
International Journal of Theoretical and Mathematical Physics 2018, 8(2): 40-46 
DOI: 10.5923/j.ijtmp.20180802.02 

 

Correspondence between the Bloch’s Theorem and the 
Oyibo Grand Unified Theorem within the Purview of 

Generic Torus 

Godfrey E. Akpojotor1,2,*, Omamoke O. E. Enaroseha1, Alexander E. Animalu2,3 

1Physics Department, Delta State University, Abraka, Nigeria 
2Physics and Astronomy Department, University of Nigeria, Nsukka, Nigeria 

3International Centre for Basic Research, FHA Maitama, Abuja, Nigeria 

 

Abstract  We have shown in [1] that the geometric object for the geometrical and quantization foundation of the Oyibo 
grand unified theorem (GUT) is the torus. This torus is generic meaning that its nature depends on the periodic boundary 
conditions of the system and other physical constraint conditions. By observing that the Bloch’s theorem also has this torus as 
its generic geometric object, we show that there is correspondence between the Bloch’s theorem and the Oyibo GUT. The 
implication of this correspondence in using the Oyibo GUT to study strongly correlated systems in condensed mater physics 
is then discussed. 
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1. Introduction 
The foundation of our highly simplified correlated 

variation approach (HSCVA) for investigating few body 
correlated systems has been based on the geometrical nature 
of the lattice structures of such systems [2-5]. In the 
pioneering paper, Chen and Mei (1989) developed the 
correlated variational method to study the standard Hubbard 
model only in 1D and 2D systems with singlet states [2]. To 
prevent boundary effects, their CVA was applied to finite 
lD lattices sites arranged in ID ring and 2D planar lattices 
arranged in a torus in 2D. In advancing the work, we have 
simplified the approach by first formulating the statistical 
equivalent of the Hubbard model in all three dimensions [4]. 
The remarkable correspondence between our statistical 
formulation and the Hubbard model makes it easy to 
modify the latter for systems having triplet states so that our 
HSCVA is applicable to the Hubbard model and its various 
extended versions in all three dimensions [3]. Like the CVA 
of Chen and Mei [2], the arrangement of the lattice sites in 
1D is in a ring form and those in 2D and 3D systems are 
toroidal to avoid the edge effects on some sites. These 
arrangements is consistent with  related works of arranging  
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lattices in tori so as to obtain lattices with appropriate 
periodic boundaries [6, 7]. 

It was therefore quite reassuring to have recently 
observed and shown that the generic geometric object 
needed for the geometrical and quantization foundation of 
the Oyibo grand unified theorem (GUT) formulated as the 
mathematical basis for the unified force field theory as 
envisaged by Oyibo [8-9] also known as the theory of 
everything (TOE) is the torus [1]. In that work, one of us 
has shown that a torus ring can be constructed from the 
Pythagoras triangle which is an invariant geometric object 
in nature. Then using projective geometry, he was able to 
construct from this Pythagoras triangle the torus invariant 
within the Lorentz transformation. He then observed that 
this invariance of the toroidal geometry of the Oyibo GUT 
and the invariance of the Einstein’s principle of relativity 
within the purview of Lorentz transformation, is responsible 
for the remarkable correspondence of the Oyibo GUT with 
the Einstein’s unified field equation for conformal invariant 
field theories. Following that line of thinking, it is 
postulated here that since the Block theorem from which  
the original Hubbard model was formulated [10-13] has 
been observed to have a toroidal lattice foundation for 
appropriate periodic boundaries, then it should have a 
conrespondence with the Oyibo GUT. This is the 
motivation for this paper because the demonstration of such 
correspondence implies that the Hubbard model and its 
extended versions can also be formulated from the Oyibo 
GUT. The following plan will be used for this study. As a 
first step, it will be necessary to first re-visit the formation 
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of the Hubbard model and its extended versions from the 
Bloch’s theorem in Section 2. The demonstration of the 
correspondence of the Bloch’s theorem and the Oyibo GUT 
will be done in Section 3. Thereafter, we will discuss the 
implication of this correspondence and conclude. 

