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The Electromagnetic Radiation and Gravity
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Abstract s already known that a non-inertial reference frame is equivalent to a certain gravitational field. In this paper, a
non-uniformly accelerated linear motion of the reference frame is analyzed. We will try to prove that this motion generates a
non-uniform and variable gravitational field, described by a Finsler metric. The attaching to the non-inertial reference frame
of an electric charge, leads to changes in the structure of this gravitational field. The changes are produced by the EM
radiation emitted, and can be easily recognized in the mathematical expression of the metric of space-time. The motion of the
electric charge is analyzed also from a quantum perspective. The connection of the Schrodinger equation with the metric of
space-time can be realized by means of a function of coordinates, which defines some Lorentz non-linear transformations. At
the basis of these theoretical approaches is lay a variational principle in which the velocity of the particle is considered as a
function of coordinates

Keywords Damped quantum oscillator, Lorentz non-linear transformations, a different type of variational principle,

Finsler space

1. Introduction

Let us consider that we have a positive charge (q) located
in the center of a inertial reference frame (O; X, vy, z,t),and a
negative charge (—q) located in the center of a non-inertial
reference frame (O’; X, y’, 2°, t’). Then, let us imagine that
the non-inertial reference frame is moving with the
acceleration (a, ) in the (x) direction with respect to the
inertial reference frame. Also, let us assume that the
accelerated charge is moving such that the bilinear form

2 22 1.2)

is an invariant with respect to the following non-linear
transformations

X

{x =aq; x"+ a, ct’ 12)

ct =ay x +ayct
where, a; = a;; (x,t') (ij=12). So, we try to find the
functions a;; (x, t') such that

x% — c?t? = x'? — c?t"? (1.3)
First we replace the coefficients a; = aj; (x',t) as
follows
{an = cosh,[?(x:,t’) {a21 = s?nhﬁ(x:,t’ (1.4)
a,, = coshd(x,t') la;, = sinhI(x,t")

Then, substituting the transformations (1.2) into equation
(1.3), we get

sinh(f —9) =0 (1.5)
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So, we must have B(x’,t") = 9(x,t"), and the
transformations (1.2) become
{ x = xllcoshﬁ + ct’IsinhB
ct = x sinhf + ct coshf3
Also, we can admit the following inverse transformations

(1.6)

’

{x = x cosha — ct sinha
ct = ctcosha— xsinha
where a = a(x,t).

Differentiating now the direct transformations (1.6), we
obtain

.7

dx = coshf dx' +sinhf cdt + j—ﬂ dg  (18)

cdt = coshf cdt +sinhf dx + Cs—; dg (1.9)

Differentiating also the inverse transformations (1.7), we
obtain

dx = cosha dx —sinha cdt + %da (1.10)

dt' = cosha dt — %sinh a dx + Z—Zda (1.11)

In order to find the physical semnification of the function
(x,t), we observe that, for the origin x =0 of the
non-inertial reference frame, the equation (1.10) becomes

cosha dx —sinha cdt =0 (1.12)

From this, we can deduce the derivative of the position x

with respect to time t
. dx

Tar x =0

which signifies the velocity of non-inertial reference frame

with respect to the inertial reference frame. Also, in order to

find the physical semnification of the function B(x',t"), we

observe that, for the origin x = 0 of the inertial reference

= ctanha (x,t) (1.13)
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frame, the equation (1.8) becomes
coshf dx' +sinhf cdt =0 (1.14)
From this, we can deduce also the derivative of the
position x’ with respect to time t'
X =4 = —ctanh B(x, t)
dt Ix=o
which signifies the velocity of the inertial reference frame
with respect to the non-inertial reference frame. But,
according to the motion relativity principle, we must have
x' = —% (1.16)
Therefore, we can admit the following identity

Blx',t) =a(xt)

(1.15)

(1.17)

2. The Wave Function

Further on, we can associate a de Broglie wave with the
accelerated charge. The wave must be stationary with respect
to the non-inertial frame. Therefore, we can introduce the
following wave function for the accelerated charge

W(t) = Ae~i@ ¢ 2.1)
where t’ is given by the equation (1.7). Thus, we can
rewrite this function with respect to the inertial reference
frame as follows

