell will be similar to that of a spherical 
mass. Only that this time, even though 𝑟𝑟𝑠𝑠 is inside the body, 
one can reach the Schwarzschild radius independently of 
whether it is a black hole or a standard mass. 

One way of doing the experiment would be to send a 
photon through the hole in the mass and compare its time of 
arrival with a simultaneously emitted photon traveling 
outside the mass. One would then be able to compare 
differences in the time of arrival for the two photons. 

This gedanken experiment can reveal whether the 
approach to 𝑟𝑟𝑠𝑠 will last forever in the eyes of the external 
observer. If it does, then the particle will never be able to 
come out through the opposite hole. 

10. Dynamics Near Center 
It is interesting to see what are the equations of motion 

near center (where r<< R). 
Assuming spherical symmetry [21,22], it is allowed to 

investigate it along the radial distance r, and assume it is the 
x axis. 

𝑑𝑑2𝑥𝑥𝜇𝜇

𝑑𝑑𝜏𝜏2 =  − 𝛤𝛤𝛼𝛼𝛼𝛼
𝜇𝜇  𝑑𝑑𝑥𝑥

𝛼𝛼

𝑑𝑑𝑑𝑑
 𝑑𝑑𝑥𝑥

𝛽𝛽

𝑑𝑑𝑑𝑑
            (37) 

where 

𝛤𝛤𝛾𝛾𝛾𝛾𝜆𝜆 = 1
2

 𝑔𝑔𝜆𝜆𝜆𝜆 �𝜕𝜕𝜇𝜇𝑔𝑔𝑟𝑟𝑟𝑟 + 𝜕𝜕𝛾𝛾𝑔𝑔𝑟𝑟𝑟𝑟 − 𝜕𝜕𝑟𝑟𝑔𝑔𝛾𝛾𝛾𝛾 �    (38) 

The total time of flight in the classical case will be given 
by (see Appendix 2): 

2𝑇𝑇 =  2
�Q0 

𝑐𝑐𝑐𝑐𝑐𝑐−1 �2 �1 − Q0𝑅𝑅3

𝐺𝐺𝐺𝐺
��  

Whereas in the general relativistic case it will be: 

2𝑇𝑇 =  2
�𝑄𝑄 

𝑐𝑐𝑐𝑐𝑐𝑐−1 �2 �1 − 𝑄𝑄𝑄𝑄3

𝐺𝐺𝐺𝐺
��  

Comparing the two results, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 .𝑅𝑅𝑅𝑅𝑅𝑅 . >  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 
As an example, for the Sun, with R = 6.963x108m and 

Sun density ρ☉ =  150 x103 Kg/m3 the predicted general 
relativistic cross time will be 6.6 mSec longer than the 
classical calculated cross time. This result is based on 
average Q over r from 0 to R. 

For an average Neutron star of radius R=11,000 m and 
density ρ(r)  =  4x1017 Kg/m3 , the passage time under 
general relativity prediction, will last 0.13 mSec longer than 
under classical calculation. 

11. Conclusions 
Using Newton's classical shell theorem, the 

Schwarzschild metric was modified. This removed the 
singularity at r = 0 for a standard object (not a black hole).  

For all practical matters, r < R can be treated as an empty 
space even for the densest known stellar objects (neutron 
stars) and also for elementary particles (neutrons for 
instance). 

It was demonstrated how general relativity evidently leads 
to quantization of space-time. Both classical and quantum 
mechanical limits on density give the same result. 