2. Revisiting the Formation of the 
Hubbard Model and Its Extended 
Versions 

The Bloch theorem plays a central role in conduction 
electron dynamics as it specifies the form of the wave 
functions that characterize electron energy levels in a 
periodic crystal [13]. It was therefore useful in the formation 
of the tight-binding (TB) model which is an approach to the 
calculation of the electronic band structure of a lattice that 
relies on the fact that electrons are tightly bound (localized) 
to the atoms. The kinetic energy is included by allowing 
electrons to hop from one site to another. These features 
make the model to be lattice dependent. In its simplest form, 
the Hubbard model is an extension of the tight-binding 
model, wherein electrons can hop between lattice sites while 
the Coulomb interaction provides their localization tendency 
[14]. This formation makes the Hubbard model and all its 
extended versions to be lattice structure dependent and 
therefore emanate from the Block’s theorem. For as it is well 
known, the general lattice Hamiltonian model within the 
occupation number formalism for electrons with spin σ 
interacting via a spin-dependent interaction )( rrV ee ′−



 

in the presence of an ionic lattice potential )(rV ion   has the 
form [10,12] 
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In the above equation, the )(),( rr  +
σσ ψψ  are the usual 

field operators and )()()(ˆ rrrn 

σσσ ψψ +=  is the local 
density. It has been observed [12] that the interaction term is 
diagonal in the space variables rr ′,  [i.e. it depends only on 
the (operator-valued) densities of electrons at site rr ′,  

which interact via )( rrV ee ′−


]. The lattice potential 
entering the non-interacting part (Eq.2.2) leads to the 
splitting of the parabolic dispersion into infinitely many 
bands which are enumerated by the index α. The 
non-interacting problem is then characterized by the Block 

wave functions )(rk


αφ  and the band energies kαε . The 

Wannier functions )(rχ  localized at site Ri are often 
introduced:  
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where N is the number of lattice sites. Thus one can construct 
creation and annihilation operators by the method of second 
quantization [13], +

σαic and ααic respectively, for electrons 
with spin σ in the band α at site Ri as  
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where 
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Consequently, the Hamiltonian may be written in the 
lattice representation as  
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where the matrix elements are given by 
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The Hamiltonian given by Eq.(2.6) is too general to be 
tractable in dimensions d > 1. Therefore, it has to be 
simplified using physically motivated truncations such as: 

i. That the Fermi surface (FS) lies within a single 
conduction band that is well separated from other 
bands so that the inter band interaction is weak hence 
we will restrict our study to a single band (α = β = γ = 
δ = 1) which is the aforementioned TB band. Thus Eq. 
(2.6) reduces to 

∑∑∑ +++
− +=

ijmn
mnjiijmnji

ij
ijband cccccctH

1

11
2
1

1
σσ

σσσσσσ
σ

ν (2.9) 

ii. The above single band Hamiltonian is obviously still 
too complicated for most purposes because of the 
complex interaction part, and therefore needs to be 
simplified further. Taking into account the weak 
overlap between neighbouring orbitals in a TB 
description, one expects that the overlap between 
nearest neighbours (NN) is important hence only NN 
hopping and interactions are allowed. So the site 
indices are restricted to only NN positions i and j 
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leaving us with only NN hopping, a purely local 
contribution and four NN contributions. NN hopping 
between sites i and j are controlled by the σσ ji cc+

which are the creation (annihilation) operators at site 
i(j) having spin σ(σ) while the hopping term is defined 
as tij = t for NN hopping <i,j> (i.e. i ≠ j) and tij = 0 
otherwise. 

The purely local contribution is the on-site Coulombic 
interaction term defined as 

νiiii = U           (2.10) 

while the four NN contributions are: 
νijij = V           (2.11) 

which is the NN Coulombic interaction term, 
νiiij = ∆t           (2.12) 

which gives rise to an occupation dependent hopping  rate, 
νijji = J               (2.13) 

which is the NN Heisenberg exchange term and 
νiijj = J′           (2.14) 

which describes the exchange hopping processes. 
This truncated form of the single band Hubbard model in 

