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Abstract  Further to our previous work on exact equations (published in this journal; 2015;5(5);69-75), this work is 
concerned with another class of differential equations that are not exact initially, but can be turned exact by multiplication by 
the so-called integrating factors. It seems appropriate to give these equations a name, and we will call them semi-exact 
equations. As was the case of the exact equations in the previous paper, the semi-exact ones likewise have two tests for 
establishing their semi-exactness and determining their integrating factors, as well as the same three methods of solution. 
These tests and methods will be contrasted again (this time in connection with the semi-exact equations). All the notions 
discussed previously concerning the exact equations hold true for the semi-exact ones as well and some other notions will be 
added in this second paper. One basic goal of this work is to see how to test the latter equations for semi-exactness and 
determine their integrating factors by applying the short and unwritten three-rectification test by sight based on the 
integrability of the semi-exact equations by parts. Beside being abbreviated and very fast this test moreover applies to both of 
the equations with one-variable, and those with two-variable integrating factors. This is unlike the other partial 
differentiation test for semi-exactness in current use which test is comparatively prolonged and moreover applies only to the 
equations with one-variable, and not to those with two-variable integrating factors as will be shown later. This wide 
difference in efficiency between the two tests in establishing the semi-exactness and determining the integrating factors is 
furthermore complimented by a similarly wide difference between the current and the proposed methods of solution.  Our 
ultimate goal will be to solve the semi-exact equations by the two-, or three- step integration by parts as a straightforward and 
by far shorter and less laborious solution which is expected to replace the prolonged solutions by separation of the variables, 
and by integration in total differentials, as was the case of the exact equations in the previous paper. Again a number of 
examples and exercises will be quoted for contrasting the currently applied prolonged methods of solution to the newly 
introduced much shorter and simpler ones, and explaining the new notions introduced in this work. These notions will open 
new vistas for further research in related fields as will be revealed in our next papers. Many physical applications of the 
equations with semi-exact first and second order doublets can be quoted from classical and quantum mechanics. To keep this 
paper within a reasonable number of pages and avoid its becoming excessively lengthy (although this would not matter much 
to the curious reader) we unfortunately have to postpone to the next paper three of the seven reworked examples of [part B] of 
this paper. These examples contain the selected physical applications of the semi-exact equations and will serve as the 
subject-matter of the next paper. The reader is assumed to be familiar with the previous paper and to recall the new notions 
introduced in it such as: singlets and non-singlets, doublets and triplets, dependent and independent arms of a doublet, exact, 
semi-exact, and non-exact equations, …etc.   
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Are integrating factors for semi-exact equations 
determinable in principle? Quotation: “There is no general 
method for finding an integrating factor, but a familiarity 
with differentiation formulas will sometimes help in 
determining them” [1]. We do not quite agree to the first part 
of this statement, and we are certainly not in the dark about 
the determination of integrating factors for the semi-exact 
equations. Actually the topic of integrating factors is still 
confused in the literature due to failure to recognize the 
connection between the integrating factors and integration by 
parts and the distinction between the separating and 
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integrating factors. However, this ambiguity will be removed 
and a clearer and wider coverage of the topic of integrating 
factors will be attempted in this work. 

A clear understanding of the topic of semi-exact equations 
and their integrating factors cannot be attained before 
acquiring the capability of recognizing and distinguishing 
the complexity of concepts underlying the said topic. 
Semi-exact equations can be classified as: two-variable, but 
hardly three-variable equations; two-term, three-term, and 
multi-term equations; equations with and without 
non-homogeneity terms; equations with singlet and 
non-singlet non-homogeneity terms, 𝑞(𝑥)  and 𝑞(𝑥,𝑦) ; 
equations with doublets having exact and semi-exact 
dependent and independent arms; equations with two or 
more semi-exact doublets requiring the same integrating 
factors; equations with one-variable and two-variable 
integrating factors; equations with first and second order 
doublets; equations with doublets having simple and 
composite arms. There are also: separating and integrating 
factors; separated, separable, and inseparable equations; 
separable semi-exact and separable non-exact equations; 
equations separable by separating factors and by substitution 
(change of variables); separable equations with simple and 
composite singlets; determining integrating factors by partial 
differentiation and by test-by-sight, … etc. We should be 
able to move with clear visibility through such 
multi-branched complexity of interrelated concepts. 
Insisting on full understanding, right from the outset, of each 
of these concepts individually within their wide range of 
interrelated complexity, at the expense of sacrificing the 
clarity of their interrelations, may not be the best method of 
dealing with the subject. It may be more beneficial to be 
satisfied in the beginning with partly understood multiplicity 
of concepts so as to concentrate on their interrelations, and 
then return to their full understanding thereafter. This is 
somewhat similar to indexing of articles in a spare parts store, 
or writing the page of “contents” in which the titles of the 
chapters of a book are gathered for general framing of the 
topic to be studied. This second approach is followed so as 
not to lose one’s way in a forest of concepts and ideas. In this 
work a mixture of the two approaches will be tried in [part A], 
and the full understanding of the topic will be attempted in 
[parts B and C].  

