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Abstract  It is well known that Newton’s dynamical gravitational field equation and Einstein’s geometrical gravitational 
field equation were derived based upon the Euclidean geometry. In this paper, we used a golden metric tensor for all 
gravitational fields in nature to develop Riemannian Laplacian field equation which is assumed to be more general than the 
Euclidean geometry in order to derive Riemann’s dynamical gravitational field equation for a static homogeneous oblate 
spheroidal massive bodies due correction terms of all order c-2 that is not found in Newton’s gravitational field equation and 
also in this paper we derived the solution of Newton’s gravitational field equation for a static homogeneous oblate 
spheroidal massive body. 
Keywords  Golden metric tensor, Riemannian Laplacian Equation, Spherical polar coordinates, Oblate spheroidal 
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1. Introduction 
In the last six decades, the theoretical study of 

gravitational fields in Newton’s dynamical gravitational 
field equation was treated under the assumption that massive 
bodies are perfectly spherical in nature. In the same way, 
Einstein’s Geometrical gravitational field equation was 
treated under the assumption that the sun is exclusively a 
perfect sphere as seen in Schwarzschild’s solution to 
Einstein’s Geometrical gravitational field equation. It is well 
known that Newton’s dynamical gravitational field equation 
and Einstein’s geometrical gravitational field equation were 
derived based upon the Euclidean Laplacian operator. 
Recently, research has shown that all rotating bodies 
example the planets, sun, stars and the galaxies in the 
universe are either oblate spheroidal or prolate in shape    
[1, 2, 9, 10, 13]. 

In Newton's mechanics, the motion of particles (such as 
projectile, satellites and pendulli) in earth's atmosphere is 
treated under the assumption that the earth is a perfect sphere 
[14]. Similarly, in the solar system the motion of bodies 
(such as planets comets and asteroids) is treated under the 
assumption that the Sun is a perfect sphere [3, 12]. 

Also in Einstein's theory, the motion of bodies (such as 
planets) and particles (such as photons) are treated under the  
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assumption that the Sun is a perfect sphere (Schwarzschild 
spacetime). But it is well known that the only reason for 
these restrictions is mathematical convenience and 
simplicity. The real fact of nature is that all rotating planets 
stars and galaxies in the universe are spheroidal [5, 6, 11]. 
And it is obvious that their spheroidal geometry will have 
corresponding consequences and effects in the motion of all 
particles in their gravitational fields. These effects will exist 
in both Newtonian mechanics and in Einstein's theory.  

2. Theoretical Analysis 
Consider a static homogeneous oblate spheroidal massive 

body of rest mass M and radius η0 . The Riemannian 
dynamical gravitational field equation is given explicitly by 
[7, 8, 10] 

 

Figure 1 

Density ρ0 
Radius η0 
Mass M  

 ∇R
2 f(η, ξ, ϕ, x0) = 4πGρ0(η, ξ, ϕ, x0)    (1.0) 
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Where ∇𝑅𝑅2  is Riemannian Laplacian 
Given  

∇R
2 = 1

�g
∂
∂xα

��ggαβ ∂
∂xβ
�         (1.1) 

and guv  is the metric tensor (either schwarztchild or great 
metric tensor or golden metric tensor). Here we use golden 
metric tensor of oblate spheroidal coordinates. In spherical 
polar coordinates, Golden metric tensor is given by:  

 g11 = �1 + 2
c2 f(r, θ, ϕ, x0)�

−1
          (1.2) 

g22 = r2 �1 + 2
c2 f(r, θ, ϕ, x0)�

−1
        (1.3) 

g33 = r2sin2θ �1 + 2
c2 f(r, θ, ϕ, x0)�

−1
   (1.4) 

 g00 = − �1 + 2
c2 f(r, θ, ϕ, x0)�          (1.5) 

  guv = 0, otherwise                  (1.6) 

To express Golden metric tensor in oblate spheroidal 
coordinates, we need to transform as we shall see later.  

