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Abstract  The atomic nucleus is not a point source. Thus, the assumption of a finite size for a nucleus leads to a departure 
from Coulomb potential between electron and nucleus. In this work, we endeavor to determine the nuclear potential charge 
radius by virtue of the modified finite size nuclear potential. It has been found that an electron moves within a small volume 
of the nuclear potential charge. We found that the volume of the nuclear potential charge exceeded the nuclear radius by 
factor √3. Due to the extension of the nuclear potential charge, a new and simple Z1/3 – dependent formula for calculating the 
radii of the extension of nuclear potential charge is proposed. The proposed formula gives effective results for potential 
charge radius. This work offers us a simple way to predict the nuclear charge radius from the assumption of nuclear finite 
sized model. 
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1. Introduction 
Nuclear extension in space, often characterized by charge 

radius, is one of the most important static properties of 
atomic nuclei [1-4]. In the march towards the new era of 
nuclear physics, the knowledge of nuclear sizes plays a very 
important role in understanding complex atomic nuclei. It 
also plays a key role in studying the characters of nucleus, 
testing theoretical models of nuclei as well as in studying 
astrophysics and atomic physics [1]. The developments in 
the measurement techniques for charge radii of nuclei 
provide more accurate experimental results which can be 
used to improve model parameters. Because of this, 
experimental and theoretical nuclear charge radii studies are 
one of the important topics in nuclear physics. The radius of 
atomic nucleus can be determined from its charge density 
distribution [2]. Both the radius of a nucleus and density 
distributions are important bulk properties of nuclei that 
determine the nuclear potential, single-particle orbitals, and 
wave function. Based on charge distributions, the nuclear 
size has been studied by electron scattering and muonic 
atoms [5].  

Nucleon distributions have been studied by several 
nuclear reactions with strong interacting probes. Among 
those, proton elastic scattering provides the best information  
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[5]. In nuclear density functional theories based on the 
mean-field approach such as the Hartree-Fock-Bogoliubov 
(HFB) model and the relativistic mean-field (RMF) theory, 
nuclear charge radii are calculated in a self-consistent way 
by folding the charge density distribution. Besides, recent 
work attempts to deduce charge radii based on the α decay, 
cluster and proton emission data [1]. The volume or radius of 
the nucleus is naturally proportional to the nuclear mass 
number. However, the conventional A – dependent formula, 
R = r0Al/3 is not globally valid for all nuclei in which there is 
a significant difference between proton and neutron numbers. 
Also, the experimental data indicate that the order of 
magnitude of the range of nuclear forces r0 is not constant [6]. 
It is seen from the developed formula that the Z – dependent 
formula describe nuclei much better [2].  

Like many systems governed by the laws of quantum 
mechanics, the nucleus is an object full of mysteries whose 
properties are much more difficult to characterize than those 
of macroscopic objects. Rather than build an exact replica of 
the nuclear system, nuclear physicists in reality have selected 
a different approach, using a relatively small number of 
measurable properties of quantum systems to specify the 
overall characteristic of the entire nucleus [1].  

In this work, we attempt to propose a set of new difference 
equations of nuclear potential radius that is different from the 
above approaches. Since the size of a nucleus depends 
mainly on its charge (proton) distribution, the assumption 
that atomic nucleus has a finite size charge distribution has 
been made to determine the radius of nuclear charge that 
depends mainly on the proton charge distribution.  
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2. Methodology 
The size of a nucleus is characterized by, Rrms or by the 

radius R of the uniform sphere [7]. Both the quantities are 
related. The mean squared radii of neutron, proton, charge 
and mass distribution can be defined as follows: 

〈𝑟𝑟𝑐𝑐2〉 = ∫ 𝑟𝑟24𝜋𝜋𝑟𝑟2𝜌𝜌(𝑟𝑟)𝑑𝑑𝑑𝑑∞
0
∫ 4𝜋𝜋𝑟𝑟2𝜌𝜌(𝑟𝑟)𝑑𝑑𝑑𝑑∞

0
, 

where ρ(r) is the nuclear charge density [8]. For a uniformly 
charged sphere [ρ(r) = constant] of radius R. For r > R, this 
gives 

〈𝑟𝑟2〉 = ∫ 𝑟𝑟4𝑑𝑑𝑑𝑑𝑅𝑅
0

∫ 𝑟𝑟2𝑑𝑑𝑑𝑑𝑅𝑅
0

= 3
5
𝑅𝑅2. 