1.1. The Separable Semi-exact, and Separable Non-exact 
Equations 

In the relevant text-books the exactness and 
semi-exactness of equations and the two partial 
differentiation tests for establishing them (and determining 
the integrating factors in the case of semi-exactness), and 
finally the related examples and exercises and their solution 
by “integration in total differentials” are dealt with in 
certain sections allocated to the topic in these text-books. It is 
important to note that outside these sections in these 
text-books themselves, it is almost a constant practice to 
overlook all that has been stated above about the exact and 
semi-exact equations and, instead, a strong tendency is often 
revealed to solve these equations by “separation of the 

variables” without realizing their being exact or semi-exact 
or recalling to apply the relevant tests for ascertaining the 
kind of the given equation. The “separable semi-exact 
equations” are, as their name implies, solvable by the two 
methods above, but it is more convenient to apply the third 
method of “integration by parts” which is much shorter and 
simpler. On the other hand the “separable non-exact 
equations” are, again as their name implies, not solvable by 
integration in total differentials, or integration by parts, but 
only by separation of the variables. Being the only applicable 
method in this case, the separation of the variables should 
unavoidably be applied and its comparative prolongation 
should, of course, be tolerated. It is also important to note  
that in exemplifying the separation method text-books 
ought not to select their examples from the separable 
semi-exact equations, and face the anecdotal situation of 
solving by a prolonged method (separation of the variables to 
be exemplified) when a much shorter method (integration by 
parts) is within reach. They ought to select their examples 
from the separable non-exact equations so as to leave no 
choice but applying the method to be exemplified.  

1.2. The Two-term, Three-term, and Multi-term 
Semi-exact and Non-exact Equations 

Distinction should be made between the two-term and 
three-term equations (not to be confused with the 
two-variable and three-variable equations).  

(a)  The two-term separable semi-exact equations and 
their three alternative rectifying factors: These 
equations, which are encountered occasionally, 
possess three alternative factors each of which 
alone can accomplish the integration of these 
equations. For instance, the equation [𝑥 𝑑𝑦 −
𝑦 𝑑𝑥 = 0] has one separating factor 1

𝑥 𝑦
, and two 

integrating factors: 𝑅(𝑥) =  1
𝑥2

 , and 𝑅(𝑦) =  − 1
𝑦2

 
(since x and y can exchange freely their roles of being 
the dependent and independent variables in a 
two-term equation). It is to be recalled that the 
separating factors are used in the method of 
separation of the variables (simple, or composite 
singlets) followed by term-wise integration by the 
basic formulas, whereas the integrating factors are 
used in integrating doublets (and triplets) by parts 
(in addition to the term-wise integration of singlets in 
three-, and many-term equations). The same general 
solution [  𝑦

𝑥
 = 𝑐 ] of the given equation will be 

obtained by using any of the said three factors. On the 
other hand, a separable non-exact equation has a 
separating factor, but no integrating factor. 
Obviously the two kinds of factor and the three 
methods of solution represent distinct techniques in 
solving semi-exact equations.  

(b)  The three-term semi-exact equations and their 
three component rectifying factors: These 
equations are with one-variable, and two-variable 
integrating factors. The equations with one-variable 
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factors are encountered more frequently than those 
with two-variable factors, and the two kinds of 
equation constitute the basic group of semi-exact 
equations. These equations are usually solved by 
separation of the variables by substitution, i.e., by 
solving the corresponding homogeneous equation for 
the complementary function, and applying variation 
of parameters for the particular integral (see 
Examples 1, 2, and 3). We shall, however, discard 
these comparatively prolonged techniques and apply 
the much shorter and simpler methods of 
test-by-sight (i.e., the three-rectification process for 
finding integrating factors), and of integration by 
parts for performing the solution. These equations 
consist basically of three constituents: the 
non-homogeneity term, and the two dependent and 
independent arms reciprocated in a doublet of terms. 
Each of the three constituents may require its own 
rectifying factor (r1, r2, r3). These equations have 
only one integrating factor which is, generally 
speaking, the product of the three rectifying factors, 
[𝑅(𝑥,𝑦) = 𝑟1𝑟2𝑟3 ] that can be easily determined by 
sight. Equations for which any of the three rectifying 
factors is indeterminable are non-exact equations. 
This will be explained later in [part A-4-b]. 

(c)  The multi-term equations with two or more 
semi-exact doublets requiring the same integrating 
factor: The semi-exact equations with four, five, six, 
and seven terms necessarily contain “two semi-exact 
doublets requiring the same integrating factor” 
otherwise they are non-exact. Note that a doublet is 
either simple (with two terms), or composite (with 
three terms), and furthermore these equations are 
either “with” or “without” a singlet 
non-homogeneity term. Accordingly, these 
semi-exact equations can be: 

i-  Four-term equations (with two simple doublets 
and no non-homogeneity term, see Exercise 7). 

ii-  Five-term equations (with two simple doublets 
and a non-homogeneity term, or with one simple 
and one composite doublets and no 
non-homogeneity term, see Example 4). 

iii-  Six-term equations (with two composite doublets 
and no non-homogeneity term, or with one simple 
and one composite doublets and a 
non-homogeneity term). 

iv-  Seven-term equations (with two composite 
doublets and a non-homogeneity term). 

v-  Linear n-th order equations with constant 
coefficients (can be rearranged as a sum of “n” 
semi-exact doublets requiring the same integrating 
factor- see Example 7). 

Outside these combinations of terms there exist 
“multi-term non-exact equations”. Being “diversified by 
adding more terms”, these equations may have, due to their 
too many terms, “inconsistent rectifying factors” resulting 
in the non-exactness of these equations for which no 

integrating factors exist and to which integration by parts 
does not apply.  

