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1. Introduction 

In recent years, Eltayeb and Kilicman [1-3] applied double 

Laplace transform (DLT) to solve wave, Laplace’s and heat 

equations with convolution terms, general linear telegraph 

and partial integro-differential equations. In 2016, L. 

Debnath [4] discussed the properties and convolution 

theorem of DLT, and applied it to functional, integral and 

partial differential equations. Further, Ranjit Dhunde and G. 

L. Waghmare in [5] applied double Laplace transform 

technique for solving linear partial integro-differential 

equations with a convolution kernel. 

Analogous to [6], we consider linear, one-dimensional, 

time-dependent partial differential equation (PDE) of the 

form 

 𝑎𝑛
𝑁
𝑛=0

𝜕𝑛𝑢 𝑥,𝑡 

𝜕𝑡𝑛
=  𝑏𝑚

𝑀
𝑚=1

𝜕𝑚 𝑢 𝑥,𝑡 

𝜕𝑥𝑚 + 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+
2 ,    

(1.1) 

where 𝑎𝑛 , 0 ≤ 𝑛 ≤ 𝑁; 𝑏𝑚 , 1 ≤ 𝑚 ≤ 𝑀 are given 

coefficients and N, M are positive integers and 𝑓 𝑥, 𝑡  is the 

source term. Associated with (1.1), we can consider the 

initial conditions  

𝜕𝑛𝑢 𝑥,0 

𝜕𝑡𝑛
= 𝑔𝑛 𝑥 , 𝑛 = 0, 1, ……… , 𝑁 − 1, 𝑥 ∈ ℝ+,  (1.2) 

and boundary conditions 

𝜕𝑚 𝑢 0,𝑡 

𝜕𝑥𝑚 = 𝑓𝑚 𝑡 , 𝑚 = 0, 1, ……… , 𝑀 − 1, 𝑡 ∈ ℝ+.  (1.3) 

Further, we assume that the functions 𝑓, 𝑔𝑛 ,         

𝑛 = 0, 1, ……… , 𝑁 − 1 𝑎𝑛𝑑 𝑓𝑚 , 𝑚 = 0, 1, ……… , 𝑀 − 1  

are such that problems (1.1), (1.2) and (1.3) have a solution. 

The main  objective of  this paper is  to develop  new  
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applications of the double Laplace transform for solving 

linear PDE’s of the type (1.1) subject to the initial conditions 

(1.2) and boundary conditions (1.3). 

A wide range of linear PDE’s are considered which 

include the advection-diffusion equation (Section 4.1), the 

reaction-diffusion equation (Section 4.2), the telegraph 

equation (Section 4.3), the Klein-Gordon equation (Section 

4.4), the dissipative wave equation (Section 4.5), the 

Korteweg-de Vries (KdV) equation (Section 4.6) and the 

Euler-Bernoulli equation (Section 4.7). 

2. A Brief Introduction to Double 
Laplace Transforms 

Let 𝑓 𝑥, 𝑡  be a function of two variables x and t defined 

in the positive quadrant of the xt-plane. The double Laplace 

transform of the function 𝑓 𝑥, 𝑡  as given by Ian N. 

Sneddon [7] is defined by  

𝐿𝑥𝐿𝑡 𝑓 𝑥, 𝑡  = 𝑓  𝑝, 𝑠 =  𝑒−𝑝𝑥∞

0
 𝑒−𝑠𝑡∞

0
 𝑓 𝑥, 𝑡 𝑑𝑡𝑑𝑥,  

(2.1) 

whenever that integral exist. Here p and s are complex 

numbers. 

From this definition we deduce 

𝐿𝑥𝐿𝑡 𝑓 𝑥 𝑔 𝑡  = 𝑓  𝑝 𝑔  𝑠 = 𝐿𝑥 𝑓 𝑥  𝐿𝑡 𝑔 𝑡  .  (2.2) 

The double Laplace transform formulas for the partial 

derivatives of an arbitrary integer order are 

𝐿𝑥𝐿𝑡  
𝜕𝑛𝑓 𝑥,𝑡 

𝜕𝑡𝑛
 = 𝑠𝑛𝑓  𝑝, 𝑠 −  𝑠𝑛−1−𝑘𝐿𝑥

𝑛−1
𝑘=0  

𝜕𝑘𝑓 𝑥,0 

𝜕𝑡𝑘
 , (2.3) 

𝐿𝑥𝐿𝑡  
𝜕𝑚 𝑓 𝑥,𝑡 

𝜕𝑥𝑚  = 𝑝𝑚𝑓  𝑝, 𝑠 −  𝑝𝑚−1−𝑗𝐿𝑡
𝑚−1
𝑗=0  

𝜕𝑗𝑓 0,𝑡 

𝜕𝑥 𝑗  .   