Eq. (2.9) with only the Coulombic interaction (Eq. 2.10) is 
the famous Hubbard model given by [10-14] 
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It is pertinent to point out that apart from the four NN 
contributions (Eqs. 2.11 – 2.14) which can be added to 
Eq.(2.15), there have been modifications of the Hubbard so 
that today it has numerous extensions and relatives [14-18] 
which have diverse application in condensed matter physics. 
Suffice to re-emphasize here, however, all these models 
depend on the lattice structure. For it is a common 
knowledge that lattice structure without periodic boundaries 
often leads to edge effect making some lattice sites not to be 
on equal footing with the others. As stated above, one way to 
resolve this limitation is to investigate the Hubbard lattice 
structure as torus in all three dimensions [2,4]. Here a torus is 
simply a lattice geometry with periodic boundary conditions 
[6] and is generic meaning that its nature depends on these 
boundary conditions of the system and other physical 
constraint conditions owing to the generic nature of the 
Oyibo GUT [1]. In this form of torus, the lattices are scale 
symmetric which means the lattices do not change their 
shapes when they are expanded into large lattices to study 
large densities or contracted into small lattices for few 
particles systems. 

Now in geometrical terms, quantization is achieved by 
applying the so-called Born-Von Karman cyclic boundary 
conditions [18-19], which is tantamount to turning the cubic 
crystal into a torus as sketched in Fig. 1. The proposal in [20] 

that the process of implementing cyclic boundary conditions 
would require going from the usual 3D to 5D background 
because the latter has in addition local degrees of freedom 
which become vital in introducing quantum effects, was used 
to show in [1] that the parametric equations of quantization 
of the torus into 5-dimensional background lattice is: 
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where 4,53,2,1,n =  by limiting  ,2 nπθ = needed for 
only rotations compatibles with translational symmetry of a 
crystal lattice in 3D space such that integer 1cos2 =−θ . 

 

 

Figure 1.  Ilustrative sketch of the projection of (a) a linear lattice sites into 
a 1D ring (b) cubic lattice sites into curve torus 

3. Correspondence of Bloch’s Theorem 
and Oyibo GUT 

For ease in drawing an analogy between Bloch’s theorem 
and Oyibo GUT, which will enable us to establish their 
correspondence, a summary is provided in Table 1, adopting 
Oyibo’s notations, as far as necessary, in order to facilitate 
identification of corresponding transformations and 
functions. Familiarity with both the Bloch’s theorem [19, 21] 
and the Oyibo GUT (see [22] for pedagogical review) will be 
assumed. 

According to Oyibo [8-9, 22], a function, 
),...,,( 21 pYYYGG =  is said to be conformal invariant under a 

given group transformation 

),,...,,(: 21 kyyyfYT piik =     (3.1) 

if kT  is the group of the transformation and  

),...,,(),,...,,(),...,,( 212121 ppip yyyGkyyyFYYYG •= (3.2) 

where ),,...,,( 21 kyyyF pi  is a function of iy  and k  the 
single group parameter.  
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From Table 1, we see that the group of translations in a 
crystal lattice and the Bloch (electron wave) function, more 
specifically lattice waves, have analogous properties as 
Eqs.(3.1) and (3.2). As a result, one needs only to show here 
that in quantized space-time geometry with given (Planck 
length) lattice spacing, the definition of conformal 
invariance in Eqs.(3.1) and (3.2) follows, as in Bloch’s 
theorem, from translational periodicity of any function of  
position in the lattice. 

On the basis of the definition in Eqs.(3.1) and (3.2), Oyibo 
states that there exists a set of conservation equations  

  )4,3,2,1,0(  ,0)()()()( 3210 ==+++ nGGGG znynxntn (3.3) 

which may be rewritten in the Einstein-like form 0, =jijG  
where the function defined mathematically by 
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of “generic” quantities which are arbitrary functions of space 
and time coordinates (x,y,z,ct), velocities ( zyx  ,, ), 
accelerations ( zyx  ,, ), density ( ρ ), fluid or gas viscosity 
( µ ), temperature (T), pressure (P), etc.  