(r, θ, ϕ, x0) → (η, ξ, ϕ, x0) 
Note that:  

g11 = h1
2 �1 + 2

c2 f�
−1

       (1.7) 

 g22 = h2
2 �1 + 2

c2 f�
−1

       (1.8) 

g33 = h3
2 �1 + 2

c2 f�
−1

       (1.9) 

g00 = −�1 + 2
c2 f�        (1.10) 

guv = 0, otherwise       (1.11) 
Where h1, h2, h3  are the scale factors in oblate 

spheroidal coordinates to be evaluated.  
Now consider Riemannian Laplacian 

 

∇R
2 = 1

�g
∂
∂x1 ��gg1β ∂

∂xβ
�  + 1

�g
∂
∂x2 ��gg2β ∂

∂xβ
� + 1

�g
∂
∂x3 ��gg3β ∂

∂xβ
� + 1

�g
∂
∂x0 ��gg0β ∂

∂xβ
�            (1.12) 

∇R
2 =

1
�g

∂
∂x1 ��gg11 ∂

∂x1� +
1
�g

∂
∂x1 ��gg12 ∂

∂x2� +
1
�g

∂
∂x1 ��gg13 ∂

∂x3� +
1
�g

∂
∂x1 ��gg10 ∂

∂x0� 

+
1
�g

∂
∂x2 ��gg21 ∂

∂x1� +
1
�g

∂
∂x2 ��gg22 ∂

∂x2� +
1
�g

∂
∂x2 ��gg23 ∂

∂x3� +
1
�g

∂
∂x2 ��gg20 ∂

∂x0� 

+
1
�g

∂
∂x3 ��gg31 ∂

∂x1� +
1
�g

∂
∂x3 ��gg32 ∂

∂x2� +
1
�g

∂
∂x3 ��gg33 ∂

∂x3� +
1
�g

∂
∂x3 ��gg30 ∂

∂x0� 

+
1
�g

∂
∂x0 ��gg01 ∂

∂x1� +
1
�g

∂
∂x0 ��gg02 ∂

∂x2� +
1
�g

∂
∂x0 ��gg03 ∂

∂x3� +
1
�g

∂
∂x0 ��gg00 ∂

∂x0� 

= 4πGρ0(r, θ, ϕ, x0)                                                               (1.13) 
The above Riemannian field equation reduced to: 

    
1
�g

∂
∂x1 ��gg11 ∂

∂x1� +
1
�g

∂
∂x2 ��gg22 ∂

∂x2� +
1
�g

∂
∂x3 ��gg33 ∂

∂x3� +
1
�g

∂
∂x0 ��gg00 ∂

∂x0� 

= 4πGρ0(r, θ, ϕ, x0)                                  (1.14) 
By definition g is the determinant of the Golden metric tensor  

g = �
g11

0
0

g22
0
0

0
0

0
0

0
0

g33
0

0
g00

�                                    (1.15) 

g = g11 ∙   g22  ∙   g33 ∙   g00                                          (1.16) 

= −h1
2  h2

2  h3
2 �1 +

2
c2 f�

−3

�1 +
2
c2 f�

1

 = −h1
2  h2

2  h3
2 �1 +

2
c2 f�

−2

 

�g = h1  h2  h3 �1 + 2
c2 f�

−1
                           (1.17) 

For oblate spheroidal coordinate 

g11 = 1
g11

= 1

h1
2�1+ 2

c2f�
−1 =

�1+ 2
c2f�

h1
2                                (1.18) 

 g22 = 1
g22

= 1

h2
2�1+ 2

c2f�
−1 =

�1+ 2
c2f�

h2
2                               (1.19) 

 g33 = 1
g33

= 1

h3
2�1+ 2

c2f�
−1 =

�1+ 2
c2f�

h3
2                               (1.20) 
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g00 = 1
g00

= − 1

�1+ 2
c2f�

= −�1 + 2
c2 f�                           (1.21) 

guv = 0,       otherwise                                     (1.22) 
Note also the scale factors for oblate spheroidal coordinates are:  

  h1 = a �η
2+ξ2

1+η2 �
1

2�
                                    (1.23) 

 h2 = a �η
2+ξ2

1+ξ2 �
1

2�
                                    (1.24) 

 h3 = a[(1 + η2)(1 + ξ2)]1
2�                            (1.25) 

By making use of equation (1.17) above and substituting  h1, h2 and h3. We get: 