Appendix 1 
For a curved spacetime we define the Riemann tensor: 

𝑅𝑅𝛼𝛼𝛼𝛼𝛼𝛼
𝜇𝜇 = 𝜕𝜕𝛽𝛽𝛤𝛤𝛼𝛼𝛼𝛼

𝜇𝜇 − 𝜕𝜕𝛾𝛾𝛤𝛤𝛼𝛼𝛼𝛼
𝜇𝜇 + 𝛤𝛤𝜎𝜎𝜎𝜎

𝜇𝜇 𝛤𝛤𝛼𝛼𝛼𝛼𝜎𝜎 − 𝛤𝛤𝜎𝜎𝜎𝜎
𝜇𝜇 𝛤𝛤𝛼𝛼𝛼𝛼𝜎𝜎  [1] 
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Where Γ𝛼𝛼𝛼𝛼
𝜇𝜇 =  𝑔𝑔𝜇𝜇𝜇𝜇 Γ𝜎𝜎𝜎𝜎𝜎𝜎   are the Christoffel symbols: 

𝛤𝛤𝑖𝑖𝑖𝑖𝑖𝑖 =  1
2

 (𝜕𝜕𝑙𝑙𝑔𝑔𝑖𝑖𝑖𝑖 + 𝜕𝜕𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 −  𝜕𝜕𝑖𝑖𝑔𝑔𝑘𝑘𝑘𝑘 )       (39) 

The Ricci tensor 𝑅𝑅𝛼𝛼𝛼𝛼  is defined by: 

𝑅𝑅𝛼𝛼𝛼𝛼 = 𝑔𝑔𝜎𝜎𝜎𝜎  𝑅𝑅𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼              (40) 

And the curvature scalar R is defined by: 
𝓡𝓡 = 𝑔𝑔𝛼𝛼𝛼𝛼  𝑅𝑅𝛼𝛼𝛼𝛼 = 𝑔𝑔𝛼𝛼𝛼𝛼 𝑔𝑔𝜎𝜎𝜎𝜎  𝑅𝑅𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼        (41) 

For the Einstein equation one has: 

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇  𝓡𝓡 =  8𝜋𝜋𝜋𝜋

𝑐𝑐4 𝑇𝑇𝜇𝜇𝜇𝜇            (42) 

In empty space 𝑇𝑇𝜇𝜇𝜇𝜇 = 0  everywhere and therefore 
𝑅𝑅𝜇𝜇𝜇𝜇 = 0 everywhere.  

Due to spherical symmetry, the metric must be of the form 

𝑔𝑔𝜇𝜇𝜇𝜇 = �

𝑔𝑔(𝑟𝑟)  
 ℎ(𝑟𝑟)  

 𝑟𝑟2  
 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 

�     (43) 

Where g(r) and h(r) are functions of the distance r from the 
coordinate center (located at the center of the mass. 

So, the infinitesimal proper time interval 𝑑𝑑𝑑𝑑 between two 
events along a time-like path is given by  

𝑑𝑑𝑑𝑑2 = 𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈  

= 𝑔𝑔(𝑟𝑟)𝑑𝑑𝑑𝑑 − 1
𝑐𝑐2 (ℎ(𝑟𝑟)𝑟𝑟2𝑑𝑑𝑑𝑑 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) (44) 

With the flat space metric gμν = (+ −−−). 
In order to solve Einstein's equation everywhere, one can 

no longer assume that the curvature 𝓡𝓡 is null anywhere. 
This is true only outside the mass and so 𝓡𝓡 = 0 only for    
r > R. 

Assuming the mass density of the object being 
homogeneous and at total freeze of motion, 𝑇𝑇𝜇𝜇𝜇𝜇 = 0, except 
for 𝑇𝑇00 =  𝜌𝜌𝑐𝑐2, with 𝜌𝜌 being the mass density. 