BU(x t) — Ae—iw'(t cosh a(x,t)—%xsinh a(x,t)) (2 2)
Taking the partial time derivative of this function, we get

a . 1 ,0a
E‘I’(x, t) = —iw (cosha —-X E) Y(x,t) (2.3)

Now, we can introduce by definition the Hamiltonian
operator

A¥(x,t) = th=¥(x, t)| . (2.4)

According to the equation (2.3), for the point x' = 0 we
get
A¥(x,t) = hw cosha(x,t) ¥(x,t) (2.5)

Therefore, we can deduce from here the following
Hamiltonian function

H(x,t) = Hycosha(x,t)
where H, is the rest energy of the accelerated charge
Hy = hw = myc? 2.7

and m, is the charge rest mass. Taking now the partial x
derivative of the function ¥ (x, t), we get

a L 1 . 1 /0a
E‘P(x, t) = —iw (—;smha —-x g) Y(x,t) (2.8)

(2.6)

Further on, we can introduce by definition the linear

momentum
R _
P W(x,t) = —1h =¥ (x, t)|x,=0 (2.9)

So, according to the equation (2.8), for the point x' = 0
we can write

P P(x, t) = %flw' sinha(x,t) ¥(x,t) (2.10)

Thus, we obtain the following expression for the linear

momentum of the accelerated charge
Dy = %HO sinh a(x, t) (2.11)

Substituting now the equation (1.13) into the equation
(2.6), we get the well known formula

H(p,) = mc? = cy/p2 + mic? (2.12)
where m is the charge moving mass
m =mgcosha = == (2.13)

Also, substituting the equation (1.13) into the equation

(2.11), we get the well known formula
Py = MX (2.14)

3. The Hamilton’s Equations
According to the principles of analytical mechanics, we
can introduce now the Lagrange function
L(x,x,t) = xp, — H(p,, x, 1) (3.1)

and the linear momentum p, as the derivative of lagrange
function with respect to x

Py =2 (32)
where, according to the equation (1.13), we can consider
x =v,(xt) (3.3)
Let us consider also the action functional
S[x] = fff L[t, x(t), x(x, )]dt (3.4)

where t,,t, are constants. We assume that the action S[x]
attains a local minimum at f(t), and g(t) is an arbitrary
function that has at least one derivative and vanishes at the
endpoints t,t, . So, for any number & close to zero, we can
write

SUf1 < SIf +eg] = G(e) 3.5)

Thus, if the functional S[x] has a minimum for x = f,
the function G (&) hasa minimumat € =0

CO=2| =2 dt=0

=0 t1 delg=g

where, according to the equation (3.3), x(t) and x(x,t) are
functions of &, of the form

x(t) = f(t) +eg(t) (3.7)
x(x,6) = v [f(6) + eg(0), t] + eg(6) (3.8)
Taking the total derivative of L[t, x(t), x(x, t)], we get
dlL _ dLdx | dL d#

(3.6)

i " oxde Toxae (39)
But, according to the equations (3.7) and (3.8), we have
T=9® (3.10)
dx _ dvy .
= Eg(t) +4(t) (3.11)
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Therefore, we get

tdL dt
Ldel,_o

:ﬁf{[g—i+%%}g(t)+%g(t)}dt
=B - @ lew)a + 0] 612

According to the fundamental lemma of calculus of
variations, we get

G'(0)=

a ("’_L) _ v oL _
dt \ax) 9% ax  ox

In consequence, we can introduce now the Hamiltonian
function as

(3.13)

H=xp,—L(xx,t)=H(p,,x,t)

Differentiating now this function, according to the
equation (3.13), we get the following equation

dH = % dp, — (px —2xp, )dx—2dr  (3.15)

Comparing this expression with the mathematical
expression

(3.14)

— o oH oH
dH = one dp, +—dx +—-dt (3.16)
We get the following Hamilton equations
. vy oH
Px — %px == E (317)
oH .
. =X = (x,t) (3.18)

4. The Schrodinger Equation

Further on, we consider a function F(p,,x,t) which
describes a physical quantity of the accelerated charge.
Taking the total time derivative of the function F(p,, x, t),
we obtain

dF dF . JF . oF
Pl ax + apx + i

According to the equations (3.17) and (3.18), we can

rewrite this formula as follows

(4.1)

vy OF aF
TEEHMFE T 4 (42)
where {F,H} is the cIaSS|caI Poisson bracket
__ (O0F 8H  9OF 8H
{F,.H} = (ga—ag) (4.3)
Let us write the equation (4.2) under the following form
dF _ DF
<=t {F,H} (4.4)
where D, is an operator whose expression is given by
Dy=2=0 0%y, 9 (4.5)

a o " ax Py,

Taking into consideration the analogy between quantum
mechanics and analytical mechanics, we can introduce an
operator F corresponding to the physical quantity F.

