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Abstract  Is already known that a non-inertial reference frame is equivalent to a certain gravitational field. In this paper, a 

non-uniformly accelerated linear motion of the reference frame is analyzed. We will try to prove that this motion generates a 

non-uniform and variable gravitational field, described by a Finsler metric. The attaching to the non-inertial reference frame 

of an electric charge, leads to changes in the structure of this gravitational field. The changes are produced by the EM 

radiation emitted, and can be easily recognized in the mathematical expression of the metric of space-time. The motion of the 

electric charge is analyzed also from a quantum perspective. The connection of the Schrodinger equation with the metric of 

space-time can be realized by means of a function of coordinates, which defines some Lorentz non-linear transformations. At 

the basis of these theoretical approaches is lay a variational principle in which the velocity of the particle is considered as a 

function of coordinates 

Keywords  Damped quantum oscillator, Lorentz non-linear transformations, a different type of variational principle, 

Finsler space 

 

1. Introduction 

Let us consider that we have a positive charge  𝑞  located 

in the center of a inertial reference frame (O; x, y, z, t), and a 

negative charge  −𝑞  located in the center of a non-inertial 

reference frame (O’; x’, y’, z’, t’). Then, let us imagine that 

the non-inertial reference frame is moving with the 

acceleration (𝑎𝑥 ) in the (x) direction with respect to the 

inertial reference frame. Also, let us assume that the 

accelerated charge is moving such that the bilinear form  

𝑥2 − 𝑐2𝑡2                 (1.1) 

is an invariant with respect to the following non-linear 

transformations 

 
𝑥 = 𝑎11 𝑥′ + 𝑎12  𝑐𝑡′ 

 𝑐𝑡 = 𝑎21  𝑥 ′ + 𝑎22  𝑐𝑡′ 
              (1.2) 

where,  𝑎𝑖𝑗 = 𝑎𝑖𝑗  𝑥
′ , 𝑡′  (i,j=1,2). So, we try to find the 

functions 𝑎𝑖𝑗  𝑥
′ , 𝑡′  such that 

𝑥2 − 𝑐2𝑡2 =  𝑥′2 − 𝑐2𝑡′2             (1.3) 

First we replace the coefficients 𝑎𝑖𝑗 = 𝑎𝑖𝑗  𝑥
′ , 𝑡′  as 

follows 

 
𝑎11 = cosh 𝛽 𝑥 ′ , 𝑡′ 

𝑎22 = cosh 𝜗 𝑥 ′ , 𝑡′ 
   

𝑎21 = sinh 𝛽 𝑥 ′ , 𝑡′ 

𝑎12 = sinh 𝜗 𝑥 ′ , 𝑡′ 
  (1.4) 

Then, substituting the transformations (1.2) into equation 

(1.3), we get 

sinh 𝛽 − 𝜗 = 0              (1.5) 
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So, we must have 𝛽 𝑥 ′ , 𝑡′ = 𝜗 𝑥 ′ , 𝑡′ , and the 

transformations (1.2) become 

 
𝑥 =  𝑥 ′ cosh 𝛽 + 𝑐𝑡′ sinh β 

 𝑐𝑡 =  𝑥 ′ sinh 𝛽 + 𝑐𝑡′ cosh β 
          (1.6) 

Also, we can admit the following inverse transformations  

  
𝑥 ′  =  𝑥 cosh 𝛼 − 𝑐𝑡 sinh α 

 𝑐𝑡′ =  𝑐𝑡 cosh α −  𝑥 sinh 𝛼 
          (1.7) 

where 𝛼 = 𝛼 𝑥, 𝑡 . 

Differentiating now the direct transformations (1.6), we 

obtain  

𝑑𝑥 = cosh 𝛽  𝑑𝑥 ′ + sinh 𝛽  𝑐 𝑑𝑡′ + 
𝜕𝑥

𝜕𝛽
 𝑑𝛽    (1.8) 

𝑐 𝑑𝑡 = cosh 𝛽  𝑐 𝑑𝑡′ + sinh 𝛽  𝑑𝑥 ′ +  𝑐
𝜕𝑡

𝜕𝛽
 𝑑𝛽  (1.9) 

Differentiating also the inverse transformations (1.7), we 

obtain 

𝑑𝑥 ′ = cosh 𝛼  𝑑𝑥 − sinh 𝛼  𝑐 𝑑𝑡 +
𝜕𝑥 ′

𝜕𝛼
𝑑𝛼    (1.10) 

𝑑𝑡′ = cosh 𝛼  𝑑𝑡 −
1

𝑐
sinh 𝛼  𝑑𝑥 +

𝜕𝑡 ′

𝜕𝛼
𝑑𝛼     (1.11) 

In order to find the physical semnification of the function 
 𝑥, 𝑡 , we observe that, for the origin 𝑥 ′ = 0  of the 

non-inertial reference frame, the equation (1.10) becomes 

cosh 𝛼  𝑑𝑥 − sinh 𝛼  𝑐 𝑑𝑡 = 0     (1.12) 