1.3. The Two Methods of Determining Integrating 
Factors. The Separating Factor for Composite 
Singlets 

Integrating factors can be obtained by two distinct 
methods: (1) by the formula 𝑹(𝒙) =  𝒆∫𝒑(𝒙)𝒅𝒙 derivable by 
partial differentiation [for obtaining one-variable 
integrating factors, i.e., either 𝑅(𝑥) , or 𝑅(𝑦) , but not  
𝑅(𝑥,𝑦)], and also derivable by integration by parts as will 
be shown in [Example 5], and (2) by the newly introduced 
“three-rectification process” (performed by test-by-sight 
based on integration by parts). This latter method is used for 
obtaining both of the one-variable, and two-variable 
integrating factors. We also note that the separating factor of 
composite singlets, 𝜇(𝑥,𝑦) , obtainable in some obvious 
cases by sight and not by partial differentiation, is usually 
confused with the integrating factor 𝑅(𝑥,𝑦) (see the third 
quotation below). Distinction between the separating and 
integrating factors together with the two methods for finding 
integrating factors, will be discussed later.   

1.4. The Three-, Two-, and One-variable Integrating 
Factors 

(a)  Evading the three-variable semi-exact equations 
and the three-variable integrating factors: 
Whereas the three-variable exact equations are 
common in the literature, the three-variable 
semi-exact equations are hardly encountered. 
Suppose we took some arbitrary exact equations and 
divided them by some arbitrary one-, two-, and 
three-variable functions: 𝑅1(𝑥) , 𝑅2(𝑥,𝑦) , and 
𝑅3(𝑥,𝑦, 𝑧), then we would obtain a wide range of 
semi-exact equations for which the said functions 
would be integrating factors of all sorts. Except for 
some obvious cases most of the semi-exact equations 
obtained in such a crooked manner, especially the 
three-variable equations, would be too artificial and 
extremely difficult to identify by sight. It would 
hardly be possible to determine the integrating 
factors for such artificially constructed semi-exact 
equations to accomplish their integration. Because of 
this obvious difficulty the three- variable semi-exact 
equations are not encountered (unlike the case of 
exact equations), and consequently, the three- 
variable integrating factors, 𝑅3(𝑥,𝑦, 𝑧), are likewise 
unheard of. With the three-variable semi-exact 
equations excluded from usage, the term 
“two-variable semi-exact equations” will be 
abbreviated in this work from now on simply to 
“semi-exact equations”. There will be no further 
mentioning of this contraction which is to be 
understood impliedly where it arises. 

(b)  The semi-exact equations with two-variable 
integrating factors obtainable by the 
“three-rectification test by sight” and not by 
“partial differentiation”. Bernoulli’s equation can 
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serve as a typical example of such equations. As 
mentioned earlier, the two-variable total integrating 
factor is the product of three component rectifying 
factors: [R(x,y) = r1r2r3]. Factor r1 is to rectify (i.e., 
prepare for integration) the non-singlet 
non-homogeneity term, q1(x,y), by turning it into a 
singlet, q2(x), individually integrable by the basic 
formulas. Only when the non-homogeneity term is in 
the form of the product 1

𝑟1(𝑦)
𝑓(𝑥) can it be rectified 

by multiplying the equation by factor 𝑟1(𝑦). If this 
condition is not satisfied the equation is non-exact. 
Factor r2 is a constant to rectify (make exact) the 
already semi-exact dependent arm “solely created or 
altered” by the first rectifying factor 𝑟1 = 𝑟1(𝑦) as is 
evident in the five examples below. This arm can be 
rectified only by [𝑟2=constant] and not by [𝑟2=𝑟2(𝑦)] 
since the latter would return the singlet 𝑞2(𝑥) back 
into a non-singlet 𝑞1(𝑥,𝑦)  and invalidate the 
“individual integrability of the non-homogeneity 
term”. An [ 𝑟2 = 𝑟2(𝑦) ] would make an equation 
non-exact. Finally factor r3 = 𝒆𝒃∫𝒑(𝒙) 𝒅𝒙 is to rectify 
the semi-exact independent arm and consequently the 
doublet to be integrated by parts. It is important to 
keep in mind that this “three- rectification process 
for determining integrating factors” should be 
applied in the above-stated order (r1,r2,r3) to avoid 
the possibility of a latter factor invalidating the 
rectification achieved by a former factor or factors. It 
is also important to recall that factor r2 is determined 
after multiplying the equation by r1, and factor r3 
after multiplying by r2. It should also be noted that 
when x and y exchange their roles of being the 
dependent and independent variables then it is the 
factor f (x) that should be deleted from the 
non-homogeneity term by division and [v(x)→ v'(x)] 
becomes the dependent arm. Only by decomposing 
the given three-term equation mentally into its three 
basic constituents is it possible to establish by sight 
the semi-exactness (or, non-exactness) of the 
equation and determine, in the case of semi-exactness, 
the three component rectifying factors that 
constitute the total integrating factor of the equation. 
Equations to which the three-rectification process 
applies (i.e., in which all the three rectifying factors 

are determinable) are semi-exact equations. On the 
other hand, equations to which the said process is 
inapplicable (i.e., in which at least one of the three 
rectifying factors is indeterminable) are non-exact 
equations for which no integrating factors exist. That 
is simply the condition whose presence and absence 
determine the semi-exactness and non-exactness of 
a given three-term equation respectively. The 
multi-term equations with two semi-exact doublets 
are also included. If the two doublets require the 
same integrating factor the equation is semi-exact 
and if the required integrating factors are different the 
equation is non-exact. The said processes will 
become clearer when we revise the solutions of 
[Examples 1 and 4 of sec. B]. 