(2.4) 

The inverse double Laplace transform 𝐿𝑥
−1𝐿𝑡

−1 𝑓  𝑝, 𝑠   

= 𝑓 𝑥, 𝑡  is defined as in [4] by the complex double integral 

formula 
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𝐿𝑥
−1𝐿𝑡

−1 𝑓  𝑝, 𝑠  = 𝑓 𝑥, 𝑡 =
1

2𝜋𝑖
 𝑒𝑝𝑥𝑐+𝑖∞

𝑐−𝑖∞
𝑑𝑝

1

2𝜋𝑖
 𝑒𝑠𝑡𝑑+𝑖∞

𝑑−𝑖∞
𝑓  𝑝, 𝑠 𝑑𝑠,               (2.5) 

where 𝑓  𝑝, 𝑠  must be an analytic function for all p and s in the region defined by the inequalities 𝑅𝑒 𝑝 ≥ 𝑐 𝑎𝑛𝑑 𝑅𝑒 𝑠 ≥ 𝑑, 
where c and d are real constants to be chosen suitably. 

3. Double Laplace Transforms Method 

Applying the double Laplace transform on both sides of (1.1), we get 

 𝑎𝑛
𝑁
𝑛=0  𝑠𝑛𝑢  𝑝, 𝑠 −  𝑠𝑛−1−𝑘𝑛−1

𝑘=0 𝐿𝑥  
𝜕𝑘𝑢 𝑥,0 

𝜕𝑡𝑘
  =  𝑏𝑚

𝑀
𝑚=1  𝑝𝑚𝑢  𝑝, 𝑠 −  𝑝𝑚−1−𝑗𝑚−1

𝑗=0 𝐿𝑡  
𝜕𝑗𝑢 0,𝑡 

𝜕𝑥 𝑗   + 𝑓  𝑝, 𝑠 .  (3.1) 

Further, applying single Laplace transform to initial (1.2) and boundary conditions (1.3), we get  

𝐿𝑥  
𝜕𝑛𝑢

𝜕𝑡𝑛
 𝑥, 0  = 𝑔𝑛    𝑝 , 𝐿𝑡  

𝜕𝑚 𝑢

𝜕𝑥𝑚
 0, 𝑡  = 𝑓𝑚    𝑠 ,  𝑛 = 0,1, …… , 𝑁 − 1 𝑎𝑛𝑑 𝑚 = 0,1, ……𝑀 − 1.       (3.2) 

By substituting (3.2) in (3.1) and simplifying, we obtain 

 𝑎𝑛
𝑁
𝑛=0  𝑠𝑛𝑢  𝑝, 𝑠 −  𝑠𝑛−1−𝑘𝑛−1

𝑘=0 𝑔𝑘    𝑝  =  𝑏𝑚
𝑀
𝑚=1  𝑝𝑚𝑢  𝑝, 𝑠 −  𝑝𝑚−1−𝑗𝑚−1

𝑗=0 𝑓𝑗  𝑠  + 𝑓  𝑝, 𝑠 .     (3.3) 

Equation (3.3) is an algebraic equation in 𝑢  𝑝, 𝑠 . Solving this algebraic equation and taking in verse double Laplace 

transform of 𝑢  𝑝, 𝑠 , we get an exact solution 𝑢 𝑥, 𝑡  of (1.1). 

4. Applications 

In this section, we apply double Laplace transform (DLT) method to linear partial differential equations. 

4.1. The Advection-Diffusion Equation 

Taking 𝑁 = 1, 𝑀 = 2, 𝑎0 = 𝑓 = 0,  𝑎1 = 1 in (1.1), we obtain the advection-diffusion equation 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= 𝑏2

𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 + 𝑏1
𝜕𝑢  𝑥,𝑡 

𝜕𝑥
,  𝑥, 𝑡 ∈ ℝ+

2 .                             (4.1) 

It governs the release of hormones from secretory cells in response to a stimulus in a medium, flowing past the cells and 

through a diffusion column, also the dispersion of pollutants in rivers [6]. 