From this, we can deduce the derivative of the position 𝑥 

with respect to time 𝑡 

𝑥 =  𝑑𝑥

𝑑𝑡
 
𝑥 ′ =0

= 𝑐 tanh 𝛼  𝑥, 𝑡      (1.13) 

which signifies the velocity of non-inertial reference frame 

with respect to the inertial reference frame. Also, in order to 

find the physical semnification of the function 𝛽 𝑥′, 𝑡′ , we 

observe that, for the origin 𝑥 = 0 of the inertial reference 
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frame, the equation (1.8) becomes 

cosh 𝛽  𝑑𝑥 ′ + sinh 𝛽  𝑐 𝑑𝑡′ = 0     (1.14) 

From this, we can deduce also the derivative of the 

position 𝑥′ with respect to time 𝑡′ 

𝑥′ =  𝑑𝑥 ′

𝑑𝑡 ′  
𝑥=0

= −𝑐 tanh 𝛽 𝑥 ′ , 𝑡′     (1.15) 

which signifies the velocity of the inertial reference frame 

with respect to the non-inertial reference frame. But, 

according to the motion relativity principle, we must have  

𝑥′ = −𝑥                (1.16) 

Therefore, we can admit the following identity 

𝛽 𝑥 ′ , 𝑡′ = 𝛼 𝑥, 𝑡             (1.17) 

2. The Wave Function  

Further on, we can associate a de Broglie wave with the 

accelerated charge. The wave must be stationary with respect 

to the non-inertial frame. Therefore, we can introduce the 

following wave function for the accelerated charge 

𝛹 𝑡′ = 𝐴𝑒−𝑖𝜔 ′ 𝑡 ′
             (2.1) 

where 𝑡′  is given by the equation (1.7). Thus, we can 

rewrite this function with respect to the inertial reference 

frame as follows  

𝛹 𝑥, 𝑡 = 𝐴𝑒−𝑖𝜔′ 𝑡 cosh 𝛼 𝑥,𝑡 −
1

𝑐
 𝑥 sinh 𝛼 𝑥,𝑡  

  (2.2) 

Taking the partial time derivative of this function, we get 

𝜕

𝜕𝑡
𝛹 𝑥, 𝑡 = −𝑖𝜔′  cosh 𝛼 −

1

𝑐
 𝑥′

𝜕𝛼

𝜕𝑡
 𝛹 𝑥, 𝑡    (2.3) 

Now, we can introduce by definition the Hamiltonian 

operator  

𝐻 𝛹 𝑥, 𝑡 = 𝑖𝑕  𝜕
𝜕𝑡

𝛹 𝑥, 𝑡  
𝑥 ′ =0

        (2.4) 

According to the equation (2.3), for the point 𝑥 ′ = 0 we 

get 

𝐻 𝛹 𝑥, 𝑡 = 𝑕 𝜔′ cosh 𝛼 𝑥, 𝑡 𝛹 𝑥, 𝑡      (2.5) 

Therefore, we can deduce from here the following 

Hamiltonian function 

𝐻 𝑥, 𝑡 = 𝐻0 cosh 𝛼 𝑥, 𝑡          (2.6) 

where 𝐻0 is the rest energy of the accelerated charge  

𝐻0 = 𝑕 𝜔′ = 𝑚0𝑐2             (2.7) 

and 𝑚0 is the charge rest mass. Taking now the partial 𝑥 

derivative of the function 𝛹 𝑥, 𝑡 , we get  

𝜕

𝜕𝑥
𝛹 𝑥, 𝑡 = −𝑖𝜔′  −

1

𝑐
sinh 𝛼 −

1

𝑐
 𝑥 ′ 𝜕𝛼

𝜕𝑥
 𝛹 𝑥, 𝑡  (2.8) 

Further on, we can introduce by definition the linear 

momentum  

𝑝 𝑥  𝛹 𝑥, 𝑡 = −𝑖𝑕  𝜕
𝜕𝑥

𝛹 𝑥, 𝑡  
𝑥 ′ =0

       (2.9) 

So, according to the equation (2.8), for the point 𝑥 ′ = 0 

we can write 

𝑝 𝑥  𝛹 𝑥, 𝑡 =
1

𝑐
𝑕 𝜔′ sinh 𝛼 𝑥, 𝑡 𝛹 𝑥, 𝑡     (2.10) 

Thus, we obtain the following expression for the linear 

momentum of the accelerated charge 

𝑝𝑥 =
1

𝑐
𝐻0 sinh 𝛼 𝑥, 𝑡           (2.11) 

Substituting now the equation (1.13) into the equation 

(2.6), we get the well known formula 

𝐻 𝑝𝑥 = 𝑚𝑐2 = 𝑐 𝑝𝑥
2 + 𝑚0

2𝑐2     (2.12) 

where 𝑚 is the charge moving mass 

𝑚 = 𝑚0 cosh 𝛼 =
𝑚0

 1−
𝑥 2

𝑐2

          (2.13) 

