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Abstract  The Bloch NMR flow equation was transformed into a porous media based on the condition that
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tB   with transformation constant ‘a’ which must be positive. Furthermore, an emerging differential 

equation along the line was also solved for a physical case where 0A , using the method of partial integration. It assumed 

that the parameter ‘A’ that was a consequence of transforming the fundamental Bloch NMR flow equation into a porous 

media is not trivial, and thus cannot be ignored. It’s been decades since analysis has been done using the porosity derived on 

an assumption of triviality of this parameter. The interesting thing about our solution is that it encompasses the solution for a 

trivial ‘A’ which we believe to be a special case. The solution to this equation is useful in describing physical phenomenon 

such as permeability and for modelling various other intrinsic factors that affect or influence pore dynamics. The result 

obtained in this study can have applications in functional magnetic resonance imaging (fMRI), petroleum well design and 

geological engineering. 
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1. Introduction 

The magnetic properties of nuclei have significant 

applications in medical imaging and biochemical analysis. 

These applications are possible because the relaxation 

properties and the resonance frequency for a nucleus depend 

upon its environment. Factors such as the presence of 

chemical bonds, paramagnetic ions, and the rate of flow of 

fluids influence the magnetic resonance (MR) signal. 

Therefore, different regions of a biological sample produce 

different MR signals (Faulkner et al., 2009, Hendee et al., 

2003). To investigate the transport process of fluid through a 

small sized pore, say a nanopore, we have to take the surface 

porosity of the material into consideration as well as other 

parameters that are intrinsic to the material (Awojoyogbe 

etal, 2011). Porosity is a term that is used to describe the 

extent or degree to which a surface perforated with holes can 

allow small particles to pass or move through it. Porosity as a 

property can be explored in the creation of bulk 

micromachining to fabricate tiny cell-containing chambers  
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within single crystalline silicon wafers. The chambers 

interface with the surrounding biological environment 

through polycrystalline silicon filter membranes that are 

micro machined to present a high density of uniform 

nanopores as small as 20 nanometres in diameter (Riegler J 

et al., 2010). These pores are large enough to allow small 

molecules such as oxygen, glucose, and insulin to pass but 

are small enough to impede the passage of much larger 

immune system molecules such as immunoglobulin and 

graft-borne virus particles (Borchardt et al., 2010). 

Permeability on the other hand is the ease with which an ion 

crosses the membrane and is proportional to the total number 

of open channels for the ion. When two or more ions 

contribute to the membrane potential, it is likely that the 

membrane potential would not be at the equilibrium potential 

for any of the contributing ions. Thus, no ion would be at its 

equilibrium (i.e., Veq. ≠ Vm). When an ion is not at its 

equilibrium, an electrochemical driving force (VDF) acts on 

the ion, causing the net movement of the ion across the 

membrane down its electrochemical gradient. The driving 

force is quantified by the difference between the membrane 

potential and the ion equilibrium potential (VDF = Vm − Veq.) 

(Awojoyogbe et al, 2002). 
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2. The NMR Flow Equation 

In accordance with Awojoyogbe et.,al, 2009, the time 

dependent modified Bloch Nuclear magnetic Resonance 

(NMR) equations could be obtained from: 

 
1

10
1

22

02

2
)(

)(
T

tM
MtT

dt

dM
T

dt

Md
yg

yy 
  (1) 

Based on the condition:  

gTt
TT

t  )(
1

)( 1
22

21

1
22 

 

Then equation (1) becomes: 
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Where 𝑇0 =
1

𝑇1
+

1

𝑇2
 and 𝑇1  and 𝑇2  are the Spin-Spin 

and Spin-Lattice relaxation times respectively. 𝑀𝑦  is the 

Transverse Magnetization, 𝛾  is the gyro-magnetic ratio 

and 𝐵1 is the external magnetic field. 

3. The Transformation of NMR 
Transverse Magnetization into a 
Porous Medium 

We apply transformation that will make )(tM y

Expressible in term of )( pM y . This condition transforms 

)(tM y  into a porous medium with porosity )(tP , such 

that by using total differential, we have: 
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And using the product rule, the second derivative can be 
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Putting equations 3 and 4 into (2), then we have: 
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Dividing through by 
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By factorization, we can write that: 
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(Awojoyogbe et al., 2009) 

Putting equation (6) into (5), we have 
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Where: yM  is the Transverse Magnetization  tP  Is 

the Porosity, ‘a2’ is transformation constant and A is a 

parameter that can be chosen to be zero or non-zero. 