So that the radius of a sphere 

𝑅𝑅 = �5
3
〈𝑟𝑟𝑐𝑐2〉1/2      (1) 

The root-mean-square nuclear matter radii (Rrms) and the 
density distributions contain an important insight on nuclear 
potentials and nuclear wave functions [9]. If the nucleus is a 
point charge with the distance of electron from the nucleus, r 
and k = (4πε0,)-1 then its potential is given by 

𝑈𝑈(𝑟𝑟) = −𝑘𝑘 𝑍𝑍𝑒𝑒2

𝑟𝑟
     (2) 

The nuclear potential and electron wavefunction change 
when the nucleus is described as a finite-size source with a 
uniform distribution of charges [3] of radius R, then the 
electron wave function can penetrate to r ≤ R, and thus the 
electron spends part of its time inside the nuclear charge 
distribution, there it feels a very different interaction [10]. 
Therefore the potential appropriate for the perturbed electron 
is no longer of the pure Coulomb form. This is because the 
electrostatic potential that appears in (2) is no longer due just 
to the point charge nucleus of electric charge |e|Z [11]. 

 

Figure 1.  The finite sized nucleus of charge (+Ze) orbited by a perturbed 
electron 

The potential inside a spare of radius r due to a point 
charge qinside = e(r/R)3, located at the origin is from 
Coulomb’s law: 

𝑈𝑈(𝑟𝑟 ≤ 𝑅𝑅) = − 𝑘𝑘𝑒𝑒2

𝑟𝑟
�𝑟𝑟
𝑅𝑅
�

3
    (3) 

The perturbative potential difference between r and R is 
defined by: 

( )

( )

2 2 2

3

2
2 2

3

4 3
2

3
2

≤ = − = −

                = − −

∫
RR

r r

πeρr ke rU r R dr
r R

ke R r
R

     (4) 

where ρ = 3q/4πR3 is the nuclear charge distribution and in 
this case it is constant [12]. And  

R = r0Al/3

 
    (5) 

Thus, for r ≤ R we have the potential: 

𝑈𝑈(𝑅𝑅) = −
𝑘𝑘𝑒𝑒2

𝑟𝑟
�
𝑟𝑟
𝑅𝑅
�

3
−

3𝑘𝑘𝑒𝑒2

2𝑅𝑅3 (𝑅𝑅2 − 𝑟𝑟2) 

= −3𝑘𝑘𝑒𝑒2

2𝑅𝑅3 (3𝑅𝑅2 − 𝑟𝑟2)      (6) 

Equation (6) represents the potential for a finite-size 
charge nucleus [13]. Now we have seen that due to the finite 
nuclear size, the electric potentials U(R) and U(r) of the 
nucleus are different [14]. Therefore, the spherical 
electrostatic potential function U(R), corresponding to a 
nuclear charge density distribution, will then be used to 
replace the common Coulomb potential for a point-like 
nucleus, (2) [15]. Also compared to a point-like nucleus, the 
extended nuclear charge distribution also leads to a shift in 
the energy levels of electron [16, 17]. 

To understand completely the finite size of nuclei, we here 
calculate the volume of nucleus to see its deviation from 
point size. Assuming uniform charge distribution, we have 
for a nucleus of charge +Ze, the volume 

2

21 z 2 2
0 0 0

4
3

−
= =∫ ∫ ∫

zb πaV ρdρ dz dφ πab     (7) 

And hence the density  

𝜌𝜌 = 3𝑍𝑍𝑍𝑍
4𝜋𝜋𝜋𝜋𝑏𝑏2       (8) 

The intrinsic quadrupole moment of a symmerty charged 
distribution is defined by the relation 

( ) ( ) ( )2 2
0

1 3 = −  ∫Q ρ r z r dV
e

    (9) 