�g = a�
η2 + ξ2

1 − η2 �
1

2�

∙ a �
η2 + ξ2

1 + ξ2 �
1

2�

∙ a[(1 − η2)(1 + ξ2)]1
2� × �1 +

2
c2 f�

−1

 

 = [a6(η2 + ξ2)2]1
2� �1 + 2

c2 f�
−1

                                        (1.26) 

�g = a3(η2 + ξ2) �1 + 2
c2 f�

−1
                            (1.27) 

Putting �g,  g11, g22, g33  and  g00 into the field equation we get 

1

a3(η2+ξ2)�1+ 2
c2f�

−1
∂
∂η
�a3(η2 + ξ2) �1 + 2

c2 f�
−1 �1+ 2

c2f�
a 2�η2+ξ2�
�1−η2�

∂
∂η

f�  

+ 1

a3(η2+ξ2)�1+ 2
c2f�

−1
∂
∂ξ
�a3(η2 + ξ2) �1 + 2

c2 f�
−1 �1+ 2

c2f�
a 2�η2+ξ2�
�1+ξ2�

∂
∂ξ

f�  

+ 1
a3(η2+ξ2)(1+ 2

c2f)−1
∂
∂ϕ
�a3(η2 + ξ2) �1 + 2

c2 f�
−1 �1+ 2

c2f�

a2(1−η2)(1+ξ2)
∂
∂ϕ

f�  

− 1
c2(1+ 2

c2f)−1
∂
∂t
��1 + 2

c2 f�
−1
�1 + 2

c2 f�
−1 ∂

∂t
f�  

= 4πGρ(η, ξ, ϕ, x0)                                                         (1.28) 

    
�1 + 2

c2 f�
(η2 + ξ2)

∂
∂η

�
(η2 + ξ2)(1 − η2)

a2(n2 + ξ2)
∂
∂η

f� +
�1 + 2

c2 f�
(η2 + ξ2)

∂
∂ξ
�

(η2 + ξ2)(1 + ξ2)
a2(n2 + ξ2)

∂
∂ξ

f� 

 +(1 +
2
c2 f)

∂
∂ϕ

�
1

a2(1 − η2)(1 + ξ2)
∂
∂ϕ

f� −
�1 + 2

c2 f�

c2
∂
∂t
�
∂
∂t

f� 

= 4πGρ(η, ξ, ϕ, x0)                                                         (1.29) 

�1 +
2
c2 f� �

1
a2(η2 + ξ2)

∂
∂η

�(1 − η2)
∂
∂η

f� +
1

a2(η2 + ξ2)
∂
∂ξ
�(1 + ξ2)

∂
∂ξ

f� +
1

a2(1 − η2)(1 + ξ2)
∂2

∂ϕ2 f −
1
c2

∂2

∂t2 f� 

= 4πGρ0(η, ξ, ϕ, x0)                                 (1.30) 
Static homogeneous oblate spheroidal distribution of massive body 
Note:  (1) No Time variation (static) 
      (2) No azimuthal angle ϕ (symmetry) 

Equation (1.30) reduced to  

�1 + 2
c2 f� � ∂

∂η
�(1 − η2) ∂

∂η
f� + ∂

∂ξ
�(1 + ξ2) ∂

∂ξ
f��  =  4πGρ0(η, ξ, ) a2(η2 + ξ2)         (1.31) 

Expand: equation (1.31) 
∂
∂η

�(1 − η2)
∂
∂η

f� +
∂
∂ξ
�(1 + ξ2)

∂
∂ξ

f� +
2
c2 f �

∂
∂η

{(1 − η2)}
∂
∂η

f� +
2
c2 f �

∂
∂ξ

{1 + ξ2}
∂
∂ξ

f� 

  = a2(η2 + ξ2) ∙ 4πGρ0(η, ξ, )                            (1.32) 
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∂
∂η
�(1 − η2) ∂

∂η
f� + ∂

∂ξ
�(1 + ξ2) ∂

∂ξ
f� + 2

c2 f � ∂
∂η

{(1 − η2)} ∂
∂η

f� + 2
c2 f � ∂

∂ξ
{1 + ξ2} ∂

∂ξ
f� = 0        (1.33) 

Note that:  
-  The first two terms of equation (1.32) are Newton’s gravitational field equations interior to the gravitational scalar 

potential f due to a distribution of mass density ρ0(η, ξ, ) and that of equation (1.33) are Newton’s gravitational field 
equations exterior with no distribution of mass density. 