Also, substituting the equation (1.13) into the equation 

(2.11), we get the well known formula 

𝑝𝑥 = 𝑚𝑥                 (2.14) 

3. The Hamilton’s Equations 

According to the principles of analytical mechanics, we 

can introduce now the Lagrange function 

𝐿 𝑥 , 𝑥, 𝑡 = 𝑥  𝑝𝑥 − 𝐻 𝑝𝑥 , 𝑥, 𝑡       (3.1) 

and the linear momentum 𝑝𝑥  as the derivative of lagrange 

function with respect to 𝑥  

𝑝𝑥 =
𝜕𝐿

𝜕𝑥 
                  (3.2) 

where, according to the equation (1.13), we can consider 

𝑥 = 𝑣𝑥 𝑥, 𝑡               (3.3) 

Let us consider also the action functional 

𝑆 𝑥 =  𝐿 𝑡, 𝑥 𝑡 , 𝑥  𝑥, 𝑡  𝑑𝑡
𝑡2

𝑡1
       (3.4) 

where 𝑡1, 𝑡2 are constants. We assume that the action 𝑆 𝑥  
attains a local minimum at 𝑓 𝑡 , and 𝑔 𝑡  is an arbitrary 

function that has at least one derivative and vanishes at the 

endpoints 𝑡1, 𝑡2 . So, for any number 𝜀 close to zero, we can 

write 

𝑆 𝑓 ≤ 𝑆 𝑓 + 𝜀𝑔 = 𝐺 𝜀        (3.5) 

Thus, if the functional 𝑆 𝑥  has a minimum for 𝑥 = 𝑓, 

the function 𝐺 𝜀  has a minimum at 𝜀 = 0 

𝐺 ′ 0 ≡  𝑑𝐺

𝑑𝜀
 
𝜀=0

=   𝑑𝐿

𝑑𝜀
 
𝜀=0

𝑡2

𝑡1
𝑑𝑡 = 0     (3.6) 

where, according to the equation (3.3), 𝑥 𝑡  and 𝑥  𝑥, 𝑡  are 

functions of 𝜀, of the form 

𝑥 𝑡 = 𝑓 𝑡 + 𝜀𝑔 𝑡            (3.7) 

𝑥  𝑥, 𝑡 = 𝑣𝑥 𝑓 𝑡 + 𝜀𝑔 𝑡 , 𝑡 + 𝜀𝑔  𝑡      (3.8) 

Taking the total derivative of 𝐿 𝑡, 𝑥 𝑡 , 𝑥  𝑥, 𝑡  , we get 

𝑑𝐿

𝑑𝜀
=

𝜕𝐿

𝜕𝑥

𝑑𝑥

𝑑𝜀
+

𝜕𝐿

𝜕𝑥 

𝑑𝑥 

𝑑𝜀
             (3.9) 

But, according to the equations (3.7) and (3.8), we have 

𝑑𝑥

𝑑𝜀
= 𝑔 𝑡                 (3.10) 

𝑑𝑥 

𝑑𝜀
=

𝜕𝑣𝑥

𝜕𝑥
𝑔 𝑡 + 𝑔  𝑡           (3.11) 
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Therefore, we get 
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 =    
𝜕𝐿

𝜕𝑥
+

𝜕𝐿

𝜕𝑥 

𝜕𝑣𝑥

𝜕𝑥
−

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑥 
  𝑔 𝑡  𝑑𝑡

𝑡2

𝑡1
 +  𝜕𝐿

𝜕𝑥 
𝑔 𝑡  

𝑡1

𝑡2
 (3.12) 

According to the fundamental lemma of calculus of 

variations, we get 

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑥 
 −

𝜕𝐿

𝜕𝑥 

𝜕𝑣𝑥

𝜕𝑥
−

𝜕𝐿

𝜕𝑥
= 0       (3.13) 

In consequence, we can introduce now the Hamiltonian 

function as 

𝐻 = 𝑥  𝑝𝑥 − 𝐿 𝑥 , 𝑥, 𝑡 = 𝐻 𝑝𝑥 , 𝑥, 𝑡      (3.14) 

Differentiating now this function, according to the 

equation (3.13), we get the following equation 

𝑑𝐻 = 𝑥  𝑑𝑝𝑥 −  𝑝 𝑥 −
𝜕𝑣𝑥

𝜕𝑥
𝑝𝑥 𝑑𝑥 −

𝜕𝐿

𝜕𝑡
𝑑𝑡   (3.15) 

Comparing this expression with the mathematical 

expression 

𝑑𝐻 =
𝜕𝐻

𝜕𝑝𝑥
𝑑𝑝𝑥 +

𝜕𝐻

𝜕𝑥
𝑑𝑥 +

𝜕𝐻

𝜕𝑡
𝑑𝑡       (3.16) 

We get the following Hamilton equations 

𝑝 𝑥 −
𝜕𝑣𝑥

𝜕𝑥
𝑝𝑥 = − 

𝜕𝐻

𝜕𝑥
           (3.17) 

𝜕𝐻

𝜕𝑝𝑥
= 𝑥 = 𝑣𝑥 𝑥, 𝑡             (3.18) 

4. The Schrodinger Equation 

Further on, we consider a function 𝐹 𝑝𝑥 , 𝑥, 𝑡  which 

describes a physical quantity of the accelerated charge. 