𝑔𝑔𝜇𝜇𝜇𝜇 �𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇  𝓡𝓡�  =  8𝜋𝜋𝜋𝜋

𝑐𝑐4 𝑔𝑔𝜇𝜇𝜇𝜇 𝑇𝑇𝜇𝜇𝜇𝜇       (45) 

Under perfect fluid conditions, Tμν  = �
𝜌𝜌𝑐𝑐2  

 𝑝𝑝  

 
𝑝𝑝  
 𝑝𝑝 

�, 

where p is the pressure. 
Define 𝕂𝕂 =  16πG

𝑐𝑐2 , and so, 

𝑅𝑅00 =  16𝜋𝜋𝜋𝜋
𝑐𝑐2 𝜌𝜌 = 𝕂𝕂𝜌𝜌            (46) 

For all other terms, 𝑅𝑅11 = 𝑅𝑅22 = 𝑅𝑅33: 

𝑅𝑅𝑖𝑖𝑖𝑖 =  16𝜋𝜋𝜋𝜋
𝑐𝑐2 𝑝𝑝 = 𝕂𝕂𝑝𝑝            (47) 

From the definitions of the Riemann tensor and the Ricci 
tensor we obtain 

𝑅𝑅𝜇𝜇𝜇𝜇  =  𝜕𝜕𝛿𝛿𝛤𝛤𝜇𝜇𝜇𝜇𝛿𝛿 −  𝜕𝜕𝛾𝛾𝛤𝛤𝜇𝜇𝜇𝜇𝛿𝛿 + 𝛤𝛤𝛿𝛿𝛿𝛿𝛿𝛿 𝛤𝛤𝛾𝛾𝛾𝛾𝜆𝜆 −  𝛤𝛤𝛾𝛾𝛾𝛾𝛿𝛿 𝛤𝛤𝛿𝛿𝛿𝛿𝜆𝜆    (48) 

𝑅𝑅00 =  𝜕𝜕𝛿𝛿𝛤𝛤00
𝛿𝛿 −  𝜕𝜕0𝛤𝛤0𝛿𝛿

𝛿𝛿 + 𝛤𝛤𝛿𝛿𝛿𝛿𝛿𝛿 𝛤𝛤00
𝜆𝜆 −  𝛤𝛤0𝜆𝜆

𝛿𝛿 𝛤𝛤𝛿𝛿0
𝜆𝜆     (49) 

Following some tedious mathematical work, one arrives at 
[4]: 

𝜕𝜕𝑟𝑟𝑙𝑙𝑙𝑙�ℎ(𝑟𝑟)𝑔𝑔(𝑟𝑟)� =  − 16𝜋𝜋𝜋𝜋
𝑐𝑐2 𝜌𝜌 𝑟𝑟ℎ(𝑟𝑟)

𝑔𝑔(𝑟𝑟)
      (50) 

And so 

𝑅𝑅22 =  
1

ℎ(𝑟𝑟) − 1 −  
𝑟𝑟

2ℎ(𝑟𝑟)�
ℎ′(𝑟𝑟)

ℎ(𝑟𝑟) −  
𝑔𝑔′(𝑟𝑟)

𝑔𝑔(𝑟𝑟)� 

= 1
ℎ(𝑟𝑟)

− 1 −  𝑟𝑟
2ℎ(𝑟𝑟)

 𝜕𝜕𝑟𝑟𝑙𝑙𝑙𝑙 �
ℎ(𝑟𝑟)
𝑔𝑔(𝑟𝑟)

�          (51) 

We have then two equations: 

𝜕𝜕𝑟𝑟𝑙𝑙𝑙𝑙�ℎ(𝑟𝑟)𝑔𝑔(𝑟𝑟)� = − 𝕂𝕂𝑟𝑟ℎ(𝑟𝑟)
𝑔𝑔(𝑟𝑟)

          (52) 

𝑅𝑅22 =  1
ℎ(𝑟𝑟)

− 1 −  𝑟𝑟
2ℎ(𝑟𝑟)

 𝜕𝜕𝑟𝑟𝑙𝑙𝑙𝑙 �
ℎ(𝑟𝑟)
𝑔𝑔(𝑟𝑟)

�      (53) 

Outside the mass (r>R) 
𝕂𝕂 = 0 and so: 
ℎ(𝑟𝑟)𝑔𝑔(𝑟𝑟) =  𝛼𝛼 (some constant). 
Substitute in eq. 2 to obtain: 