According to the equation (4.4), the corresponding equation
for this operator must be

df _ DF

~ =t {F,H} (4.6)
where {F, A} is the quantum Poisson bracket

{F,H} =%(ﬁﬁ—ﬁﬁ) 4.7

According to the equation (4.6), we can define the time
derivative of the expectation value of the observable F as
follows

(G = DilF) 4.8)

where (F) is the mean value (expectation value) of the
observable F. Also, the law that describes the time evolution
of a particle must be of the form

Ho(p,,t) = ihD, @ (p,, ) (4.9)

In this equation, ®(p,,t) is the wave function of a
quantum system, in the p, representation. According to this
representation, the operators X and p, are given by the
expressions

o _ 7 0
X=tho (4.10)
Px = Dx

Therefore, in the expression (4.5), we can make the

replacing

a [N

Opy = _ﬁx
which leads us to the following expression of the operator D,
in the p,. representation

D, =

(4.11)

D_38 _ i3wmye
dt ot K ox

But we seek the Schrodinger equation (4.9) in the x
representation. For this, we must introduce the operators

(4.12)

P _.~i
{px = —thy (4.13)
X=x
and the canonical commutation relation
Py X =X%p, —ih (4.14)

According to this relation, in the expression (4.12) we can
make the replacing

(4.15)

which leads us to the following expression of the operator D,
in the x representation

A oA D L7
X =—ih Xx——ih
Dx I

a av. a v
D =———2x———=
E 7ot ax Toax  ox

Therefore, we can write now the following Schrodinger
equation

(4.16)

HY(x,t) = ihD,¥(x,t) 4.17)
where the new Hamiltonian operator for the accelerated
charge is given by

H=ihD, = ih= — ih 2 x 2 — (h 2~ (4.18)

The additional term is of complex nature and its real part
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signify the potential energy of the field of force in which the
particle is moving.

5. The Damped Oscillator
Let us consider that the accelerated charge (—q) is bound
to the fixed charge (q) by an elastic force of the form
F, = —Kx (K = myw3) (5.1)

Taking the total time derivative of the equation (2.6), we
can introduce, according to the special relativity theory, the
following equation

dt dt (52)

where E, is the resultant force which acts on the accelerating
charge

dH -
W mex™ = Fp=x xF,
h

dp
F, =—=
X dt

(5.3)

This force must be the sum between the elastic force and
the radiative reaction force

= oty (5.4)

F,
rad. 61c

Therefore, for non-relativistic velocities, we get the
equation of motion

#Oq

X — o x+w0x—0 (5.5)

We know that this equatlon is applicable only to the extent
that the radiative reaction force is small compared with the
elastic force

”Oqc X < a)Ox

TT
This condition leads us to the following equation of
motion

¥+ 2yx + wix =0 (5.6)
where
_ Hoq’w}
Y= 12mrmgc (57)

Thus, the approximate solution of the equation (5.6) can
be written as

x(t) = Ae " cos(wt + @) (5.8)
where w is the angular frequency of the damped oscillator

; (5.9)

w = wi —y?
Also, from the equation (5.2), for non-relativistic
velocities, we can now deduce a new differential equation

(5.10)

The integration of this equation leads us to the solution

da w} 2y .
dt c c

{a(x, t) =—2ux— () (5.11)
n=y/c '
where ¢(t) is given by the expression
(t) = %%fx dt (5.12)

The Electromagnetic Radiation and Gravity

But, according to the equation (1.13), we must have the
condition

d
d—fzctanh( x——fx dt) (5.13)
Taking the total time derivative of this equation, we get
d?x 1 ( ) dx  w} )
- =C U————X
dt cosh? ( 2ux — —fx dt) dt ¢