Taking the total time derivative of the function 𝐹 𝑝𝑥 , 𝑥, 𝑡 , 

we obtain 

 
𝑑𝐹

𝑑𝑡
=

𝜕𝐹

𝜕𝑥
𝑥 +

𝜕𝐹

𝜕𝑝𝑥
𝑝 𝑥 +

𝜕𝐹

𝜕𝑡
          (4.1)  

According to the equations (3.17) and (3.18), we can 

rewrite this formula as follows 

 
𝑑𝐹

𝑑𝑡
=  𝐹, 𝐻 +

𝜕𝑣𝑥

𝜕𝑥

𝜕𝐹

𝜕𝑝𝑥
𝑝𝑥 +

𝜕𝐹

𝜕𝑡
      (4.2)  

where  𝐹, 𝐻  is the classical Poisson bracket 

  𝐹, 𝐻 =   
𝜕𝐹

𝜕𝑥

𝜕𝐻

𝜕𝑝𝑥
−

𝜕𝐹

𝜕𝑝𝑥

𝜕𝐻

𝜕𝑥
       (4.3) 

Let us write the equation (4.2) under the following form  

 
𝑑𝐹

𝑑𝑡
=

𝐷𝐹

𝑑𝑡
+  𝐹, 𝐻             (4.4) 

where 𝐷𝑡  is an operator whose expression is given by  

  𝐷𝑡 =
𝐷

𝑑𝑡
=

𝜕

𝜕𝑡
+

𝜕𝑣𝑥

𝜕𝑥
𝑝𝑥

𝜕

𝜕𝑝𝑥
         (4.5) 

Taking into consideration the analogy between quantum 

mechanics and analytical mechanics, we can introduce an 

operator 𝐹  corresponding to the physical quantity F. 

According to the equation (4.4), the corresponding equation 

for this operator must be 

 
𝑑𝐹 

𝑑𝑡
=

𝐷𝐹 

𝑑𝑡
+  𝐹 , 𝐻              (4.6) 

where  𝐹 , 𝐻   is the quantum Poisson bracket  

  𝐹 , 𝐻  =
𝑖

𝑕 
 𝐻  𝐹 − 𝐹  𝐻         (4.7) 

According to the equation (4.6), we can define the time 

derivative of the expectation value of the observable 𝐹 as 

follows  

  
𝑑𝐹

𝑑𝑡
 = 𝐷𝑡 𝐹               (4.8) 

where   𝐹  is the mean value (expectation value) of the 

observable 𝐹. Also, the law that describes the time evolution 

of a particle must be of the form  

𝐻 𝛷 𝑝x , t = ih Dt𝛷 𝑝𝑥 , 𝑡        (4.9) 

In this equation, 𝛷 𝑝𝑥 , 𝑡  is the wave function of a 

quantum system, in the 𝑝𝑥  representation. According to this 

representation, the operators 𝑥  and 𝑝 𝑥  are given by the 

expressions 

  
𝑥 = 𝑖𝑕 

𝜕

𝜕𝑝𝑥

𝑝 𝑥 = 𝑝𝑥

                (4.10) 

Therefore, in the expression (4.5), we can make the 

replacing 

 
𝜕

𝜕𝑝𝑥
= −

𝑖

𝑕 
𝑥               (4.11) 

which leads us to the following expression of the operator 𝐷𝑡  

in the 𝑝𝑥  representation 

 𝐷𝑡 =
𝐷

𝑑𝑡
=

𝜕

𝜕𝑡
−

𝑖

𝑕 

𝜕𝑣𝑥

𝜕𝑥
𝑝 𝑥𝑥          (4.12) 

But we seek the Schrodinger equation (4.9) in the 𝑥 

representation. For this, we must introduce the operators 

  
𝑝 𝑥 = −𝑖𝑕 

𝜕

𝜕𝑥

𝑥 = 𝑥

               (4.13) 

and the canonical commutation relation 

 𝑝 𝑥  𝑥 = 𝑥  𝑝 𝑥 − 𝑖𝑕              (4.14) 

According to this relation, in the expression (4.12) we can 

make the replacing 

 𝑝 𝑥  𝑥  = −𝑖𝑕  𝑥 
𝜕

𝜕𝑥
− 𝑖𝑕            (4.15)  

which leads us to the following expression of the operator 𝐷𝑡  

in the 𝑥 representation  

 𝐷𝑡 =
𝜕

𝜕𝑡
−

𝜕𝑣𝑥

𝜕𝑥
𝑥

𝜕

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑥
          (4.16) 