Now by applying the conformal transformation defined by 
Eq.(3.1) to a system of partial differential equations of nth 
order given by  
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one derives “solutions” of Eq.(3.2) in terms of the absolute 
invariants nη of the subgroup of transformations for the 
independent coordinate variables in the form: 
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where n = 0, 1, 2, 3, 4 are the five degrees of freedom of 
Oyibo GUT as in the Block’s theorem shown in Table 1. 
Observe that we have indicated in Table 1 how the restriction 
to the five values of n in Eq.(3.3) are analogous to the 
constraints in Bloch’s theorem, on translational invariance of 
the Hamiltonian operator, by rotational symmetry of a 
crystal lattice in 3-dimensional space represented by angles, 

n/2πθ = , where n =1,2,3,4 or 6, corresponding to n-fold 
rotation axis of symmetry [1]. 

Finally, analogy between Bloch’s theorem and Oyibo 
GUT leads to identification of nη  with the wave number 
associated with the primitive translation vectors of the 
reciprocal lattice of a 3D crystal 
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( 321 ,, nnn ) being integers and ),,( 321 bbb


 the primitive 
translation vectors of the reciprocal lattice space and 

321 NNNNi =  the number of primitive cells in the crystal. 

For a cubic lattice in r


-space, 0/2 abi π=


, where 0a  is 

the lattice constant, which we shall take (in Oyibo GUT 
representation of general theory of relativity) to be the 
Planck length. 

However, the nth order partial differential equations (3.4) 
are not quite analogous to the non-relativistic Schrodinger 
equation of Bloch’s theorem in Table 1 except insofar as the 
system of partial differential in Eqs.(3.4) may be rewritten, in 
the first order, as follows 
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is the probability current density 4-vector conserved by 
Schrodinger’s equation. It can easily be shown that if we 
introduce the differential operator ).( ∇∂∂=∂∂=∂ tx µ

µ

into Eq.(3.8), it becomes the current conservation law [15]  

0≡∂ µ
µ J                  (3.9) 

so that in a very subtle way we have obtained the Noether 
theorem. This is an important result as it re-enact the 
expectation of Oyibo when he pointed out in p285 of [8] that, 
“This new methodology is not totally new in the sense that 
the conservation equations are field equations…(see Eq.(3.3) 
here) could be condensed to tensor components similar to the 
world tensor components in the general theory of relativity 
of various versions of the many proposed Unified Force 
Field theories by previous investigators including Einstein 
himself. Perhaps one of the most significant part of the 
relationship to the previous formulations and results is the 
evolution of a characteristic sub-group variable (see Eq.(3.5) 
here) which seems to be a generalization of a good number of 
similar variables in the previous formulations.” 
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Table 1.  Analogy between Bloch’s Theorem and Oyibo GUT 
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4. Summary and Conclusions 
The Oyibo GUT was formulated from the Navier-Stokes 

equations which have classical origin and this raised doubt 
for its applicability to quantum systems. We have shown in a 
previous study that the Navier-Stokes equation has periodic 
solutions and then use it to formulate an O(4,2)xSU(3)xU(1) 
gauge theory of quantum gravity [23] and in a more recent 
study one of us has shown that the geometric object for its 
geometrical and quantization foundation is the generic torus 
which has also been used in the literature as the geometric 
object of the Hubbard model formulated on the basis of the 
Bloch’s theorem. It turns out that there is a remarkable 
correspondence between Bloch’s theorem and the Oyibo 
GUT. This has open the possibility that the Oyibo GUT can 
in principle be used to formulate strongly correlated models 
which emanates from the Bloch’s theorem. In particular, we 
have reviewed the formation of the Hubbard model and its 
extended versions from the Bloch’s theorem. The 
implication is that the Hubbard model and its extended 
versions can in principle also be formulated from the Oyibo 
GUT. Thereafter, since the Hubbard model and its extended 
versions have very important applications in condensed 
matter physics, we claim that such applications have been 
brought under the purview of the Oyibo GUT and therefore 
constitute this related area in the Oyibo grand unified theory. 
Thus we have demonstrated an important conjecture of 
Oyibo in p303 of [8] that, “The generic formulation of the 
grand unified theorem is in good part based on synthesizing, 
interpreting and realizing that generic, universal 
conservation equations should in light of the general and 
global outlook, be expected to be the source from which the 
unified force field can be derived [8].” 
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