Now, we can replace

1 —q 1 (dx)
=1-—(=
cosh? ( 2ux — —fx dt) c” dt

2

IR
[u=y

Therefore, we get the equation
d?x x
Fr _ZHCE — WX
which is the same equation (5.6). Substituting this result into
the equation (5.10), we can write the approximate equation
L=l (5.14)
The solution of this equation is given by the expression

a(x,t) = argtanh (f) (5.15)

which results from the equation (1.13). Taking now the total
time derivative of the displacement (5.8), we get
x = —yAe " cos(wt + @y) — wAe Vsin(wt + ¢y) (5.16)

This expression can be written as a function of the
displacement function x(t), under the following form

x =v(x,t) = —yx — cu(t) (5.17)
where the function u(t) is given by the expression
u(t) = %Ae‘”sin(wt + ¢y) (5.18)

In this way, the velocity becomes a function of the
coordinate x , because here the displacement x is
considered as a variable which no longer depends on time.
Consequently, we may admit for a(x,t) a solution of the
form

a(x,t) = argtanh[—ux — u(t) | (5.19)

6. The Damped Quantum Oscillator

Substituting now the solution (5.17) into the equation
(4.18), we get, for non-relativistic velocities
-~ .z 0 , &~ 0 .7
H= lhE + lyhxa +iyh (6.1)
For the Hamiltonian operator of the oscillator, we take the
expression
P R? 92

H=-— mywix?
2m0x2+ 0%'0

(6.2)

Admitting for the wave function a solution of the form
Y(x,t) = R(x)T(t), after the separation of variables, we get
the following two equations
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~2 " o~ r
— 2 R'™ 4 Lmywix?R(x) — iyh[xR'® +
ng 2
Rr=FRx (6.3)
ihd,T(t) = ET(t) (6.4)

where the constant E is the separation constant, and
signifies the total energy of the quantum oscillator. Thus,
after a rearrangement of the terms, the first equation can be
rewritten as follows

n

R (x)+2iy%xR'(x)
(6.5)
+2F%(E+iyﬁ—%mong2jR(x)=0

Further on, we can introduce a dimensionless variable

myWy
= = X = VX
P R
such that the equation becomes
R" (p) + 2ibpR' (p) + (a — p»)R=0 (6.6)
in which we have introduced the notations
a=a,+2ib (6.7)
— 2E
an - Emo (68)
b= MLO (6.9)
Now, we can take for R(p) a solution of the form
R(p) = w(p)e*r’ (6.10)

which generates the differential equation for the unknown
function w(p)

W +2p(2k +ib)w +(2k +a)w
] (6.11)
+(4k2 + 4ibk —1)p2W= 0
The constant k can be determined from the equation
4k% + 4ibk—1=0 (6.12)

In order to get a finite solution for the function R(p), we
choose the root

k=(-ib—4d)/2 (6.13)
where we have introduced the notation
d=+vV1-— b2 (6.14)

Therefore, the equation (6.11) becomes
w' (p) — 2dpw (p) + (a, — d + ib)w(p) = 0 (6.15)

We can introduce now a power series expansion as
solution

w(p) = XjZo 4;p’ (6.16)

Substituting this expansion into the differential equation
(6.15), we get

SAG+ DG+ DA, — [2jd — (g —d +ib) |4}y =0
(6.17)

which leads us to the recursion relation
A= 2jd —(a;—d+ib)

Jt2 T GG+ Y
Because the series must be finite, there exists some n

such that when j = n, the numerator will be zero. Therefore,
we get

(6.18)

a, —d + ib = 2nd (6.19)

Substituting here the formula (6.8), we obtain the
following complex expression for the total energy of the
quantum oscillator

E=E,—i’h (6.20)
where E, are the quantized energies of the quantum
oscillator

= 1
E, = ho (n+ E) (6.21)

Substituting now the constant k into the expression (6.10),
we get

_Vi-b? 5 b2
R(p) =w(p)e™ z " e 2 (6.22)
Also, substituting the equation (6.19) into the equation
(6.15), we get for the unknown function w(p) the equation

w' (p) — 2dpw’ (p) + 2ndw(p) = 0 (6.23)
If we introduce now a new dimensionless variable
r=+vdp= /"%“’x:m (6.24)
the equation (6.23) becomes
H, (r)—2rH, (r)+2nH,(r) =0  (6.25)

where H,(r) are the Hermite polynomials. So, w(r) =
H, (), and the solution R(x) can be written as

1-b2 2 2 b 2.2

R(x) =N, H,(tx)e” 2z " e 2 (6.26)

where N, are the multiplication factors, whose expression
can be determined by the normalization condition of the
wave function.