𝑅𝑅22 =  𝑔𝑔(𝑟𝑟)
𝛼𝛼
− 1 −  𝑟𝑟𝑟𝑟(𝑟𝑟)

2𝛼𝛼
 𝜕𝜕𝑟𝑟𝑙𝑙𝑙𝑙 �

 𝛼𝛼
𝑔𝑔2(𝑟𝑟)

� = 0   (54) 

And after few steps: 
𝛼𝛼 =  𝜕𝜕𝑟𝑟(𝑟𝑟𝑟𝑟(𝑟𝑟))             (55) 

So finally: 
𝑔𝑔(𝑟𝑟) =  𝛼𝛼𝛼𝛼 + 𝛽𝛽             (56) 

ℎ(𝑟𝑟) =  𝛼𝛼
𝛼𝛼𝛼𝛼+𝛽𝛽  

               (57) 

The metric becomes: 

𝑔𝑔𝜇𝜇𝜇𝜇 =

⎝

⎜
⎛
𝛼𝛼𝛼𝛼 + 𝛽𝛽  

 𝛼𝛼
𝛼𝛼𝛼𝛼+𝛽𝛽  

 

 𝑟𝑟2  
 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ⎠

⎟
⎞

    (58) 

Comparing this metric with the asymptotic weak-field 
metric (r ≫ 𝑅𝑅): 

𝑔𝑔𝜇𝜇𝜇𝜇 =

⎝

⎜⎜
⎛
�1 − 2𝐺𝐺𝐺𝐺

𝑟𝑟𝑐𝑐2 �  

 −1

�1−2𝐺𝐺𝐺𝐺
𝑟𝑟𝑐𝑐2 �

 

 −𝑟𝑟2  
 −𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ⎠

⎟⎟
⎞

 (59) 

It is suggested that 

𝛼𝛼𝛼𝛼 + 𝛽𝛽 =  �1 + 2𝛷𝛷(𝑟𝑟)
𝑐𝑐2 �          (60) 

Therefore,  
𝛽𝛽 = 1                  (61) 

𝛼𝛼 =  2𝛷𝛷(𝑟𝑟)
𝑟𝑟𝑐𝑐2                (62) 

This shows us that the structure of the Schwarzschild 
metric in Eq. 7, is not only a result of dimensional 
considerations discussed above, but also a result of spherical 
symmetry considerations of the Einstein Equation, Eq. 17. 

This result was obtained based on symmetry arguments 
only, and it is independent of the weak-field approximation. 
Inside the mass (r < R) 
𝕂𝕂 > 0: 
The only approximation made was the assumption on 

empty space solution. For non-empty space, it will be valid 
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for a perfect fluid of zero pressure. 
However, one may use a model where the pressure p is 

proportional o the density [18], and so p = 𝜔𝜔𝜔𝜔 where 𝜔𝜔  
is a proportionality factor.  

Appendix 2 
Since by coordinates choice and symmetry, only Γ00

λ  and 
Γ11
λ  are non-zero (assuming constant gravitational field 
𝜕𝜕𝑡𝑡g𝑟𝑟𝑟𝑟 = 0). 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2 =  − 𝛤𝛤00

1  �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
−  𝛤𝛤11

1  �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
      (63) 

𝛤𝛤00
1  =  

1
2

 𝑔𝑔1𝑟𝑟(𝜕𝜕0𝑔𝑔𝑟𝑟0 + 𝜕𝜕0𝑔𝑔𝑟𝑟0 − 𝜕𝜕𝑟𝑟𝑔𝑔00) 