-  While the last two terms are the added terms or our contribution due to Riemann and is referred to as Riemann’s 
gravitational field equation interior and exterior to a static homogeneous oblate spheroid. 

  ∂
∂η
�(1 − η2) ∂

∂η
f(η, ξ, )� + ∂

∂ξ
�(1 + ξ2) ∂

∂ξ
f(η, ξ, )� = 4πGρ0a2(η2 + ξ2)        (1.34) 

  ∂
∂η
�(1 − η2) ∂

∂η
f(η, ξ, )� + ∂

∂ξ
�(1 + ξ2) ∂

∂ξ
f(η, ξ, )� = 0             (1.35) 

Next, let us seek a separable complementary solution of the interior equation 
∂
∂η

(1 − η2) ∂
∂η
Ω−(η) + λΩ−(η) = 0                         (1.36) 

∂
∂ξ

(1 + ξ2) ∂
∂ξ

T−(ξ) − λT−(ξ) = 0                         (1.37) 

where λ is the separation constants. Consequently, for the choice 
λ = 𝑙𝑙(𝑙𝑙 + 1); 𝑙𝑙 = 0,1,2 …                             (1.38) 

equation (1.34) becomes the Legendre’s equation and hence has solution of the form 

 Ω−(η) = �P𝑙𝑙(η)
Q𝑙𝑙(η)

�       𝑙𝑙 = 0,1,2 …                           (1.39) 

where P𝑙𝑙  and Q𝑙𝑙  are the linearly independent solutions of the Legendre’s differential equation. 
Also by the transformation equation 

 ξ = 𝑖𝑖τ                                          (1.40) 
equation (1.37) becomes 

∂
∂ξ

(1 + τ2) ∂
∂ξ

T−(τ) − 𝑙𝑙(𝑙𝑙 + 1)T−(τ) = 0                       (1.41) 

This is the Legendre’s differential equation and hence has the solution of the form 

 Ω(ξ) = �P𝑙𝑙(−𝑖𝑖ξ)
Q𝑙𝑙(−𝑖𝑖ξ)

�       𝑙𝑙 = 0,1,2 …                           (1.42) 

Consequently 
 f−(η, ξ) = ∑ [A𝑙𝑙

−P𝑙𝑙(−𝑖𝑖ξ) + B𝑙𝑙
−Q𝑙𝑙(−𝑖𝑖ξ)][C𝑙𝑙−P𝑙𝑙(η) + D𝑙𝑙

−Q𝑙𝑙(η)]∞
𝑙𝑙=0                (1.43) 

where A𝑙𝑙
−, B𝑙𝑙

−, C𝑙𝑙−, and P𝑙𝑙  are arbitrary constants. Next let us seek a particular solution of the interior equation f as 
 f − = k(η2 − ξ2)                                   (1.44) 

substituting equation (1.44) into equation (1.34) it follows that 
4πGρ0a2 = 6k                                   (1.45) 

k = 2
3
πGρ0a2                                    (1.46) 

Hence the general solution of the interior equation f−  given by: 

     f−(η, ξ) = 2πGρ0a2�η2+ξ2�
3

+ ∑ [A𝑙𝑙
−P𝑙𝑙(−𝑖𝑖ξ) + B𝑙𝑙

−Q𝑙𝑙(−𝑖𝑖ξ)][C𝑙𝑙−P𝑙𝑙(η) + D𝑙𝑙
−Q𝑙𝑙(η)]∞

𝑙𝑙=0         (1.47) 