The nucleus is assumed to have asymmetry axis along z′ 
and e  is the charge on each proton [18]. Using the fact that 
r′ 2 = x′ 2 +y′ 2+z′ 2 = ρ′ 2 + z′ 2 and dv = ρ′ dρ′ dφ′ dz′, we find 

( )

( )

2 2 2
0 2

2 2

3 3
4

2
5

 = − − 

      = −

∫∫∫
ZeQ ρ r z z ρ dV

πab e

Z a b

  (10) 

A non-zero quadrupole moment Q0 indicates that the 
proton distribution is not spherically symmetric. By 
convection, the value of Q0 is taken to be positive (i.e. when 
ɑ > b) if the ellipsoid is prolate and negative (i.e. when ɑ < b) 
if the ellipsoid is oblate and zero (i.e. when ɑ = b) if the 
ellipsoid is a sphere. Figure 2 depicts the possible charge 
(shape) distribution of nuclei. 
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Nuclear deformation has an influence on the nuclear 
charge radii. The effective deformation parameters (βeff) are 
deduced from the intrinsic quadrupole moment (Q0), which 
is related to the spectroscopic quadrupole moment (Q) via 
the well-known formula 

 𝑄𝑄 = 𝑄𝑄0𝐼𝐼(2𝐼𝐼−1)
(𝐼𝐼+3)(2𝐼𝐼+3)

    (11) 

which has been established within the framework of the 
collective model [18]. The βeff is calculated using 

 𝑄𝑄0 = 3
√5𝜋𝜋

𝑍𝑍𝑅𝑅2𝛽𝛽𝑒𝑒𝑒𝑒𝑓𝑓 �1 + 1
8
�5
𝜋𝜋
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 �  (12) 

Thus, the effective deformation parameters can be 
deduced the quadrupole moments and the charge radii are 
known. βeff has been deduced for light mirror nuclei [5].  

 

Figure 2.  Electric quadrupole moments for different charge distribution 

3. Results and Discussion 
The potential energies of an electron for a point-like 

nucleus and for a finite-size nucleus of radius R, are 
computed for different values of r by using equations (2) and 
(6) and are presented in Table 1. 

Table 1.  The values of potential energies for a point-like and finite-size 
nucleus of hydrogen atom 

r (fm) 
Potential Energies (MeV) 

Point – like Nucleus Finite – size Nucleus 

0.0 0.0000 -1.7008 

0.5 -2.8800 -1.6129 
1.0 -1.4400 -1.3493 
1.5 -0.9600 -0.9099 

2.0 -0.7200 -0.2948 
2.5 -0.5760 0.4961 
3.0 -0.4800 1.4627 

3.5 -0.4113 2.6050 
4.0 -0.3600 3.9232 
4.5 -0.3200 5.4170 

5.0 -0.2880 7.0866 

 

 

Figure 3.  The potential energy curves for a point-like (PLN) and a 
finite-size nucleus (FSN) 

Table 2.  The values of finite-size nuclear potential energies of various atomic nuclei 

r(fm) 
The Finite-Size Nuclear Potential (MeV) 