= 1
2

 𝑔𝑔11(𝜕𝜕0𝑔𝑔10 + 𝜕𝜕0𝑔𝑔10 − 𝜕𝜕1𝑔𝑔00) =  − 1
2

 𝑔𝑔11 𝜕𝜕1𝑔𝑔00 (64) 

and likewise 

𝛤𝛤11
1  =  1

2
 𝑔𝑔11(𝜕𝜕1𝑔𝑔11 + 𝜕𝜕1𝑔𝑔11 − 𝜕𝜕1𝑔𝑔11) =  1

2
 𝑔𝑔11 𝜕𝜕1𝑔𝑔11(65) 

The equation of motion in the x direction becomes 
𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2 =  �1

2
 𝑔𝑔11 𝜕𝜕1𝑔𝑔00�  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
𝑐𝑐2 − �1

2
 𝑔𝑔11 𝜕𝜕1𝑔𝑔11�  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
(66) 

Since the choice of coordinates is such that x is 
represented by r, one can write 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝜏𝜏2 =  1

2
 𝑔𝑔11 𝜕𝜕𝑟𝑟𝑔𝑔00  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
𝑐𝑐2 − 1

2
 𝑔𝑔11 𝜕𝜕𝑟𝑟𝑔𝑔11  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
 (67) 

From the proper-time result (which holds inside the sphere, 
where r < R) 

𝑑𝑑𝑑𝑑2 =  𝑑𝑑𝑑𝑑2  �1 −  4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2 �1 − 1
3

 �𝑟𝑟
𝑅𝑅
�

2
�� = −𝑔𝑔00𝑑𝑑𝑑𝑑2 (68) 

Define for convenience 

𝑔𝑔00 = 𝐴𝐴2(𝑟𝑟) =  1 −  4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2 �1 − 1
3

 �𝑟𝑟
𝑅𝑅
�

2
�   (69) 

And so  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴                     (70) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

             (71) 

And 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝜏𝜏2 =  1

𝐴𝐴2
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2                 (72) 

From the metric definition: 
𝑑𝑑𝑑𝑑2 =  𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈  = 𝑔𝑔00𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥0 + 𝑔𝑔11𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥1 (73) 

and since 
𝑔𝑔00 = 𝐴𝐴2                   (74) 

𝑔𝑔11 = − 1
𝑔𝑔00

= − 1
𝐴𝐴2            (75) 

One obtains: 

𝜕𝜕𝑟𝑟𝑔𝑔11 =  1
𝑔𝑔00 2 𝜕𝜕𝑟𝑟𝑔𝑔00            (76) 

Inserting into Eq. [49] one obtains: 

1
𝐴𝐴2

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 =  1

2
 𝑔𝑔11 𝜕𝜕𝑟𝑟𝑔𝑔00 �

1
𝐴𝐴2 𝑐𝑐2 − 1

𝑔𝑔00 2  1
𝐴𝐴2 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
�   (77) 

And so 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −  1

2
 1
𝑔𝑔00

 𝜕𝜕𝑟𝑟𝑔𝑔00 �𝑐𝑐2 − 1
𝑔𝑔00 2  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
�       (78) 

For 𝑟𝑟
𝑅𝑅 
≪ 1  

𝑔𝑔00 =  4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2 − 1             (79) 

And so 𝜕𝜕𝑟𝑟g00 = 0, which means that 𝑑𝑑
2𝑟𝑟

𝑑𝑑𝑡𝑡2 = 0. 
The acceleration near the center is zero. 
However, if one moves away from the center: 

𝑔𝑔00 =  4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2 �1 − 1
3

 �𝑟𝑟
𝑅𝑅
�

2
� − 1      (80) 

And so 

𝜕𝜕𝑟𝑟𝑔𝑔00 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2 �− 2𝑟𝑟
3𝑅𝑅2�  =  − 8𝜋𝜋𝜋𝜋𝜋𝜋

3𝑐𝑐2  𝑟𝑟        (81) 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −  1

2
 1
𝑔𝑔00

 𝜕𝜕𝑟𝑟𝑔𝑔00 �𝑐𝑐2 − 1
𝑔𝑔00 2  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
�      (82) 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 =  1