Where A𝑙𝑙
−, B𝑙𝑙

−, C𝑙𝑙−, D𝑙𝑙
− are constants, and P𝑙𝑙  and Q𝑙𝑙  are the Legendre’s functions order 𝑙𝑙. Similarly, since the exterior 

equation is homogeneous its general solution f + is given by 
f +(η, ξ) = ∑ [A𝑙𝑙

+P𝑙𝑙(−𝑖𝑖ξ) + B𝑙𝑙
+Q𝑙𝑙(−𝑖𝑖ξ)][C𝑙𝑙+P𝑙𝑙(η) + D𝑙𝑙

+Q𝑙𝑙(η)]∞
𝑙𝑙=0                   (1.48) 
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Where A𝑙𝑙
+, B𝑙𝑙

∓, C𝑙𝑙+, D𝑙𝑙
+ are arbitrary constants. Now since 

the interior and exterior regions both contain the coordinate 
η = 0 which is a singularity of Q𝑙𝑙  

D𝑙𝑙
− ≡ D𝑙𝑙

+ ≡ 0;  𝑙𝑙 = 0, 1, 2, …     (1.49) 
Also since Q𝑙𝑙(−𝑖𝑖ξ) is not defined at the centre of the 

body ξ = 0 in the interior region 
 B𝑙𝑙

+  ≡ 0;  𝑙𝑙 = 0, 1, 2, …       (1.50) 
Also, since P𝑙𝑙(−𝑖𝑖ξ)  is not defined for ξ → ∞ in the 

exterior region 
A𝑙𝑙

+ ≡ 0;  𝑙𝑙 = 0, 1, 2, …       (1.51) 
Hence from the continuity of the gravitational scalar 

potentials equations (1.47) and (1.48) across the boundary 
ξ = ξ0 and the orthogonality of the Legendre functions P𝑙𝑙  
it follows that, the resulting equations are 

A0
− + 2πGρ0a2

3
�ξ0

2 − 1
3
� = B0

+Q0(−𝑖𝑖ξ)   (1.52) 

A𝑙𝑙
−P𝑙𝑙(−𝑖𝑖ξ0) = B0

+Q0(−𝑖𝑖ξ)         (1.53) 

A2
−P2(−𝑖𝑖ξ0) − 2πGρ0a2

9
B2

+Q2(−𝑖𝑖ξ)      (1.54) 

From equations (1.52) and (1.54) we get 

  4πGρ0a2

3
= B0

+ � d
dξ

Q0(𝑖𝑖ξ)�
ξ=ξ0

       (1.55) 

and 

 A0
+ � d

dξ
P𝑙𝑙(−𝑖𝑖ξ)�

ξ=ξ0
= B0

+ � d
dξ

Q𝑙𝑙(−𝑖𝑖ξ)�
ξ=ξ0

  (1.56) 

Thus solving (1.52)-(1.56) simultaneously 

B0
+ = 4πGρ0a2ξ0

3� d
dξQ0(−𝑖𝑖ξ0)�

ξ=ξ0

            (1.57) 

and 

 A0
𝑙𝑙 = 4πGρ0a2ξ0Q0(−𝑖𝑖ξ0)

3� d
dξQ0(−𝑖𝑖ξ0)�

ξ=ξ0

− 2πρ0a
3

�ξ3 − 1
3
�   (1.58) 

  A0
− = 0               (1.59) 

B𝑙𝑙
+  = 0              (1.60) 

Next, let us consider equation (1.54) above i.e. 

A2
−P2(−𝑖𝑖ξ) −

2πGρ0a2

9
B2

+Q2(−𝑖𝑖ξ0) 

Now differentiate both sides of this equation with respect 
to ξ, it follow that 

A2
− � d

dξ
P𝑙𝑙(−𝑖𝑖ξ0)�

ξ=ξ0
= B2

+ � d
dξ

Q𝑙𝑙(−𝑖𝑖ξ0)�
ξ=ξ0

    (1.61) 

By multiplying both sides of equation (1.54) with 

�
d
dξ

P2(−𝑖𝑖ξ)�
ξ=ξ0

 

It follows that 

A2
−P2(−𝑖𝑖ξ) �

d
dξ

P2(−𝑖𝑖ξ)�
ξ=ξ0

−
4πGρ0a2

9
�

d
dξ

P2(−𝑖𝑖ξ)�
ξ=ξ0

 

= B2
+Q2(−𝑖𝑖ξ0) � d

dξ
P2(−𝑖𝑖ξ)�

ξ=ξ0
      (1.62) 