Therefore, we can write now the following Schrodinger 

equation 

 𝐻 𝛹 𝑥, 𝑡 = 𝑖𝑕 𝐷𝑡𝛹 𝑥, 𝑡           (4.17) 

where the new Hamiltonian operator for the accelerated 

charge is given by 

 𝐻 = 𝑖𝑕 𝐷𝑡 = 𝑖𝑕 
𝜕

𝜕𝑡
− 𝑖𝑕 

𝜕𝑣𝑥

𝜕𝑥
𝑥

𝜕

𝜕𝑥
− 𝑖𝑕 

𝜕𝑣𝑥

𝜕𝑥
      (4.18) 

The additional term is of complex nature and its real part 
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signify the potential energy of the field of force in which the 

particle is moving.  

5. The Damped Oscillator 

Let us consider that the accelerated charge (−𝑞) is bound 

to the fixed charge (𝑞) by an elastic force of the form 

𝐹𝑒𝑙 . = −𝐾𝑥 (𝐾 = 𝑚0𝜔0
2)          (5.1) 

Taking the total time derivative of the equation (2.6), we 

can introduce, according to the special relativity theory, the 

following equation 

𝑑𝐻

𝑑𝑡
= 𝑚𝑐𝑥 

𝑑𝛼

𝑑𝑡
= 𝐹 𝑣 = 𝑥 𝐹𝑥         (5.2) 

where 𝐹𝑥  is the resultant force which acts on the accelerating 

charge 

𝐹𝑥 =
𝑑𝑝𝑥

𝑑𝑡
               (5.3) 

This force must be the sum between the elastic force and 

the radiative reaction force 

𝐹𝑟𝑎𝑑 . =
𝜇0𝑞2

6𝜋𝑐
𝑥             (5.4) 

Therefore, for non-relativistic velocities, we get the 

equation of motion  

𝑥 −
𝜇0𝑞2

6𝜋𝑐
𝑥 + 𝜔0

2𝑥 = 0          (5.5) 

We know that this equation is applicable only to the extent 

that the radiative reaction force is small compared with the 

elastic force 

𝜇0𝑞2

6𝜋𝑐
𝑥 ≪ 𝜔0

2𝑥 

This condition leads us to the following equation of 

motion 

 𝑥 + 2𝛾𝑥 + 𝜔0
2𝑥 = 0           (5.6) 

where  

𝛾 =
𝜇0𝑞2𝜔0

2

12𝜋𝑚0𝑐
               (5.7) 

Thus, the approximate solution of the equation (5.6) can 

be written as 

𝑥 𝑡 = 𝐴𝑒−𝛾𝑡 𝑐𝑜𝑠 𝜔𝑡 + 𝜑0         (5.8) 

where 𝜔 is the angular frequency of the damped oscillator 

𝜔 =  𝜔0
2 − 𝛾2              (5.9) 

Also, from the equation (5.2), for non-relativistic 

velocities, we can now deduce a new differential equation 

𝑑𝛼

𝑑𝑡
= −

𝜔0
2

𝑐
𝑥 −

2𝛾

𝑐
𝑥            (5.10) 

The integration of this equation leads us to the solution 

 
𝛼 𝑥, 𝑡 = −2𝜇 𝑥 − 𝜑(𝑡)

𝜇 = 𝛾/𝑐
         (5.11) 

where 𝜑(𝑡) is given by the expression 

𝜑 𝑡 =
𝜔0

2

𝑐
 𝑥 𝑑𝑡            (5.12) 

But, according to the equation (1.13), we must have the 

condition 

𝑑𝑥

𝑑𝑡
= 𝑐 tanh  −2𝜇𝑥 −

𝜔0
2

𝑐
 𝑥 𝑑𝑡     (5.13) 

Taking the total time derivative of this equation, we get 

𝑑2𝑥

𝑑𝑡2
= 𝑐

1

𝑐𝑜𝑠𝑕2  −2𝜇𝑥 −
𝜔0

2

𝑐  𝑥 𝑑𝑡 

 −2𝜇
𝑑𝑥

𝑑𝑡
−

𝜔0
2

𝑐
𝑥  

Now, we can replace 

1

𝑐𝑜𝑠𝑕2  −2𝜇𝑥 −
𝜔0

2

𝑐  𝑥 𝑑𝑡 

= 1 −
1

𝑐2
 
𝑑𝑥

𝑑𝑡
 

2

≅ 1 

Therefore, we get the equation 

𝑑2𝑥

𝑑𝑡2
= −2μc

𝑑𝑥

𝑑𝑡
− ω0

2𝑥 

which is the same equation (5.6). Substituting this result into 

the equation (5.10), we can write the approximate equation  

𝑑𝛼

𝑑𝑡
≅

1

𝑐
𝑥                 (5.14) 