2
 1
𝐴𝐴2  �− 8𝜋𝜋𝜋𝜋𝜋𝜋

3𝑐𝑐2  𝑟𝑟� �𝑐𝑐2 + 1
𝐴𝐴4  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
�     (83) 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 =  − 4𝜋𝜋𝜋𝜋𝜋𝜋

3𝑐𝑐2𝐴𝐴2  𝑟𝑟 �𝑐𝑐2 + 1
𝐴𝐴4  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
�           (84) 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 =  − 4𝜋𝜋𝜋𝜋𝜋𝜋

3𝐴𝐴2  𝑟𝑟 �1 + 1
𝑐𝑐2𝐴𝐴4  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
�          (85) 

Near center (where r  0), A2 =  1 −  4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

𝑐𝑐2  depends on 
r only through the density 𝜌𝜌(𝑟𝑟). 

We may write 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = 𝑄𝑄(𝑟𝑟) 𝑟𝑟 �1 +  𝑊𝑊(𝑟𝑟) �𝑣𝑣(𝑟𝑟)

𝑐𝑐
�

2
�       (86) 

Here, 𝑣𝑣(𝑟𝑟) is the approach velocity. Q and W depend on r 
and are defined by: 

𝑄𝑄(𝑟𝑟) ≝ 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)
3𝐴𝐴2(𝑟𝑟)

             (87) 

𝑊𝑊(𝑟𝑟) ≝  1
𝐴𝐴4(𝑟𝑟)

             (88) 

The result shows how on approach to center (r  0), 
where 𝜌𝜌(𝑟𝑟) is assumed constant, the acceleration decreases 
in proportion with r on one hand, but depends also on the 
square of the approach velocity. 

For small approach-to-center velocity (𝑣𝑣 𝑐𝑐⁄ ≪ 1) 

 𝑑𝑑
2𝑟𝑟

𝑑𝑑𝑡𝑡2 = −𝑄𝑄 𝑟𝑟              (89) 

One may approximate though for a slow approach velocity 
(𝑣𝑣 𝑐𝑐⁄ ≪ 1): 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −𝑄𝑄(𝑟𝑟) 𝑟𝑟           (90) 

where 

𝑄𝑄(𝑟𝑟) = 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)

3�1− 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)𝑅𝑅2

𝑐𝑐2 �1 − 13 �𝑟𝑟𝑅𝑅�
2
��

      (91) 

(Recall that by the assumption on the maximal density  
(Eq. 38), 4πGρ(r)R2

c2 < 1, and so, Q(r) ≥  0. Also, note that 
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[Q]  =  1/𝑠𝑠𝑠𝑠𝑠𝑠2]). 
One may solve this under certain approximation: 
𝜌𝜌(𝑟𝑟) = 𝜌𝜌0 constant density inside r < R. 
In this case Q(r) is nearly a constant independent of r, 

and the equation becomes 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −𝑄𝑄 𝑟𝑟              (92) 

Which general solution is 

𝑟𝑟(𝑡𝑡) =  𝐵𝐵 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(�𝑄𝑄 𝑡𝑡) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(�𝑄𝑄 𝑡𝑡)       (93) 

Even though 𝑄𝑄(r) is not constant, the term 4πGρ(r)R2

c2  in 
the denominator of 𝑄𝑄(𝑟𝑟) is of the order of, or less than, 
9.2𝑥𝑥10−9. Q(r) may be approximated as: 

𝑄𝑄(𝑟𝑟) ≅ 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)

3�1− 9.2𝑥𝑥10−9�1 − 13 �𝑟𝑟𝑅𝑅�
2
��

 ≅  4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)
3

     (94) 

𝑟̇𝑟(𝑡𝑡) = −𝐶𝐶�𝑄𝑄 𝑠𝑠𝑠𝑠𝑠𝑠(�𝑄𝑄 𝑡𝑡) + 𝐷𝐷�𝑄𝑄 𝑐𝑐𝑐𝑐𝑐𝑐(�𝑄𝑄 𝑡𝑡)   (95) 

Assuming zero start velocity, ṙ(0) =  −�Q  D one must 
have D = 0. 