If (4.1) is solved subject to the initial condition  

𝑢 𝑥, 0 = 𝑔0 𝑥 , 𝑥 ∈ ℝ+,                                    (4.2) 

and the boundary conditions  

𝑢 0, 𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= 𝑓1 𝑡 , 𝑡 ∈ ℝ+,                                (4.3) 

then (3.3) gives the solution of (4.1), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑔0     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 −𝑏1𝑓0    𝑠 

 𝑠−𝑏2𝑝2−𝑏1𝑝 
 .                         (4.4) 

Example 4.1: Taking 𝑏1 = −1, 𝑏2 =  1 then (4.1) becomes 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
=

𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 −
𝜕𝑢  𝑥,𝑡 

𝜕𝑥
,  𝑥, 𝑡 ∈ ℝ+

2 ,                              (4.5) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 𝑒𝑥 − 𝑥 = 𝑔0 𝑥 , 𝑥 ∈ ℝ+,                               (4.6) 

𝑢 0, 𝑡 = 1 + 𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= 0 = 𝑓1 𝑡 , 𝑡 ∈ ℝ+.                        (4.7) 

Substituting 

𝑔0    𝑝 =
1

𝑝−1
−

1

𝑝2 , 𝑓0
  𝑠 =

1

𝑠
+

1

𝑠2 , 𝑓1
  𝑠 = 0,                          (4.8) 

in (4.4), we get solution of (4.5) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠−𝑝2+𝑝 
  

1

𝑝−1
−

1

𝑝2 − 𝑝  
1

𝑠
+

1

𝑠2 +  
1

𝑠
+

1

𝑠2   .                 (4.9) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑝−1 𝑠
−

1

𝑝2𝑠
+

1

𝑝𝑠2 ,                            (4.10) 
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𝑢 𝑥, 𝑡 = 𝑒𝑥 − 𝑥 + 𝑡.                                   (4.11) 

4.2. The Reaction-Diffusion Equation 

Taking 𝑁 = 1, 𝑀 = 2, 𝑓 = 0, 𝑎1 = 1, 𝑏1 = 0 𝑎𝑛𝑑 𝑏2 > 0 in (1.1), we get the reaction-diffusion equation 

𝑎0𝑢 𝑥, 𝑡 +
𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= 𝑏2

𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 ,  𝑥, 𝑡 ∈ ℝ+
2 .                          (4.12) 

If (4.12) is solved subject to the initial condition (4.2) and boundary conditions (4.3) then (3.3) gives the solution of (4.12), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑔0     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 

 𝑎0+𝑠−𝑏2𝑝2 
 .                            (4.13) 

4.2.1. The Heat (Diffusion) Equation 

Taking 𝑎0 = 0 in (4.12), we obtain the linear heat equation 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= 𝑏2

𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 ,  𝑥, 𝑡 ∈ ℝ+
2 ,                                 (4.14) 

where 𝑏2 > 0 is the constant coefficient of diffusion. 

If (4.14) is solved subject to the initial condition (4.2) and boundary conditions (4.3) then (4.13) gives the solution of 

(4.14), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑔0     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 

 𝑠−𝑏2𝑝2 
 .                            (4.15) 

4.3. The Telegraph Equation 

Taking 𝑁 = 𝑀 = 2, 𝑎0 = 𝑏1 = 0, 𝑎2 = 1 in (1.1), we obtain the linear telegraph equation 

𝑎1
𝜕𝑢  𝑥,𝑡 

𝜕𝑡
+

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 𝑏2
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 + 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+
2 .                      (4.16) 

The telegraph equation is used in signal analysis for transmission and propagation of electrical signal and also modelling 

reaction diffusion. 

If (4.16) is solved subject to the initial conditions  

𝑢 𝑥, 0 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
= 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                         (4.17) 

and boundary conditions (4.3) then (3.3) gives the solution of (4.16), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑎1𝑔0     𝑝 +𝑠𝑔0     𝑝 +𝑔1     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 +𝑓  𝑝,𝑠 

 𝑎1𝑠+𝑠2−𝑏2𝑝2 
 .                   (4.18) 

Example 4.2: Take 𝑏2 = 1, 𝑎1 = 3, 𝑓 𝑥, 𝑡 = 3 𝑥2 + 𝑡2 + 1  in (4.16) to yield 

3
𝜕𝑢  𝑥,𝑡 

𝜕𝑡
+

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 =
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 + 3 𝑥2 + 𝑡2 + 1 ,  𝑥, 𝑡 ∈ ℝ+
2 ,                     (4.19) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 𝑥 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
= 1 + 𝑥2 = 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                      (4.20) 