The solution of this equation is given by the expression 

𝛼 𝑥, 𝑡 = 𝑎𝑟𝑔𝑡𝑎𝑛𝑕  
𝑥 

𝑐
          (5.15) 

which results from the equation (1.13). Taking now the total 

time derivative of the displacement (5.8), we get 

𝑥 = −𝛾𝐴𝑒−𝛾𝑡 𝑐𝑜𝑠 𝜔𝑡 + 𝜑0 − 𝜔𝐴𝑒−𝛾𝑡 𝑠𝑖𝑛 𝜔𝑡 + 𝜑0  (5.16) 

This expression can be written as a function of the 

displacement function 𝑥 𝑡 , under the following form 

𝑥 = 𝑣𝑥 𝑥, 𝑡 = −𝛾𝑥 − 𝑐𝑢(𝑡)       (5.17) 

where the function 𝑢(𝑡) is given by the expression 

 𝑢 𝑡 =
𝜔

𝑐
𝐴𝑒−𝛾𝑡 𝑠𝑖𝑛 𝜔𝑡 + 𝜑0         (5.18) 

In this way, the velocity becomes a function of the 

coordinate 𝑥 , because here the displacement 𝑥  is 

considered as a variable which no longer depends on time. 

Consequently, we may admit for 𝛼 𝑥, 𝑡  a solution of the 

form  

𝛼 𝑥, 𝑡 = 𝑎𝑟𝑔𝑡𝑎𝑛𝑕 −𝜇𝑥 − 𝑢(𝑡)        (5.19) 

6. The Damped Quantum Oscillator 

Substituting now the solution (5.17) into the equation 

(4.18), we get, for non-relativistic velocities 

𝐻 = 𝑖𝑕 
𝜕

𝜕𝑡
+ 𝑖𝛾𝑕 𝑥

𝜕

𝜕𝑥
+ 𝑖𝛾𝑕          (6.1) 

For the Hamiltonian operator of the oscillator, we take the 

expression 

𝐻 = −
𝑕 2

2𝑚0

𝜕2

𝜕𝑥2 +
1

2
𝑚0𝜔0

2𝑥2       (6.2) 

Admitting for the wave function a solution of the form 

𝛹 𝑥, 𝑡 = 𝑅 𝑥 𝑇 𝑡 , after the separation of variables, we get 

the following two equations 
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−
𝑕 2

2𝑚0
𝑅′′  𝑥 +

1

2
𝑚0𝜔0

2𝑥2𝑅 𝑥 − 𝑖𝛾𝑕  𝑥𝑅′  𝑥 +

𝑅𝑥=𝐸𝑅𝑥                            (6.3) 

𝑖𝑕 𝜕𝑡𝑇 𝑡 = 𝐸 𝑇 𝑡               (6.4) 

where the constant 𝐸  is the separation constant, and 

signifies the total energy of the quantum oscillator. Thus, 

after a rearrangement of the terms, the first equation can be 

rewritten as follows 

   

 

'' 0

2 20
2 0 0

2

2 1
0

2

m
R x i xR x

m
E i h m x R x

h

h



 



 
    







 (6.5) 

Further on, we can introduce a dimensionless variable 

𝜌 =  
𝑚0𝜔0

𝑕 
 𝑥 = 𝜈𝑥 

such that the equation becomes 

𝑅′′  𝜌 + 2𝑖𝑏𝜌𝑅′ 𝜌 +  𝑎 − 𝜌2 𝑅 = 0     (6.6) 

in which we have introduced the notations 

𝑎 = 𝑎𝑛 + 2𝑖𝑏             (6.7) 

𝑎𝑛 =
2𝐸

𝑕 𝜔0
                (6.8) 

𝑏 =
𝛾

𝜔0
                  (6.9) 

Now, we can take for 𝑅 𝜌  a solution of the form 

𝑅 𝜌 = 𝑤 𝜌 𝑒𝑘𝜌2
         (6.10) 

which generates the differential equation for the unknown 

function 𝑤 𝜌   

   

 

''

2 2

2 2 2

4 4 1 0

w k ib w k a w

k ibk w





   

   


   (6.11) 

The constant 𝑘 can be determined from the equation 

4𝑘2 + 4𝑖𝑏𝑘 − 1 = 0             (6.12) 

In order to get a finite solution for the function 𝑅 𝜌 , we 

choose the root 

𝑘 =  −𝑖𝑏 − 𝑑 /2             (6.13) 

where we have introduced the notation 

𝑑 =  1 − 𝑏2                 (6.14) 

Therefore, the equation (6.11) becomes 

𝑤 ′′  𝜌 − 2𝑑𝜌𝑤 ′ 𝜌 +  𝑎𝑛 − 𝑑 + 𝑖𝑏 𝑤 𝜌 = 0 (6.15) 

We can introduce now a power series expansion as 

solution 

𝑤 𝜌 =  𝐴𝑗 𝜌
𝑗∞

𝑗 =0            (6.16) 