Below are five examples of semi-exact equations with 
two-variable integrating factors. In the first four examples 
the functions of the independent variable are in the general 
algebraic form, 𝑝(𝑥)  and 𝑞(𝑥) , whereas those of the 
dependent variable are in specified functional forms: 𝑒𝑎𝑦, 
𝑡𝑎𝑛 𝑎𝑦, 𝑦𝑛, 𝑙𝑛 𝑦… These equations satisfy the above stated 
conditions for “semi-exactness with two-variable 
integrating factors”. The equations are two-variable, 
three-term, non-linear, first order equations. Their three 
basic constituents are rectifiable in the stated succession 
(𝑟1, 𝑟2,𝑟3). Their non-homogeneity terms are non-singlets in 
the form of a product rectifiable by division. It is to be 
asserted that the semi-exact equations with non-singlet 
non-homogeneity terms,  𝒒(𝒙,𝒚) , possess two-variable 
integrating factors, 𝑹(𝒙,𝒚), whereas equations with 
singlet non-homogeneity terms, 𝒒(𝒙), possess one-variable 
integrating factors, 𝑹(𝒙). After multiplying the equations 
by 𝑟1 = 𝑟1(𝑦) the resulting semi-exact dependent arms are 
rectifiable by constant multipliers [ 𝑟2 = constant]. Their 
independent arms are rectified by 𝑟3 =  𝑒𝑏 ∫𝑝(𝑥) 𝑑𝑥 . These 
equations are solved in three steps: rearranging the given 
equations such that the doublets are put on the left side and 
the non-homogeneity terms on the right side of the equations, 
multiplying by the integrating factors obtainable by sight in 
the sequence already mentioned, and integrating (by 
pair-wise and term-wise integrations) the resulting exact 
doublets and the singlet non-homogeneity terms 
respectively.  

 
(1) 𝑦′ + 𝑝(𝑥) = 𝑒𝑎𝑦.𝑞(𝑥),                          [𝒓𝟏,𝟐,𝟑 = 𝑒−𝑎𝑦,−𝑎 , 𝑒−𝑎∫𝑝(𝑥) 𝑑𝑥] 
(2) 𝑦′ + 𝑝(𝑥) tan𝑎𝑦 = 1

cos𝑎𝑦
. 𝑞(𝑥),                [𝒓𝟏,𝟐,𝟑 = 𝑐𝑜𝑠 𝑎𝑦,𝑎 , 𝑒𝑎∫𝑝(𝑥) 𝑑𝑥] 

(3) 𝑦′ + 𝑝(𝑥)𝑦 = 𝑦𝑛. 𝑞(𝑥),                          [𝒓𝟏,𝟐,𝟑 = 𝑦−𝑛, (1 − 𝑛), 𝑒(1−𝑛)∫𝑝(𝑥) 𝑑𝑥] 
(4) 𝑦′ + 𝑝(𝑥)𝑦 ln𝑦 = 𝑦. 𝑞(𝑥),                     [𝒓𝟏,𝟐,𝟑 = 1

𝑦
, 1, 𝑒∫𝑝(𝑥) 𝑑𝑥] 

(5) 𝑥 𝑦′ + 𝑦 = −𝑥 𝑦2                                [𝒓𝟏,𝟐,𝟑 = − 1
 𝑦2 

, 1, 1
 𝑥2 

] 
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To solve the fifth equation, as an example, by the 
three-rectification method we first note that the equation 
needs no rearrangement of its terms and factors. It is 
initially with an exact doublet [𝑦 → 𝑦′ and 𝑥 → 1], but this 
is needed after rectifying the non-homogeneity term by 𝑟1 
(which may cancel the exactness but retains the 
semi-exactness of both of the dependent and independent 
arms to be rectified by 𝑟2 and 𝑟3  respectively). If the 
equation is divided by 𝑥 it becomes a Bernoulli’s equation 
with 𝑝(𝑥) = 1

𝑥 
 ,𝑎𝑛𝑑 𝑞(𝑥) = −1 . The presence of 𝒚′ 

means that the 𝒚-arm is the dependent arm and that the 
non-homogeneity term 𝒒𝟏(𝒙,𝒚)  should be rectified to 
𝒒𝟐(𝒙) . We, therefore, multiply by 𝑟1 = − 1

 𝑦2 
 and obtain 

𝑥 �− 1
 𝑦2 

𝑦′� + (−1) 1
𝑦

= 𝑥. The 𝑦-arm remains exact in its 
new form in this example, i.e., 𝑟2 = 1. As will be explained 
later, 𝒓𝟑 for the x-arm [𝑥 → −1] = [ 𝑥1 → (−1) 𝑥0]  is 
 𝑥−1−1 = 1

 𝑥2 
. We thus obtain the exact equation 

1
𝑥 
�− 1

 𝑦2 
𝑦′� + �− 1

 𝑥2 
� 1
𝑦 

= 1
𝑥 

. We then integrate (by 
multiplying the outer functions of the exact doublet) to get 
1
𝑥 𝑦 

= ln 𝑥 + ln 𝑐 , or 𝑦 = 1
𝑥 ln 𝑐𝑥

. The fifth equation is also 
solvable by the ready formula to be derived in [Example 1]. 
The usual (prolonged) solution is by separation of the 
variables by substitution. Furthermore, with its two-variable 
integrating factor 𝑅(𝑥,𝑦) being indeterminable by partial 
differentiation the equation cannot (and need not) be solved 
by the (prolonged) integration in total differentials (without 
the integrating factor having been obtained in advance). Note 
that most of the statement above is not a part of the written 
solution but an explanation of the methods applied and 
applicable to the given problem.      