This follows by multiplying both side of equation (1.62) 
with P2(−𝑖𝑖ξ). Thus 

 B2
+ = −

4πGρ0a2� d
dξP2(−𝑖𝑖ξ)�

ξ=ξ0
9∆2

     (1.63) 

where 

 ∆2= Q2(−𝑖𝑖ξ) � d
dξ

P2(−𝑖𝑖ξ)�
ξ=ξ0

− P2(−𝑖𝑖ξ) � d
dξ

P2(−𝑖𝑖ξ)�
ξ=ξ0

  

(1.64) 
And 

 A2
− = −

4πGρ0a2� d
dξQ2(−𝑖𝑖ξ)�

ξ=ξ0
9∆2

         (1.65) 

Hence the general solution of the interior and exterior 
equation in equation (1.47) and (1.48) reduce to 
 f −(η, ξ) =
�2πGρ0a2�η2+ξ2�

3
+ A2

−P2(−𝑖𝑖ξ)P2(η) + A0
−P0(−𝑖𝑖ξ)P0(η)� (1.66) 

and 
f +(η, ξ) = B0

+Q0(−𝑖𝑖ξ)P0(η) + B2
+Q2(−𝑖𝑖ξ)P2(η) (1.67) 

These are the gravitational scalar potentials of the body 
in terms of rest mass density. It follows that gravitational 
scalar potential (1.66) and (1.67) may be expressed in terms 
of the total rest mass of the body by the relation 

 M0 = 4
9

a3ρ0πξ0(3 + ξ2)       (1.68) 

It may be noted that results from mathematical tables 
gives 

  Q0(𝑡𝑡) = 1
2

ln �t+1
t−1
�           (1.69) 

Q2(𝑡𝑡) = 1
4

(3t2 − 1) ln �t+1
t−1
� + 3

2
t   (1.70) 

Consequently 

 Q0(−𝑖𝑖ξ) = 𝑖𝑖 �ξ−1 + 1
3
ξ−3 + 1

5
ξ−5 + ⋯ �   (1.71) 

and 

Q2(−𝑖𝑖ξ) = 1
2
�2ξ−1 + �1

3
+ 1

5
� ξ−3 + �1

5
+ 1

7
� ξ−5 + ⋯ � (1.72) 

3. Summary and Conclusions 
In this paper we showed how to formulate the 

Riemannian Gravitational Field Equation for static 
homogeneous oblate spheroidal massive bodies using the 
Riemannian Laplacian operator and golden metric tensor. 
Also, this paper Newton's gravitational scalar potentials for a 
homogeneous oblate spheroidal body was formulated and 
solved with the exact and complete results given by (1.71) 
and (1.72). Consequently, these potentials are now available 
for application in physics.  

A profound philosophical inference is suggested by the 
results obtained in this paper that Newton's gravitational 
field equations for a spheroidal body are linear and separable, 
and hence solvable in terms of the well known special 
functions of mathematical physics, the Legendre, function. 
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This fact suggests that Einstein's geometrical theory of 
gravitation, GRT, whose gravitational field equation are non 
linear may not be the most natural generalization of 
Newton's dynamical theory of gravitation. 

It is now known that most bodies in the universe are 
spheroidal in nature. As an example, it is now well known 
that satellite orbits around the earth are not governed by just 
the simple inverse distance squared gravitational fields of 
perfect spherical geometry. They are also governed by 
second harmonics (pole of order 3), as well as fourth 
harmonics (pole of order 5) of gravitational scalar potential 
due to imperfect spherical geometry.  

In the first place this paper opens the door for the physical 
interpretation of all the solutions obtained in this work and 
hence experimental investigation in the motion of all bodies 
in the Earth's atmosphere and solar system as well as all other 
gravitating systems in the universe. 

In the second place the door in henceforth opened for the 
mathematical study of all the unsolved equations of motion 
for all particles in all types of motions in all systems in the 
universe, such as more accurate calculation of (i) missile and 
satellite and space craft trajectories in the earth's atmosphere 
(ii) motions of moons around their planets, (iii) motion of 
planets (iv) comets and asteroids around the sun and (v) 
motions of stars around their galactic nuclei in the universe. 
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