𝑢 0, 𝑡 = 𝑡 +
𝑡3

3
= 𝑓0 𝑡 ,

𝜕𝑢  0,𝑡 

𝜕𝑥
= 𝑡 = 𝑓1 𝑡 , 𝑡 ∈ ℝ+.                       (4.21) 

Substituting 

𝑔0    𝑝 =
1

𝑝2
, 𝑔1    𝑝 =

1

𝑝
+

2

𝑝3
, 𝑓0
  𝑠 =

1

𝑠2
+

2

𝑠4
,  𝑓1

  𝑠 =
1

𝑠2  , 𝑓  𝑝, 𝑠 = 3  
2

𝑝3𝑠
+

2

𝑝𝑠3 +
1

𝑝𝑠
 ,        (4.22) 

in (4.18), we get  

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 3𝑠+𝑠2−𝑝2 
 

3

𝑝2 +
𝑠

𝑝2 +  
1

𝑝
+

2

𝑝3 − 𝑝  
1

𝑠2 +
2

𝑠4 −
1

𝑠2 + 3  
2

𝑝3𝑠
+

2

𝑝𝑠3 +
1

𝑝𝑠
   .        (4.23) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

𝑝2𝑠
+

1

𝑝𝑠2 +
2

𝑝3𝑠2 +
2

𝑝𝑠4 ,                          (4.24) 

𝑢 𝑥, 𝑡 = 𝑥 + 𝑡 + 𝑥2𝑡 +
𝑡3

3
.                                  (4.25) 

4.3.1. The Wave Equation 

Substituting 𝑎1 = 0, 𝑏2 > 0 𝑎𝑛𝑑 𝑓 = 0 in (4.16), we obtain wave equation  
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𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 𝑏2
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 ,  𝑥, 𝑡 ∈ ℝ+
2 .                                 (4.26) 

If (4.26) is solved subject to the initial conditions (4.17) and boundary conditions (4.3) then (4.18) gives the solution of 

(4.26), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑠𝑔0     𝑝 +𝑔1     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 

 𝑠2−𝑏2𝑝2 
 .                          (4.27) 

4.4. The Klein-Gordon Equation 

Taking 𝑁 = 𝑀 = 2, 𝑎1 = 𝑏1 = 0, 𝑎2 = 1 in (1.1), we obtain the Klein-Gordon equation 

𝑎0𝑢 𝑥, 𝑡 +
𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 𝑏2
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 + 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+
2 .                        (4.28) 

The Klein-Gordon equation plays an important role in the study of solutions in condensed matter physics, quantum 

mechanics and relativistic physics. 

If (4.28) is solved subject to the initial conditions (4.17) and boundary conditions (4.3) then (3.3) gives the solution of 

(4.28), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑠𝑔0     𝑝 +𝑔1     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 +𝑓  𝑝,𝑠 

 𝑎0+𝑠2−𝑏2𝑝2 
 .                      (4.29) 

Example 4.3: Take 𝑏2 = 1, 𝑎0 = −1, 𝑓 = 0 in (4.28) to yield 

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 − 𝑢 𝑥, 𝑡 =
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 ,  𝑥, 𝑡 ∈ ℝ+
2 ,                             (4.30) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 1 + sin 𝑥 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
= 0 = 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                    (4.31) 

𝑢 0, 𝑡 = cosh 𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= 1 = 𝑓1 𝑡 , 𝑡 ∈ ℝ+.                      (4.32) 

Substituting 

𝑔0    𝑝 =
1

𝑝
+

1

𝑝2+1
, 𝑓0
  𝑠 =

𝑠

𝑠2−1
, 𝑓1
  𝑠 =

1

𝑠
,  𝑔1    𝑝 = 𝑓  𝑝, 𝑠 = 0,                 (4.33) 

in (4.29), we get solution of (4.30) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠2−1−𝑝2 
 𝑠  

1

𝑝
+

1

𝑝2+1
 − 𝑝

𝑠

𝑠2−1
−

1

𝑠
  .                  (4.34) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

𝑠 𝑝2+1 
+

𝑠

𝑝 𝑠2−1 
 ,                             (4.35) 

𝑢 𝑥, 𝑡 = sin 𝑥 + cosh 𝑡.                                   (4.36) 