1H1 7Li3 23Na11 39K19 63Cu29 85Rb37 107Ag47 133Cs55 
0.0 -1.7008 -2.6674 -6.5786 -9.5291 -12.3956 -14.3126 -16.8378 -18.3257 
0.5 -1.6129 -2.6298 -6.5366 -9.4863 -12.3548 -14.2743 -16.7992 -18.2893 
1.0 -1.3493 -2.5167 -6.4105 -9.3579 -12.2338 -14.1596 -16.6834 -18.1803 
1.5 -0.9099 -2.3284 -6.2003 -9.1438 -12.0316 -13.9683 -16.4904 -17.9987 
2.0 -0.2948 -2.0647 -5.9062 -8.8441 -11.7848 -13.7005 -16.2202 -17.7442 
2.5 0.4961 -1.7258 -5.5279 -8.4588 -11.3844 -13.3563 -15.8728 -17.4172 
3.0 1.4627 -1.3115 -5.0656 -7.9879 -10.9394 -12.9355 -15.4482 -17.0175 
3.5 2.6050 -1.3151 -4.5192 -7.4313 -10.4136 -12.4382 -14.9465 -16.5451 
4.0 3.9232 -0.2570 -3.8889 -6.7892 -10.2129 -11.8644 -14.3675 -16.0000 
4.5 5.4170 0.3833 -3.1744 -6.0614 -9.1192 -11.2141 -13.7113 -15.3823 
5.0 7.0866 1.0988 -2.3759 -5.2479 -8.3506 -10.4873 -12.9779 -14.6919 
5.5 8.9320 1.8897 -1.4933 -4.3489 -7.5012 -9.6840 -12.1674 -13.9287 
6.0 10.9531 2.7559 -0.5267 -3.3642 -6.5708 -8.8042 -11.2796 -13.0930 
6.5 13.1499 3.6975 0.5239 -2.2939 -5.5595 -7.8479 -10.3146 -12.1845 
7.0 15.5226 4.7143 1.6587 -1.1380 -4.4674 -6.8151 -9.2725 -11.2033 
7.5 18.0709 5.8065 2.8775 0.1035 -3.2943 -5.7057 -8.1531 -10.1495 
8.0 20.7950 6.9740 4.1803 1.4307 -2.0404 -4.5199 -6.9566 -9.0232 
8.5 23.6949 8.2168 5.5672 2.8434 -0.7055 -3.2576 -5.6828 -7.8238 
9.0 26.7705 9.5349 7.0382 4.3418 0.7102 -1.9187 -4.3319 -6.5520 
9. 5 30.0218 10.9284 8.5932 5.9259 2.2068 -0.5034 -2.9037 -5.2075 
10.0 33.4489 12.3972 10.2322 7.5955 3.7844 0.9885 -1.3984 -3.8097 
10.5 37.0517 13.9414 11.9554 9.3508 5.4429 2.5568 0.1841 -2.3004 
11.0 40.8303 15.5608 13.7625 11.1917 7.1822 4.2017 1.8439 -0.7378 
11.5 44.7847 17.2556 15.6537 13.1182 9.0025 5.9231 3.5808 0.8974 
12.0 48.9147 19.0256 17.6290 15.1304 10.9036 7.7209 5.3949 2.6053 
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The potential curve for finite-size nuclear can be seen in 
Figure 3, represented by the red line, while the point-like 
potential curve can be seen by the blue line, falling to - ∞ as r 
approaches 0 and their curves coincide only at the value of r 
approximately equal to the value of the experimentally 
measured value of nuclear radius r0. It can also be observed 
from the figure that the finite-size potential is finite (with 
magnitude 1.7008 MeV), when r = 0. This is evident for a 
finite size nature of a nucleus.  

The finite – size nuclear potential energy U(R) is 
computed for various nuclei by using equations (6) and are 
presented in Table 2. 

 

Figure 4.  The potential energy curves for various finite-size nuclei (FSN) 

Figure 4 gives the information on potential radii of 
selected nuclei as determined by finite – size nuclear 
potential model. In the Figure the negative region of the plot 
of finite size potential is the range over which the potential 
extend. It is also worth noting that the values of finite size 
nuclear potential charge change the sign at U(R) = 0, the 
intensity of the potential charge vanishes smoothly from its 
source and its value is practically zero outside on positive 
region. It can be observed from the figure that the potential 
curve for hydrogen atom (a proton nucleus) has different 
characteristic, there is rapid increase the value of U(R) at 
large distance, r. The intercept on r axis represent the limit at 
which the finite sized potential exists. The nuclear charge 
radius R from equation (5) and the intercept on r axis (the 
nuclear potential radius, Rp) deducted from Figure 4 are 
presented in Table 3.  

Table 3.  The values of nuclear potential radii, Rp deduced from figure 2 
and the corresponding value of R using equation (5) 

Nuclide: AXZ
 

R (fm)
 

Rp (fm)
 

Rp /R
 

1H1 1.2700 2.1997 1.732 
7Li3 2.4294 4.2078 1.732 

23Na11 3.6117 6.2556 1.732 
39K19 4.3068 7.4596 1.732 

63Cu29 5.0534 8.7527 1.732 
85Rb37 5.5839 9.6716 1.732 

107Ag47 6.0293 10.4431 1.732 
133Cs55 6.4827 11.2284 1.732 

From Table 3 we can deduce a simple relation: 
Rp = 1.732 R = √3R         (14) 

Thus, the nuclear potential radius, Rp estimated by this 
method is √3 higher than that for the nuclear charge radius, R. 
This is because the nuclear potential radius, Rp is the measure 
of the range of the nuclear potential, which is independent of 
the nature or charge state of the nucleons. Thus a correction 
due to the finite – size of nuclear potential results in equation 
(14).  