(c)  The semi-exact equations with one-variable 
integrating factors obtainable by partial 
differentiation and by test-by-sight: This is the 
prevailing case of semi-exact equations and their 
integrating factors, i.e., most of the frequently 
encountered semi-exact equations belong to this 
category (see the first half of the table in [part A-6] 
below. 

i.  The first order equations with singlet 
non-homogeneity terms and exact dependent 
arms, and their integrating factor 𝑹(𝒙) =
 𝒓𝟑 = 𝒆∫𝒑(𝒙) 𝒅𝒙 : The first order equations (linear 
and nonlinear, with constant and with variable 
coefficients) can be told by their forms, i.e., they are 
identifiable by test- by- sight. They constitute an 
important class of semi-exact equations with 
one-variable integrating factors [r1,2,3=1, 
1, 𝒆∫𝒑(𝒙) 𝒅𝒙 ]. This is another way of saying that the 
singlet non-homogeneity term 𝑞(𝑥) and the exact 
linear or nonlinear dependent arm [𝑣(𝑦) → 𝑣′(𝑦)] 
of the doublet are already given in rectified forms 
and only the semi-exact independent arm [ 1 →
𝑝(𝑥) ] requires the integrating factor [𝑹(𝒙) =
 𝒓𝟑 = 𝒆∫𝒑(𝒙) 𝒅𝒙] to become rectified, i.e., an exact 

arm: [ 𝒆∫𝒑(𝒙) 𝒅𝒙 → 𝒆∫𝒑(𝒙) 𝒅𝒙.𝒑(𝒙)], (note that the 
arrow extends from the exponential function to its 
derivative). The said integrating factor is already 
known, and derived by partial differentiation as in 
(ii) below, but in current use it is still far from being 
properly understood. We will, however, remove the 
ambiguity when we revise the solution of the first 
order equation [𝑦′ + 𝑝(𝑥) 𝑦 = 𝑓(𝑥)] in [Example 
5], and derive this integrating factor by the much 
simpler method of integration by parts. 

ii.  The partial differentiation test for determining 
the integrating factors: 𝑹(𝒙) or 𝑹(𝒚) but not 
𝑹(𝒙,𝒚). Three quotations.  

The first quotation: “If the left side of equation 
[ 𝑃(𝑥,𝑦)𝑑𝑥 + 𝑄(𝑥,𝑦)𝑑𝑦 = 0 ] is not a total (exact) 
differential, then there exists a function  𝜇 = 𝜇(𝑥,𝑦) 
(integrating factor) such that 𝜇 (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) = 𝑑𝑈 . 
Whence it is found that the function 𝜇 satisfies the equation 
𝜕
𝜕𝑦

(𝜇𝑃) = 𝜕
𝜕𝑦

(𝜇𝑄). The integrating factor 𝜇 is readily found 
in two cases: 

First case: 1
𝑄
�𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
� = 𝐹(𝑥), then 

 𝜇 = 𝜇(𝑥) = 𝑒∫𝐹(𝑥) 𝑑𝑥.    

Second case:  1
𝑃
�𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
� = 𝐹1(𝑦), then  

𝜇 = 𝜇(𝑦) = 𝑒∫𝐹1(𝑦) 𝑑𝑦  ” [2,3]. The details of the 
derivation will be given in [Example 4]. 

The second quotation: “Of course it is not always so easy 
to find the integrating factor…, In the general case, 
integrating this partial differential equation       
[𝜕 ln𝜇
𝜕𝑦

𝑀 − 𝜕 ln𝜇
𝜕𝑥

𝑁 = 𝜕𝑁
𝜕𝑥
− 𝜕𝑀

𝜕𝑦
] is by no means an easier task 

than integrating the original equation… we can find the 
conditions for the existence of integrating factors of the form 
𝜇(𝑦), 𝜇(𝑥 ± 𝑦), 𝜇(𝑥2 ± 𝑦2), 𝜇(𝑥𝑦), 𝜇 �𝑦

𝑥
�, and so forth” 

[4].  
The third quotation: two solved examples:  
First example: “Does the equation [ 𝑥 𝑑𝑥 + 𝑦 𝑑𝑦 +

𝑥 𝑑𝑦 − 𝑦 𝑑𝑥 = 0] have an integrating factor of the form 
 𝜇 = 𝜇(𝑥2 + 𝑦2)?...  

𝑥 𝑑𝑥+𝑦 𝑑𝑦
𝑥2+𝑦2

+ 𝑥 𝑑𝑦−𝑦 𝑑𝑥
𝑥2+𝑦2

= 0,  

⇒ 
1
2 𝑑(𝑥2+𝑦2)

𝑥2+𝑦2
+

𝑑�𝑦𝑥�

1+�𝑦𝑥�
2 = 0,  

⇒  1
2
𝑑 𝑙𝑛(𝑥2 + 𝑦2) + 𝑑 arctan 𝑦

𝑥
= 0  

⇒ 𝑙𝑛�𝑥2 + 𝑦2 = −𝑎𝑟𝑐𝑡𝑎𝑛 𝑦
𝑥

+ 𝑙𝑛 𝑐,  

⇒ �𝑥2 + 𝑦2 = 𝑐 𝑒−𝑎𝑟𝑐𝑡𝑎𝑛
𝑦
𝑥 . 

Second example: The equation [ 𝑥 𝑑𝑥 + 𝑦 𝑑𝑦 =
�𝑥2 + 𝑦2𝑑𝑥] has the obvious integrating factor 1

�𝑥2+𝑦2
. 
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(We thus have): 𝑥 𝑑𝑥+𝑦 𝑑𝑦
�𝑥2+𝑦2

= 𝑑𝑥 , ⇒   �𝑥2 + 𝑦2 = 𝑥 + 𝑐, ⇒ 

𝑦2 = 2𝑐𝑥 + 𝑐2 . (a family of parabolas)” [4]. The three 
quotations above will be analyzed below.  

iii.  Distinction between the integrating and 
separating factors in the above quotations. 