Example 4.4: Take 𝑏2 = 1, 𝑎0 = −2, 𝑓 𝑥, 𝑡 = −2 sin 𝑥 sin 𝑡 in (4.28) to yield 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 − 2𝑢 𝑥, 𝑡 =
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 − 2 sin 𝑥 sin 𝑡 ,  𝑥, 𝑡 ∈ ℝ+
2 ,                      (4.37) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 0 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
= sin 𝑥 = 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                      (4.38) 

𝑢 0, 𝑡 = 0 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= sin 𝑡 = 𝑓1 𝑡 , 𝑡 ∈ ℝ+.                       (4.39) 

Substituting 

𝑔0    𝑝 = 0, 𝑔1    𝑝 =
1

𝑝2+1
, 𝑓0
  𝑠 = 0,  𝑓1

  𝑠 =
1

𝑠2+1
, 𝑓  𝑝, 𝑠 = −2

1

 𝑝2+1  𝑠2+1 
 ,          (4.40) 

in (4.29), we get solution of (4.37) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠2−2−𝑝2 
 

1

𝑝2+1
−

1

𝑠2+1
− 2

1

 𝑝2+1  𝑠2+1 
  .                  (4.41) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑝2+1  𝑠2+1 
 ,                             (4.42) 

𝑢 𝑥, 𝑡 = sin 𝑥 sin 𝑡.                                  (4.43) 
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4.5. The Linear Dissipative Wave Equation 

Substituting 𝑁 = 𝑀 = 2, 𝑎0 = 0, 𝑎2 = 1 in (1.1), we obtain the linear dissipative wave equation 

𝑎1
𝜕𝑢  𝑥,𝑡 

𝜕𝑡
+

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 𝑏2
𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2 + 𝑏1
𝜕𝑢  𝑥,𝑡 

𝜕𝑥
+ 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+

2 .                   (4.45) 

If (4.45) is solved subject to the initial conditions (4.17) and boundary conditions (4.3) then (3.3) gives the solution of 

(4.45), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑎1𝑔0     𝑝 +𝑠𝑔0     𝑝 +𝑔1     𝑝 −𝑏2𝑝 𝑓0    𝑠 −𝑏2𝑓1    𝑠 −𝑏1𝑓0    𝑠 +𝑓  𝑝,𝑠 

 𝑎1𝑠+𝑠2−𝑏2𝑝2−𝑏1𝑝 
 .              (4.46) 

Example 4.5: Take 𝑎1 = 𝑏1 = 𝑏2 = 1, 𝑓 𝑥, 𝑡 = 2 𝑡 − 𝑥  in (4.45) to yield 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
+

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2
=

𝜕2𝑢 𝑥,𝑡 

𝜕𝑥2
+

𝜕𝑢  𝑥,𝑡 

𝜕𝑥
+ 2 𝑡 − 𝑥 ,  𝑥, 𝑡 ∈ ℝ+

2 ,                     (4.47) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 𝑥2 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
= 0 = 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                      (4.48) 

𝑢 0, 𝑡 = 𝑡2 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= 0 = 𝑓1 𝑡 , 𝑡 ∈ ℝ+,                       (4.49) 

Substituting 

𝑔0    𝑝 =
2

𝑝3
, 𝑓0
  𝑠 =

2

𝑠3
, 𝑔1    𝑝 = 𝑓1

  𝑠 = 0,  𝑓  𝑝, 𝑠 = 2  
1

𝑝𝑠2 −
1

𝑝2𝑠
 ,                (4.50) 

in (4.46), we get solution of (4.47) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠+𝑠2−𝑝2−𝑝 
 

2

𝑝3 + 𝑠
2

𝑝3 − 𝑝
2

𝑠3 −
2

𝑠3 + 2  
1

𝑝𝑠2 −
1

𝑝2𝑠
   .               (4.51) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
2

𝑝3𝑠
+

2

𝑝𝑠3 ,                                (4.52) 

𝑢 𝑥, 𝑡 =  𝑥2 + 𝑡2.                                    (4.53) 

4.6. The Korteweg-de Vries (KdV) Equation 

Substituting 𝑁 = 1, 𝑀 = 3, 𝑎0 = 𝑏2 = 0, 𝑎1 = 1 in (1.1), we obtain the linear Korteweg-de Vries (KdV) equation 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= 𝑏3

𝜕3𝑢 𝑥,𝑡 

𝜕𝑥3 + 𝑏1
𝜕𝑢  𝑥,𝑡 

𝜕𝑥
+ 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+

2 .                        (4.54) 

It governs long water waves, in water of relatively shallow, for very small amplitudes [6]. When 𝑏1 = 0, (4.54) represents 

a third-order dispersive equation. 