Table 4.  The values of nuclear potential radii, Rp deduced from Figure 4 at 
a point when U(R) = 0 and the potential gradients, r0 obtained from Figure 5 

Nuclide: AXZ Rp (fm) Z1/3 rp (fm) 
7Li3 4.2078 1.4422 2.9176 

23Na11 6.2556 2.2224 2.8147 
39K19 7.4596 2.6684 2.7955 

63Cu29 8.7527 3.0723 2.8489 
85Rb37 9.6716 3.3322 2.9024 

107Ag47 10.4431 3.6088 2.8937 
133Cs55 11.2284 3.8029 2.9525 

 

 

Figure 5.  The plots of nuclear potential radius, Rp as a function of a proton 
number, Z1/3 

Figure 5 shows the plots of nuclear charge radius, Rp as a 
function of a proton number, Z1/3 and the nuclear charge 
radius varied directly as the proton number, Z. Plotting Rp 
against Z1/3 (Figure 4) gives us a slope rp ≈ 2.875 fm for 
nuclides higher than hydrogen. These results showed that on 
accounting for the finite sized nuclear charge distribution, 
significant changes in the R were observed. The results also 
showed that the charge radii of atomic nuclei, independent 
of neutron number, follow remarkably very simple 
relations:  

Rp ≈ 2.875 Z1/3 = rp Z1/3     (15) 
were rp is the range of the nuclear charge.  

The potential curve for hydrogen atom rapidly increases 
the value of U(R) at large distance, r. This showed that an 
electron in hydrogen atom does interact with the finite sized 
potential but only slightly and the relation (15) cannot be 
applied for hydrogen atom. The order of range of the nuclear 
potential charge for hydrogen atom is very small 

-30
-20
-10

0
10
20
30
40
50
60

0

1.
5 3

4.
5 6

7.
5 9

10
.5 12

Fi
ni

te
 -

si
ze

 P
ot

en
tia

l (
M

eV
)

r (fm) →

H1

Li3

Na11

K19

Cu29

Rb37

Ag47

Cs55

0
0.5

1
1.5

2
2.5

3
3.5

4

0 5 10 15

R p
(fm

)

Z1/3



 International Journal of Theoretical and Mathematical Physics 2017, 7(1): 9-13 13 
 

 

approximately 2.2 fm. Thus the effects of finite sized of 
potential charge on electron in hydrogen atom are extremely 
small.  

The difference between finite size and point source 
nuclear size, being negligible for hydrogen (low atomic 
number), it grows when Z increases leading to a strong 
enhancement of the total nuclear size correction for heavy 
nucleus [19, 20]. In higher nuclei the deviation of the nuclear 
potential from the Coulomb potential at small distances 
becomes important at distances r much larger than the radius 
of the nucleus, R [21]. 

The theoretical predictions for nuclear charge radius is a 
challenge for its measurements in the future experiments and 
thus, for obtaining detailed information on the nuclear 
potential charge distributions. This is particularly important 
considering the fact that there are many sources of charge 
radius data deduced from very different theoretical and 
experimental techniques. The comparison of the calculated 
nuclear potential radius, Rp with the future data will be a test 
of the corresponding theoretical models used for studies of 
the atomic nuclei structure. 

4. Conclusions 

Apart from presenting a more physical model for the 
nuclear charge distribution than the usual point charge model, 
this work also revealed the important advantage of finite – 
size nuclear model in determining the nuclear charge radius. 
Despite the fact that atomic nuclei are complex finite 
many-body systems governed by the laws of quantum 
mechanics, these proposed formulas equation (14) and (15) 
can be used to predict unknown nuclear charge radii. For this 
reason, the “spherical nuclear” radius R can be replaced by 
Rp for the distribution of proton charge beyond the radius of 
the atomic nucleons. 
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