[Note: Integrating factors are denoted by 𝑅(𝑥,𝑦) in this 
paper, but by 𝜇(𝑥,𝑦)  in the quotations above. Also the 
functions denoted by P and Q in the first quotation are 
denoted by M and N in the second quotation (which is from a 
different reference). This formal note ought to be recalled to 
avoid possible confusion].  

(a)  The implication is obvious in the first quotation that 
after transforming a semi-exact equation by its 
integrating factor into an exact equation, the solution 
will be by integration in total differentials, and not by 
separation of the variables, or by integration by parts. 
As was asserted in our first paper, the method of 
integration in total differentials is no longer required, 
having become comparatively laborious and 
prolonged where a much shorter and simpler method 
is within our reach, namely, integration by parts. It is 
this short-cut in the solution what permits the 
distinction between the three methods of solution and 
between the two separating and integrating factors. 
Furthermore, the quotation, in effect, erroneously 
implies that integrating factors are not connected 
with integration by parts, since it is integration in 
total differentials and not integrations by parts that is 
applied, according to this quotation. 

(b)  As is explicit in the first and second quotations, the 
one-variable integrating factors, 𝜇(𝑥) and 𝜇(𝑦), are 
derivable by the partial differentiation method (as 
will be detailed in Example 4), (and by the much 
simpler integration by parts, as will be shown in 
Example 5). The factor 𝜇(𝑦) applies instead of 𝜇(𝑥) 
to equations so presented that x and y exchange their 
roles of being the dependent and independent 
variables. It is also explicit in the second quotation 
that a general method for finding the two-variable 
integrating factors by derivation from first principles 
(i.e., by partial differentiation) does not exist (only 
the three-rectification test by sight is now available 
for obtaining these factors).   

(c)  The two-variable factors 𝜇(𝑥,𝑦) stated in the second 
quotation and applied to the two solved examples in 
the third quotation are not integrating, but separating 
factors. These factors transform the given equations 
into “separated equations with composite singlets”. 
Contrary to the assertion of the first quotation, “we 
saw no formulas for integration in total 
differentials applied to the solution of the two 
examples in the third quotation”. This observation 
obviously excludes integration in total differentials in 
favor of the method of separation of the variables 
(with the method of solution by integration by parts 
assumed not to have been recognized as yet). The two 

examples were actually solved by term-wise 
integration by the basic formulas, i.e., by “separation 
of the composite variables”, not by substitution, but 
by separating factors as we saw in the two-term 
equations. The quotation also implies that what it 
regards as integrating factors are associated this time 
with the method of separation of the variables (which 
actually employs separating factors or substitutions 
and not the integrating factors associated with 
integration by parts). The separating factors stated in 
the quotation are moreover not derived by a general 
method (i.e., by partial differentiation), but only 
guessed at in some obvious cases as already stated in 
the quotation itself. Of course, what matters in the 
first place is to solve the given equation by whatever 
method, but when more than one method become 
available then it also matters (in the second place) to 
specify which of the methods is the most convenient 
for application (which is in fact the subject-matter of 
our first and second papers). 

iv.  More notes about integrating factors: 

In addition to the three notes about integrating factors 
inferred from the above quotations there are three other notes 
to be added. 

(a)  By using the formula 𝑅(𝒙) =  𝒆∫𝒑(𝒙) 𝒅𝒙 the first part 
of the table compiled in [A-6] can be derived. 
However, obtaining integrating factors by written 
derivation using the said formula is hardly necessary 
in actual practice, nor is it necessary to consult the 
said table either. A moment of reflection about the 
semi-exact independent arm [1→ 𝑝(𝑥)] and how to 
turn it into the exact arm [𝑢(𝑥) → 𝑢′(𝑥)] will suffice 
to determine the integrating factors by test-by-sight. 
That is actually how the table was compiled. 

(b)  We shall call the expression [𝑢𝑣′′ − 𝑢′′𝑣] an “exact 
second order doublet” with the arms [𝑣 → 𝑣′′] and 
[𝑢 → 𝑢′′]. The “semi-exact second order doublet” 
possesses two integrating factors either of which can 
be used in the first integration and the other is 
neglected (cannot be used in the second integration) 
(see the second part of the table and Example 6). 

(c)  The n-th order linear equation with constant 
coefficients is an n-step semi-exact equation 
possessing n integrating factors that can be used for n 
successive integrations of the equation by parts. This 
will lead to the derivation of a readily applicable 
generalized formula for obtaining the general 
solution (complementary function CF + particular 
integral PI) of the given equation. (see Example 7).  

1.5. The Non-exact Equations 

Whereas the exact three-term equations can be diversified 
by adding more terms and making them with more than one 
non-homogeneity term, with more than one doublet, and/or 
with one or more triplets, such diversification of equations 
by adding more terms is generally not possible in the case of 
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semi-exact equations (except for the equations with two or 
more semi-exact doublets requiring the same integrating 
factor). This impossibility arises from the fact that by adding 
more terms to an equation the rectifying factors would then 
be too many to match together, i.e., they would 
uncontrollably invalidate the rectifications achieved by the 
different factors and prevent the existence of a total 
integrating factor. The three-term equations become 
non-exact if their non-singlet non-homogeneity term is other 
than a product separable by division, or if one of the three y’s 
(in the non-homogeneity term and in the functions of the 
dependent arm) is the argument of other than a power 
function, or if the difference between the exponents of the y’s 
in the dependent arm is not “unity”in a first order doublet, 
and not “two” in a second order doublet. The presence of 
these characteristics in an equation and of the previous 
characteristics of “diversification of equations by adding 
more terms” is the cause of the non-exactness of this class of 
equations, and of the non-existence of integrating factors for 
them. 