If (4.54) is solved subject to the initial condition (4.2) and boundary conditions 

𝑢 0, 𝑡 = 𝑓0 𝑡 ,
𝜕𝑢 0,𝑡 

𝜕𝑥
= 𝑓1 𝑡 ,

𝜕2𝑢 0,𝑡 

𝜕𝑥2 = 𝑓2 𝑡 , 𝑡 ∈ ℝ+,                     (4.55) 

then (3.3) gives the solution of (4.54), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑔0     𝑝 −𝑏3𝑝2  𝑓0    𝑠 −𝑏3𝑝𝑓1    𝑠 −𝑏3𝑓2    𝑠 −𝑏1𝑓0    𝑠 +𝑓  𝑝,𝑠 

 𝑠−𝑏3𝑝3−𝑏1𝑝 
 .                  (4.56) 

Example 4.6: Taking 𝑏3 = 𝑏1 = −1, 𝑓 = 0 then (4.54) becomes 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= −

𝜕3𝑢 𝑥,𝑡 

𝜕𝑥3 −
𝜕𝑢  𝑥,𝑡 

𝜕𝑥
,  𝑥, 𝑡 ∈ ℝ+

2 ,                            (4.57) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 𝑒−𝑥 = 𝑔0 𝑥 , 𝑥 ∈ ℝ+,                               (4.58) 

𝑢 0, 𝑡 = 𝑒2𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= −𝑒2𝑡 = 𝑓1 𝑡 , 

𝜕2𝑢 0,𝑡 

𝜕𝑥2 = 𝑒2𝑡 = 𝑓2 𝑡 , 𝑡 ∈ ℝ+.          (4.59) 

Substituting 

𝑔0    𝑝 =
1

𝑝+1
, 𝑓1
  𝑠 =

−1

𝑠−2
, 𝑓0
  𝑠 = 𝑓2

  𝑠 =
1

𝑠−2
, 𝑓  𝑝, 𝑠 = 0,                 (4.60) 

in (4.56), we get solution of (4.57) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠+𝑝3+𝑝 
 

1

𝑝+1
+ 𝑝2 1

𝑠−2
− 𝑝

1

𝑠−2
+

1

𝑠−2
+

1

𝑠−2
  .                (4.61) 
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Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑝+1  𝑠−2 
 ,                               (4.62) 

𝑢 𝑥, 𝑡 =  𝑒2𝑡−𝑥 .                                   (4.63) 

Example 4.7: Taking 𝑏1 = 0, 𝑏3 = 1, 𝑓 𝑥, 𝑡 = 2𝑒𝑡−𝑥  in (4.54) to obtain the linear third-order dispersive, 

inhomogeneous equation 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
=

𝜕3𝑢 𝑥,𝑡 

𝜕𝑥3 + 2𝑒𝑡−𝑥 ,  𝑥, 𝑡 ∈ ℝ+
2 ,                            (4.64) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 1 + 𝑒−𝑥 = 𝑔0 𝑥 , 𝑥 ∈ ℝ+,                              (4.65) 

𝑢 0, 𝑡 = 1 + 𝑒𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= −𝑒𝑡 = 𝑓1 𝑡 ,

𝜕2𝑢 0,𝑡 

𝜕𝑥2 = 𝑒𝑡 = 𝑓
2
 𝑡 , 𝑡 ∈ ℝ+.             (4.66) 

Substituting 

𝑔0    𝑝 =
1

𝑝
+

1

𝑝+1
, 𝑓0
  𝑠 =

1

𝑠
+

1

𝑠−1
, 𝑓1
  𝑠 =

−1

𝑠−1
,  𝑓2

  𝑠 =
1

𝑠−1
, 𝑓  𝑝, 𝑠 =

2

 𝑠−1  𝑝+1 
 ,          (4.67) 

in (4.56), we get solution of (4.64) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑠−𝑝3 
 

1

𝑝
+

1

𝑝+1
− 𝑝2  

1

𝑠
+

1

𝑠−1
 + 𝑝

1

𝑠−1
−

1

𝑠−1
+

2

 𝑠−1  𝑝+1 
  .         (4.68) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