Hence 

𝑟𝑟(𝑡𝑡) =  𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(�𝑄𝑄 𝑡𝑡)           (96) 
Also, r(0) = R. 
Therefore 

𝑅𝑅 =  𝐵𝐵 − 𝐶𝐶               (97) 

𝑟𝑟(𝑡𝑡) =  𝐵𝐵 − (𝐵𝐵 − 𝑅𝑅)𝑐𝑐𝑐𝑐𝑐𝑐(�𝑄𝑄 𝑡𝑡)      (98) 

Assume the acceleration r̈(0) = − GM
R2 ,  

𝑟̈𝑟(𝑡𝑡) =  𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(�𝑄𝑄 𝑡𝑡)          (99) 
Using these assumptions, one obtains: 

𝑟𝑟(𝑡𝑡) =  𝑅𝑅 + 𝐺𝐺𝐺𝐺
𝑄𝑄𝑄𝑄2 �𝑐𝑐𝑐𝑐𝑐𝑐(�𝑄𝑄 𝑡𝑡) − 1�     (100) 

Furthermore, if the object arrives at the center (r = 0) at 
some later time T, one has: 

𝑟𝑟(𝑇𝑇) = 0 =  𝑅𝑅 + 𝐺𝐺𝐺𝐺
𝑄𝑄𝑄𝑄2 �𝑐𝑐𝑐𝑐𝑐𝑐(�𝑄𝑄 𝑇𝑇) − 1�    (101) 

The time to cross the diameter 2R (from surface to surface 
through the center) is thus 

2𝑇𝑇 =  2
�𝑄𝑄 

𝑐𝑐𝑐𝑐𝑐𝑐−1 �1 − 𝑄𝑄𝑄𝑄3

𝐺𝐺𝐺𝐺
 �        (102) 

Where  

Q(r) = 4πGρ(r)

3�1− 4πGρ(r)R2

c2 �1 − 13 �r
R�

2
��

  

In this case 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = − 4𝜋𝜋𝜋𝜋

3
 𝑟𝑟 𝜌𝜌(𝑟𝑟)          (103) 

Classically, a falling object of mass m, starting at r < R, 
will be accelerated towards center according to the potential: 

𝛷𝛷(𝑟𝑟) = − 𝐺𝐺𝐺𝐺
2𝑅𝑅3 (3𝑅𝑅2 −  𝑟𝑟2)        (104) 

And the acceleration will be 

𝐹𝐹 = 𝑚𝑚 𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −𝑚𝑚 𝜕𝜕𝜕𝜕(𝑟𝑟)

𝜕𝜕𝜕𝜕
 =  −𝑚𝑚 𝐺𝐺𝐺𝐺

2𝑅𝑅3 2𝑟𝑟     (105) 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2  =  −𝐺𝐺𝐺𝐺

𝑅𝑅3 𝑟𝑟 =  −𝐺𝐺4𝜋𝜋𝜌𝜌0𝑅𝑅3

3𝑅𝑅3  𝑟𝑟 = − 4𝜋𝜋𝜋𝜋𝜌𝜌0
3

 𝑟𝑟  (106) 

Classically, the acceleration will be 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2  =  − 4𝜋𝜋𝜋𝜋

3
𝜌𝜌0 𝑟𝑟 = −𝑄𝑄0𝑟𝑟       (107) 

with 𝑄𝑄0 =  4πG
3
ρ0  

This, in comparison to the general relativistic solution: 
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 = −𝑄𝑄(𝑟𝑟) 𝑟𝑟             (108) 
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