In answer to the question we started with, and excluding 

the three-variable semi-exact equations for the reasons 
already mentioned, it can be asserted that the one-variable 
and two-variable integrating factors for the semi-exact 
equations are determinable in principle. The semi-exact 
equations are amenable to the three-rectification process 
thanks to their possessing the characteristics (conditions) 
already mentioned. Equations lacking any of the said 
characteristics are non-exact equations which are insolvable 
by integration by parts. However, some non-exact equations 
are separable and, therefore, solvable by the separation 
method. The above multi-sided discussions of the topic of 
integrating factors will now be finalized with a table 
compiled for these factors in [part A-6] below before 
reworking the seven examples of [part B] by obtaining their 
integrating factors by sight and their solutions by 
integration by parts. 

1.6. A Table of Integrating Factors Easily Identifiable by 
Sight for the Frequently Encountered Equations 
with Semi-exact First and Second Order Doublets 

 
          Semi-exact arms                  Integrating factors                     Exact arms 

A. First order arms / one integrating factor 

1.  1 →     𝑎                                𝑒𝑎𝑥                               𝑒𝑎𝑥 →     𝑎 𝑒𝑎𝑥 
2.  1 →  −𝑎                                 𝑒−𝑎𝑥                             𝑒−𝑎𝑥 → −𝑎 𝑒−𝑎𝑥 

3.  1 →     𝑏 𝑠𝑖𝑛 𝑎𝑥                        𝑒− 𝑏𝑎cos𝑎𝑥                   𝑒− 𝑏𝑎cos𝑎𝑥 → 𝑏 𝑒− 𝑏𝑎cos𝑎𝑥. sin𝑎𝑥 

4.  1 →     𝑏 𝑐𝑜𝑠 𝑎𝑥                        𝑒  𝑏𝑎 sin𝑎𝑥                     𝑒  𝑏𝑎 sin𝑎𝑥 → 𝑏 𝑒  𝑏𝑎 sin𝑎𝑥. cos𝑎𝑥 

5.  1 →     𝑎 𝑡𝑎𝑛 𝑎𝑥                         1
cos𝑎𝑥

                           1
cos𝑎𝑥

 →      𝑎 sin𝑎𝑥
cos2 𝑎𝑥

 

6.  1 →  −𝑎 𝑡𝑎𝑛 𝑎𝑥                        𝑐𝑜𝑠 𝑎𝑥                        𝑐𝑜𝑠 𝑎𝑥 → − 𝑎 𝑠𝑖𝑛 𝑎𝑥 
7.  1 →     𝑎 𝑐𝑜𝑡 𝑎𝑥                         𝑠𝑖𝑛 𝑎𝑥                         𝑠𝑖𝑛 𝑎𝑥 →     𝑎 𝑐𝑜𝑠 𝑎𝑥 

8.  1 →  −𝑎 𝑐𝑜𝑡 𝑎𝑥                         1
 𝑠𝑖𝑛𝑎𝑥

                          1
 𝑠𝑖𝑛𝑎𝑥

→  −  𝑎 𝑐𝑜𝑠 𝑎𝑥
𝑠𝑖𝑛2 𝑎𝑥

 

9.  𝑥𝑚 → 𝑎 𝑥𝑚−1                           𝑥− 𝑚+𝑎                          𝑥𝑎 →    𝑎 𝑥𝑎−1 

10.  𝑥 𝑙𝑛 𝑥 → 1                                1
𝑥
                                 𝑙𝑛 𝑥 →  1

𝑥
  

11.  𝑢 → −𝑢′                                  1
𝑢2

                                1
𝑢
→ −  1

𝑢2
 𝑢′ 

12.  1 → 𝑝(𝑥)                               𝑒∫𝑝(𝑥)𝑑𝑥                     𝑒∫𝑝(𝑥)𝑑𝑥 → 𝑒∫𝑝(𝑥)𝑑𝑥.𝑝(𝑥) 
B. Second order arms / two integrating factors 

13.  1 →     𝑎2                                𝑒𝑎𝑥,  𝑒− 𝑎𝑥                          𝑒𝑎𝑥 → 𝑎2 𝑒𝑎𝑥 
                                                                                  𝑒− 𝑎𝑥 → 𝑎2 𝑒− 𝑎𝑥 
14.  1 → − 𝑎2                              sin𝑎𝑥 ,  cos𝑎𝑥                   sin𝑎𝑥 → −  𝑎2sin𝑎𝑥 
                                                                               cos𝑎𝑥 → −  𝑎2cos𝑎𝑥 
15.  𝑥𝑚 → 𝑏 𝑥𝑚−2                       𝑥−𝑚+𝑎1 ,  𝑥−𝑚+𝑎2                 𝑥𝑎1 → 𝑎1(𝑎1 − 1)𝑥𝑎1−2 