𝑝𝑠
+

1

 𝑝+1  𝑠−1 
 ,                             (4.69) 

𝑢 𝑥, 𝑡 = 1 + 𝑒𝑡−𝑥 .                                  (4.70) 

Example 4.8: Taking 𝑏1 = 𝑏3 = −1 𝑎𝑛𝑑 𝑓 𝑥, 𝑡 = 1 +  1 + 𝑡 𝑒𝑥 + 𝑒2𝑥  in (4.54) to obtain 

𝜕𝑢  𝑥,𝑡 

𝜕𝑡
= −

𝜕3𝑢 𝑥,𝑡 

𝜕𝑥3
−

𝜕𝑢  𝑥,𝑡 

𝜕𝑥
+ 1 +  1 + 𝑡 𝑒𝑥 + 𝑒2𝑥,  𝑥, 𝑡 ∈ ℝ+

2 ,                    (4.71) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 =
𝑒𝑥

4
+

𝑒2𝑥

10
= 𝑔0 𝑥 , 𝑥 ∈ ℝ+,                            (4.72) 

𝑢 0, 𝑡 =
3𝑡

2
+

7

20
= 𝑓0 𝑡 ,

𝜕𝑢  0,𝑡 

𝜕𝑥
=

𝑡

2
+

9

20
= 𝑓1 𝑡 ,  

𝜕2𝑢 0,𝑡 

𝜕𝑥2 =
𝑡

2
+

13

20
= 𝑓2 𝑡 , 𝑡 ∈ ℝ+.        (4.73) 

Substituting 

𝑔0    𝑝 =
1

4 𝑝 − 1 
+

1

10 𝑝 − 2 
, 𝑓0
  𝑠 =

3

2𝑠2
+

7

20𝑠
, 𝑓1
  𝑠 =

1

2𝑠2
+

9

20𝑠
, 𝑓2
  𝑠 =

1

2𝑠2
+

13

20𝑠
 , 

 𝑓  𝑝, 𝑠 =
1

𝑝𝑠
+

1

𝑠 𝑝−1 
+

1

𝑠2 𝑝−1 
+

1

𝑠 𝑝−2 
 ,                             (4.74) 

in (4.56), we get solution of (4.71) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1 

 
1

 𝑠+𝑝3+𝑝 
  

1

4 𝑝−1 
+

1

10 𝑝−2 
 + 𝑝2  

3

2𝑠2 +
7

20𝑠
 + 𝑝  

1

2𝑠2 +
9

20𝑠
 +  

1

2𝑠2 +
13

20𝑠
 +  

3

2𝑠2 +
7

20𝑠
 +

1

𝑝𝑠
+

1

𝑠 𝑝−1 
+

1

𝑠2 𝑝−1 
+

1

𝑠 𝑝−2 
  . 

(4.75) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

𝑝𝑠2 +
1

2𝑠2 𝑝−1 
+

1

4𝑠 𝑝−1 
+

1

10𝑠 𝑝−2 
 ,                      (4.76) 

𝑢 𝑥, 𝑡 = 𝑡 +
1

2
𝑡𝑒𝑥 +

1

4
𝑒𝑥 +

1

10
𝑒2𝑥 .                                 (4.77) 

4.7. The Euler-Bernoulli Equation 

Taking 𝑁 = 2, 𝑀 = 4, 𝑎0 = 𝑎1 = 𝑏1 = 𝑏2 = 𝑏3 = 0, 𝑎2 = −1 in (1.1), we obtain the Euler-Bernoulli equation 

−
𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 𝑏4
𝜕4𝑢 𝑥,𝑡 

𝜕𝑥4 + 𝑓 𝑥, 𝑡 ,  𝑥, 𝑡 ∈ ℝ+
2 .                          (4.78) 

It governs the deflection of an elastic beam under the action of a load  𝑥, 𝑡 . In (4.78), the solution 𝑢 𝑥, 𝑡  represents the 

deflection of the beam and 𝑏4 > 0 is its flexural rigidity. 
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If (4.78) is solved subject to the initial condition (4.17) and boundary conditions 