Substituting this expansion into the differential equation 

(6.15), we get 

   𝑗 + 1  𝑗 + 2 𝐴𝑗 +2 −  2𝑗𝑑 −  𝑎𝑗 − 𝑑 + 𝑖𝑏  𝐴𝑗  𝑦
𝑗 = 0𝑗  

(6.17) 

which leads us to the recursion relation 

𝐴𝑗 +2 =
2𝑗𝑑 − 𝑎𝑗 −𝑑+𝑖𝑏 

 𝑗 +1  𝑗 +2 
𝐴𝑗               (6.18) 

Because the series must be finite, there exists some 𝑛 

such that when 𝑗 = 𝑛, the numerator will be zero. Therefore, 

we get 

𝑎𝑛 − 𝑑 + 𝑖𝑏 = 2𝑛𝑑         (6.19) 

Substituting here the formula (6.8), we obtain the 

following complex expression for the total energy of the 

quantum oscillator 

𝐸 = 𝐸𝑛 − 𝑖
𝛾

2
𝑕             (6.20) 

where 𝐸𝑛  are the quantized energies of the quantum 

oscillator 

𝐸𝑛 = 𝑕 𝜔  𝑛 +
1

2
            (6.21) 

Substituting now the constant 𝑘 into the expression (6.10), 

we get 

𝑅 𝜌 = 𝑤 𝜌 𝑒−
 1−𝑏2

2
𝜌2

𝑒−𝑖
𝑏

2
𝜌2

        (6.22) 

Also, substituting the equation (6.19) into the equation 

(6.15), we get for the unknown function 𝑤 𝜌  the equation 

 𝑤 ′′  𝜌 − 2𝑑𝜌𝑤 ′ 𝜌 + 2𝑛𝑑𝑤 𝜌 = 0    (6.23) 

If we introduce now a new dimensionless variable 

𝑟 =  𝑑 𝜌 =  
𝑚0𝜔

𝑕 
  𝑥 = 𝜏𝑥       (6.24) 

the equation (6.23) becomes  

𝐻𝑛
′′  𝑟 − 2𝑟𝐻𝑛

′ 𝑟 + 2𝑛𝐻𝑛 𝑟 = 0    (6.25) 

where 𝐻𝑛 𝑟  are the Hermite polynomials. So, 𝑤 𝑟 =
𝐻𝑛 𝑟 , and the solution 𝑅 𝑥  can be written as 

𝑅 𝑥 = 𝑁𝑛𝐻𝑛 𝜏𝑥 𝑒−
 1−𝑏2

2
𝜈2𝑥2

𝑒−𝑖
𝑏

2
𝜈2𝑥2

   (6.26) 

where 𝑁𝑛  are the multiplication factors, whose expression 

can be determined by the normalization condition of the 

wave function. 

For the second equation (6.4), we have the solution 

𝑇 𝑡 = 𝑒−𝑖 𝐸 𝑕    𝑡            (6.27) 

Substituting here the solution (6.20), we get the expression 

𝑇 𝑡 = 𝑒−
𝛾

2
𝑡𝑒−𝑖 𝐸𝑛 𝑕   𝑡         (6.28) 

which describe the time evolution of the wave function for 

the accelerated charge.  

7. The Metric of Space-Time 

Let us write now the “distance” between two 

infinitesimally close events, into the inertial reference frame 

(O; x, y, z, t) 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2          (7.1) 

Substituting here the equations (1.8) and (1.9), we get 

𝑑𝑠2 = 𝑔00𝑐2𝑑𝑡′ 2 + 2𝑔01𝑑𝑥 ′𝑐𝑑𝑡′ + 𝑔11𝑑𝑥 ′ 2
 (7.2) 
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where the components of the metric tensor are 

𝑔00 = 1 +
1

𝑐2  
𝜕𝛽

𝜕𝑡 ′ 
2
 𝑥′2 − 𝑐2𝑡′2 + 2

𝑥 ′

𝑐

𝜕𝛽

𝜕𝑡 ′    (7.3) 

𝑔11 = −  1 −  
𝜕𝛽

𝜕𝑥 ′  
2
 𝑥′2 − 𝑐2𝑡′2 + 2𝑐𝑡′

𝜕𝛽

𝜕𝑥 ′   (7.4) 

𝑔01 = 𝑥 ′ 𝜕𝛽

𝜕𝑥 ′ − 𝑡′
𝜕𝛽

𝜕𝑡 ′ +
1

𝑐

𝜕𝛽

𝜕𝑥 ′

𝜕𝛽

𝜕𝑡 ′
 𝑥′2 − 𝑐2𝑡′2   (7.5) 

But, according to the equations (1.17) and (5.11), we have 

𝛽 𝑥 ′ , 𝑡′ = 𝛼 𝑥, 𝑡 = −2𝜇𝑥 − 𝜑(𝑡)     (7.6) 

Then, according to the transformations (1.6), we can 

impose 

𝑥 = 𝛬 𝑣𝑥  𝑥 ′ + 𝑣𝑥𝑡′           (7.7) 