4. Derivation of Porousity  

In a quest for exploration evaluation, a solution to 

equation (6) was presented and dominated Literature. The 

solution was presented as 

)exp( 0tTPP o               (8) 

Where 
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T  , Po is the surface porosity, t is the 

time constrained to the condition A=0 (Awojoyogbe etal, 

2009). However, for years now, it has not been solved for a 

case where𝐴 ≠ 0. 

For permeability evaluations, we need to solve equation (6) 

for a physical case where the parameter A is non-zero and 

this is non-trivial. In this paper, we are interested in getting 

the general solution and expression for the equation (6). We 

start by re-writing equation (6) such that:
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Substituting equation (10) into equation (9) we can write 
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Integrating both sides of the equation, we have: 

  
dt

mTAm

dm

0

2            (11) 

Simplifying the left hand side using partial fraction, then 

we have: 

 0 0

0

1

( ) 1

x y

m Am T m Am T

x Am T my

 
 

   

    (12) 

Then we have by equating coefficients that: 

0

1

T
x   and 

0T

A
y                (13) 

Substituting equation (13) into (12), we have 

  )0

00

0 (

1
1

TAm

T
A

m

T

TAmm 



 

  0000

1

)(

1

mTTAmT

A

TAmm






     (14) 
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Taking the exponential of both sides, we have: 
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We then define another term: 
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Recalling the value of u from equation (3.50b) 
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Equation (22) is the general solution of equation (9) that 

we are trying to solve for 0A . The solution above is the 

porosity of a porous material as a function of the Magnetic 

resonance relaxation time (T1 and T2) and the parameter ‘A’, 

which for many years have been assumed to be zero. The 

solution above can be a tool to accurately understand the 

combined effect of the time, relaxation times and the 

parameter ‘A’ on the dynamics of materials (most especially 

proteins) through pores. There seems to be evidence to 

suggest that porosity of a material is not explicitly a function 

of time only, but something more (Sprawls P., 2000). 
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5. Discussion  

A simulation of equation (8) and equation (22) is as shown 

in figure 1(b) and (a) respectively. The choice of T2 

relaxation time was 0.01 sec. which is a typical spin-spin 

relaxation time for blood flow. Since it was assumed that a 

nanorobot may move through nanopores as blood will flow 

through the same porous material (Ottobrini L et al., 2006). 

From the plot, it is observed that indeed, the parameter ‘A’ 

has a significant influence on the porosity of a material when 

imaged through a Magnetic Resonance Imaging (MRI) 

system. Analysis of equation (8) shows that the porosity P(t) 

of a nanoporous material varies exponentially with instants 

of signal sampling and material dependent parameter To, 

which implies that the porosity of the nanopores decreases at 

an exponential rate as time of measurement increases, 

starting from the intrinsic maximum porosity of the material 

at time t=0 i.e. P(t)=Po. For this research work, Po was chosen 

to be unity (1). The plot of porosity P(t) was made against 

time to depict the trend of the decay of porosity experienced. 

Analysis of equation (22) shows that the porosity P(t) 

oscillates for T2 relaxation time =0.01 sec while the constant 

A is chosen to be 5. The porosity was high at an earlier time 

than 0.2 sec when the oscillation takes place. It is also worthy 

of note that the presence of parameter ‘A’ has made the 

porosity to deviate significantly from its intrinsic value at 

time t close to zero, contrary to what was observed for 

equation (8). The full wave oscillation was observed 

between time t=0.2 and 0.4 sec. after which the pore closes 

up for remaining period of observation. The time t for which 

porosity become measurable increases from 0 to 0.1 sec. 

This is a consequence of the function of porosity becoming 

discontinuous at t=0. 

 

(a) 

 

(b) 

Figure 1.  (a) 2 D graph of P(t) and t(s) for equation (22) for A=5, T2=0.01, (b) 2 D graph of P(t) and t(s) for equation (8) for T2=0.01 
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6. Conclusions 

We have obtained basic expression for the porosity of a 

porous material in the light of Magnetic resonance imaging 

as a function of time, relaxation times and parameter ‘A’. 

This general solution is quite interesting in that in it limiting 

case, as ‘A’ tend to zero; equation (22) converges to equation 

(8) which is ubiquitous in literature. We have also done a 

computational analysis to have a feeling of how the two 

solutions differ. The application of this fundamental solution 

to solve real life problems related to transport in porous and 

NMR sensitive media will be presented separately. There, 

we will propose a possible physical meaning of the 

parameter ‘A’ and investigate how it affects porosity in 

combination with other MRI parameters, which is what 

actually happens in a complex system like human tissue 

being imaged using MRI. 
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