𝑢 0, 𝑡 = 𝑓0 𝑡 ,
𝜕𝑢  0,𝑡 

𝜕𝑥
= 𝑓1 𝑡 ,

𝜕2𝑢 0,𝑡 

𝜕𝑥2
= 𝑓2 𝑡 , 

𝜕3𝑢 0,𝑡 

𝜕𝑥3 = 𝑓3 𝑡 , 𝑡 ∈ ℝ+,              (4.79) 

then (3.3) gives the solution of (4.78), 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
𝑠 𝑔0     𝑝 +𝑔1     𝑝 +𝑏4 𝑝3  𝑓0    𝑠 +𝑝2𝑓1    𝑠 +𝑝𝑓2    𝑠 +𝑓3    𝑠  −𝑓  𝑝,𝑠 

 𝑠2+𝑏4𝑝4 
 .              (4.80) 

Example 4.9: Take 𝑏4 = 1 𝑎𝑛𝑑 𝑓 𝑥, 𝑡 = −𝑥𝑡 − 𝑡2 in (4.71) to yield 

−
𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 =
𝜕4𝑢 𝑥,𝑡 

𝜕𝑥4 − 𝑥𝑡 − 𝑡2,  𝑥, 𝑡 ∈ ℝ+
2 ,                            (4.81) 

and consider the initial and boundary conditions 

𝑢 𝑥, 0 = 0 = 𝑔0 𝑥 ,
𝜕𝑢  𝑥,0 

𝜕𝑡
=

𝑥5

5!
= 𝑔1 𝑥 , 𝑥 ∈ ℝ+,                          (4.82) 

𝑢 0, 𝑡 =
𝑡4

12
= 𝑓0 𝑡 ,

𝜕𝑢  0,𝑡 

𝜕𝑥
= 0 = 𝑓1 𝑡 ,

𝜕2𝑢 0,𝑡 

𝜕𝑥2 = 0 = 𝑓
2
 𝑡 ,

𝜕3𝑢 0,𝑡 

𝜕𝑥3 = 0 = 𝑓
3
 𝑡 , 𝑡 ∈ ℝ+.       (4.83) 

Substituting 

𝑔0    𝑝 = 0, 𝑔1    𝑝 =
1

𝑝6 , 𝑓0
  𝑠 =

2

𝑠5 , 𝑓1
  𝑠 = 𝑓2

  𝑠 = 𝑓3
  𝑠 = 0, 𝑓  𝑝, 𝑠 = −

1

𝑝2𝑠2 −
2

𝑝𝑠3 ,       (4.84) 

in (4.80), we get solution of (4.81) 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

 𝑝4+𝑠2 
 

1

𝑝6 + 𝑝3 2

𝑠5 +
1

𝑝2𝑠2 +
2

𝑝𝑠3  .                         (4.85) 

Simplifying, we obtain 

𝑢 𝑥, 𝑡 = 𝐿𝑥
−1𝐿𝑡

−1  
1

𝑝6𝑠2 +
2

𝑝𝑠5 ,                                   (4.86) 

𝑢 𝑥, 𝑡 =
𝑡𝑥5

5!
+

𝑡4

12
 .                                        (4.87) 

 

 

5. Conclusions 

The examples show that double Laplace transform method 

is a best alternative for handling many equations of 

Mathematical Physics. 

 

REFERENCES 

[1] H. Eltayeb, A. Kilicman, A note on solutions of wave, 
Laplace’s and heat equations with convolution terms by using 
a double Laplace transform, Applied Mathematics Letters 21 
(2008) 1324-1329. 

[2] A. Kilicman, H. Eltayeb, A note on defining singular integral 
as distribution and partial differential equations with 
convolution term, Mathematical and Computer Modelling 49 
(2009) 327-336. 

[3] H. Eltayeb, A. Kilicman, A note on double Laplace transform 
and telegraphic equations, Abstract and Applied Analysis, 
Volume 2013. 

[4] L. Debnath, The double Laplace transforms and their 
properties with applications to Functional, Integral and Partial 
Differential Equations, Int. J. Appl. Comput. Math, 2016. 

[5] Ranjit R. Dhunde, G. L. Waghmare, Solving partial 
integro-differential equations using double Laplace transform 
method, American Journal of Computational and Applied 
Mathematics 2015, 5(1): 7-10. 

[6] D. Lesnic, The Decomposition method for Linear, 
one-dimensional, time-dependent partial differential 
equations, International Journal of Mathematics and 
Mathematical Sciences, Volume 2006, pp. 1-29.  

[7] Ian N. Sneddon, The use of integral transforms, Tata McGraw 
Hill Edition 1974. 

 