𝑡 = 𝛬 𝑣𝑥  𝑡′ +
𝑣𝑥

𝑐2 𝑥′           (7.8) 

where  

Λ 𝑣𝑥 =
1

 1−𝑣𝑥
2 𝑐2 

              (7.9) 

Substituting now these expressions into the equation (7.6), 

we get 

𝛽 𝑥 ′ , 𝑡′ = −2𝜇 𝛬 𝑣𝑥  𝑥 ′ + 𝑣𝑥𝑡′ − 𝜑 𝑥 ′ , 𝑡′  (7.10) 

where 

𝜑 𝑥 ′ , 𝑡′ = 𝜑 𝑡 ⃒
𝑡=𝛬 𝑣𝑥   𝑡 ′ +

𝑣𝑥
𝑐2𝑥 ′  

     (7.11) 

Taking now the partial 𝑥′ derivative of 𝛽 𝑥 ′ , 𝑡′ , we 

obtain 

𝜕𝛽

𝜕𝑥 ′ = −2𝜇𝛬 𝑣𝑥 +
𝑑𝜑

𝑑𝑡

𝜕𝑡

𝜕𝑥 ′         (7.12) 

Also, taking the partial 𝑡′  derivative of 𝛽 𝑥 ′ , 𝑡′ , we 

obtain 

𝜕𝛽

𝜕𝑡 ′ = −2𝜇𝑣𝑥𝛬 𝑣𝑥 +
𝑑𝜑

𝑑𝑡

𝜕𝑡

𝜕𝑡 ′        (7.13) 

But, according to the transformations (7.7) and (7.8), we 

can write 

𝜕𝑡

𝜕𝑥 ′ =
𝑣𝑥

𝑐2 𝛬 𝑣𝑥             (7.14) 

𝜕𝑡

𝜕𝑡 ′ = 𝛬 𝑣𝑥              (7.15) 

𝑑𝜑

𝑑𝑡
= −

𝜔0
2

𝑐
𝑥 = −

𝜔0
2

𝑐
𝛬 𝑣𝑥  𝑥 ′ + 𝑣𝑥𝑡′    (7.16) 

Substituting these expressions into the equations (7.12) 

and (7.13), we get 

𝜕𝛽

𝜕𝑥 ′ = −2𝜇𝛬 𝑣𝑥 −
𝜔0

2

𝑐3 𝑣𝑥𝛬2 𝑣𝑥  𝑥 ′ + 𝑣𝑥𝑡′  (7.17) 

𝜕𝛽

𝜕𝑡 ′ = −2𝜇𝑣𝑥𝛬 𝑣𝑥 −
𝜔0

2

𝑐
𝛬2 𝑣𝑥  𝑥 ′ + 𝑣𝑥𝑡′  (7.18) 

where the velocity 𝑣𝑥  is given by the expression (5.17), 

which no longer can be written as a function of the 

coordinates  𝑥 ′ , 𝑡′ . So, in this particular case, the metric of 

space-time (7.2) becomes a Finsler metric, and the space 

becomes a Finsler space. 

8. Conclusions 

Intuitively, the non-uniformly accelerated linear motion of 

a oscillator must be equivalent to a uniform but variable 

gravitational field. However, the gravitational field 

described by the metric of space-time (7.2), is a non-uniform 

field. This is due to the particular mode of writing of the 

velocity of a particle as a function of the coordinates  𝑥, 𝑡 , 

and the function 𝛼 𝑥, 𝑡 , depending on the same coordinates, 

by means of the velocity. Also, from the equation (3.17), we 

can observe that the term 
𝜕𝑣𝑥

𝜕𝑥
𝑝𝑥  corresponds at the half of 

the radiative reaction force 

𝜕𝑣𝑥

𝜕𝑥
𝑝𝑥 = −𝛾𝑚0𝑥 ≅

1

2
𝐹𝑟𝑎𝑑 . 

Therefore, the function 𝛼 𝑥, 𝑡  which determines the 

Lorentz non-linear transformations, intervenes in the 

determination of the radiative reaction force of the EM field 

and, also, in the determination of the gravitational field 

which appears in the non-inertial reference frame. Indeed, if 

we impose now 𝛼 = 𝑐𝑜𝑛𝑠𝑡., we get 

 
𝐹𝑟𝑎𝑑 . = 0 

 𝑑𝑠2 = 𝑐2𝑑𝑡′2 − 𝑑𝑥′2
  

so, both, the radiative reaction force and the gravitational 

field, vanish. On the other hand, the radiative reaction force 

vanishes again when the oscillator is a neutral particle, but 

the gravitational field does not vanish, because 𝜔0  is 

different from zero. This suggests that the EM energy carried 

by the EM radiation contributes to the energy of the 

gravitational field. Also we can conclude that the field which 

appears as an EM field into the inertial reference frame, 

appears as a gravitational field into the non-inertial reference 

frame.  
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