For the second equation (6.4), we have the solution

T(t) = e (E/R)t 6.27)
Substituting here the solution (6.20), we get the expression

(6.28)

which describe the time evolution of the wave function for
the accelerated charge.

T(t) = e 2te—i(En/R)

7. The Metric of Space-Time

Let us write now the “distance” between two
infinitesimally close events, into the inertial reference frame
O;x,y,2,1)

ds? = c?dt? — dx? (7.1)
Substituting here the equations (1.8) and (1.9), we get
ds? = gooc?dt'? + 2ggrdx cdt’ + gpdx'? (7.2)
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where the components of the metric tensor are

xz?ﬁ

Joo =1+ ( ) x?%—c t'2)+2 (7.3)

a ! ! ’a
g1 = — [1 - (—ﬁ) (x'? = c?t'?) + 2ct %] (7.4)

r 9B raﬁ 1 aﬁ 9B 12
=x ——
Gor =X gm— U+ oorar - (x

But, according to the equations (1.17) and (5.11), we have

—c%t'?) (7.5)

Blx',t) = a(x,t) = —2ux — ¢(t) (7.6)
Then, according to the transformations (1.6), we can
impose
x = A(vx)(x' + v, t") (7.7
t=Aw) (t +%x) (7.8)
where
A(w,) = — (7.9)

1-v2/c?

Substituting now these expressions into the equation (7.6),
we get

B, ) = =2 A ) (x' + v,t) — p(x, t') (7.10)
where

o', t) = () ‘tzA(vx)(t'#;x') (7.11)
Taking now the partial x’ derivative of B(x',t"), we
obtain

d(p at

L = —2uA(v,) +2 (7.12)

Also, taking the partial t' derlvatlve of B(x',t’), we
obtain

9B

d(p at
oo = T2uvy A(v,) +— a7 (7.13)

But, according to the transformations (7.7) and (7.8), we
can write
at

2 %A, (7.14)
2= AW (7.15)
b oy o U pw)( +vt)  (7.16)

Substituting these expressions into the equations (7.12)
and (7.13), we get

:f —2ul(v,) ——v A2 (0 (' + vt (7.17)
5 = 2uv, A(v,) — 0/12(1;,5)(x’ + v, t") (7.18)

where the velocity v, is given by the expression (5.17),
which no longer can be written as a function of the
coordinates (x,t"). So, in this particular case, the metric of
space-time (7.2) becomes a Finsler metric, and the space
becomes a Finsler space.

The Electromagnetic Radiation and Gravity

8. Conclusions

Intuitively, the non-uniformly accelerated linear motion of
a oscillator must be equivalent to a uniform but variable
gravitational field. However, the gravitational field
described by the metric of space-time (7.2), is a non-uniform
field. This is due to the particular mode of writing of the
velocity of a particle as a function of the coordinates (x,t),
and the function a(x,t), depending on the same coordinates,
by means of the velocity. Also, from the equation (3.17), we

can observe that the term % p, corresponds at the half of
the radiative reaction force

av,

1
%px = _Frad.

2

Therefore, the function a(x,t) which determines the
Lorentz non-linear transformations, intervenes in the
determination of the radiative reaction force of the EM field
and, also, in the determination of the gravitational field
which appears in the non-inertial reference frame. Indeed, if
we impose now a = const., we get

{ Frad. =0
ds? = c%dt'’? — dx'?

so, both, the radiative reaction force and the gravitational
field, vanish. On the other hand, the radiative reaction force
vanishes again when the oscillator is a neutral particle, but
the gravitational field does not vanish, because w, is
different from zero. This suggests that the EM energy carried
by the EM radiation contributes to the energy of the
gravitational field. Also we can conclude that the field which
appears as an EM field into the inertial reference frame,
appears as a gravitational field into the non-inertial reference
frame.

—ympx =
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