         [Note: 𝑏 = 𝑎(𝑎 − 1) ⇒ 𝑎1,2 = 1±√1+4𝑏
2

 ]                          𝑥𝑎2 → 𝑎2(𝑎2 − 1)𝑥𝑎2−2 

16.  𝑥2 𝑙𝑛 𝑥 → −1                             1
𝑥2

                               𝑙𝑛 𝑥 → −  1
𝑥 2
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Note: The first part of the table applies to the equations 
with first order doublets. The semi-exact arm in (9) above is 
of a special interest, and is frequently encountered. It extends 
between two power functions with exponents differing by 
unity. “The exponent of the integrating factor [𝒙−𝒎+𝒂 ] is to 
cancel the exponent (m) of the function and replace it with 
the constant multiplier (a) of the derivative or the 
differential of the function and thereby turn the semi-exact 
arm into an exact one”. For example, the integrating factor 
for the semi-exact arm (𝑥 → −2 𝑑𝑥) = (𝑥1 − 2𝑥0𝑑𝑥)  is 
𝑥−1−2 = 1

𝑥3
, which yields the exact arm ( 1

𝑥2
→ −2 1

𝑥3
 𝑑𝑥 ). 

This simple procedure for finding the rectifying factor r3 
when the 𝑥-arm extends between power functions of x with 
exponents differing by unity, will be applied in [part C] 
repeatedly. The rectifying factor r3 multiplies the two 
functions of the independent arm to turn it exact without 
disturbing the exactness of the dependent arm. It also 
multiplies the non-homogeneity term without disturbing its 
being a singlet (individually integrable), since the two are 
functions of the same single variable. The second part of the 
table applies to certain equations with second order doublets 
(see Example 6].   

2. Seven Semi-exact Equations of 
Different Types Quoted with Their 
Prolonged Solutions by the Current 
Methods, and Reworked by the Much 
Shorter and Simpler Methods of 
Test-by-sight and Integration by Parts 

Example 1: Bernoulli’s equation as a typical semi-exact 
equation with a two-variable integrating factor 𝑹(𝒙,𝒚) 
obtainable by the three-rectification test-by-sight and not 
by partial differentiation. Derivation of a readily 
applicable formula. The multiply-integrate-and-divide 
formula 

Bernoulli’s equation )()(/ xqyyxpy n=+  is a 
three-term equation identifiable by sight. This equation is 
amenable to the three-rectification process, i.e., to finding 
the factors [ 𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝒚−𝒏, (𝟏 − 𝒏), 𝒆(𝟏−𝒏)∫𝑷(𝒙)𝒅𝒙 ] by 
sight thanks to its having two unique properties: (1) The 
non-homogeneity term [𝑦𝑛𝑞(𝑥)]  is the product of two 
factors comprising the two variables x and y separately. This 
property makes it possible to turn this non-singlet, simply by 
division, into a singlet (individually integrable by the basic 
formulas). (2) The functions of the three y’s in the 
non-homogeneity term and in the dependent arm [𝑦 → 𝑑𝑦] 
are “power functions”. In the linear arm [𝑦 → 𝑑𝑦] = [𝑦 →
𝑦0𝑑𝑦 ] we note that 𝑦  is to the first power, and 𝑑𝑦  is 
multiplied by y to the zeroth power (𝑦0 = 1 ) and the 
difference between the exponents is unity (1− 0 = 1) which 
remains unchanged and thereby keeps the semi-exactness of 
what will be a non-linear arm after multiplying the equation 
by [𝑦−𝑛 ]. Instead of solving Bernoulli’s equation by the 
usual substitution 𝑦 = 𝑧

1
1−𝑛  and repeating the calculation 

every time, a ready formula can be derived by carrying out 

the three rectifications [ r1 = 𝑦−𝑛, r2 = (1 − 𝑛), and   
r3 = 𝑒�1−𝑛�∫𝑝(𝑥)𝑑𝑥]. The equation will then become: 
𝑦−𝑛𝑦′ + 𝑝(𝑥)𝑦1−𝑛 = 𝑞(𝑥)  ⇒  (1 − 𝑛)𝑦−𝑛𝑦′   

+(1 − 𝑛)𝑝(𝑥)𝑦1−𝑛 = (1 − 𝑛)𝑞(𝑥). The y-arm is now exact 
[ 𝑦1−𝑛 → (1 − 𝑛)𝑦−𝑛𝑦′ ]. The individual integrability of 
𝑞(𝑥) is not disturbed by the constant factor (1 − 𝑛). The 
exact linear arm [ 𝑦 → 𝑑𝑦 ] is first turned semi-exact 
non-linear, then exact non-linear. Finally we have a 
semi-exact x-arm: [ 1 → (1 − 𝑛)𝑝(𝑥) ] for which the 
integrating factor is 𝑒(1−𝑛)∫𝑃(𝑥)𝑑𝑥 . Thus we 
obtain:  [𝑒(1−𝑛)∫𝑝(𝑥)𝑑𝑥]  (1 − 𝑛)𝑦−𝑛𝑦′ +
�𝑒(1−𝑛)∫𝑝(𝑥)𝑑𝑥 (1 − 𝑛)𝑝(𝑥)�𝑦(1−𝑛) = (1 − 𝑛)  
 𝑒(1−𝑛)∫𝑝(𝑥)𝑑𝑥 𝑞(𝑥), which is an exact equation, i.e., with a 
doublet reciprocating two exact arms. Recalling that the 
integral of an exact doublet is equal to the product of the 
outer functions of the doublet, we obtain: 
𝒆(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙𝒚𝟏−𝒏 = (𝟏 − 𝒏)∫𝒆(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙  𝒒(𝒙)𝒅𝒙 .  

(multiplying by 𝒆−(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙 ):                
𝒚𝟏−𝒏 = [ (𝟏 − 𝒏)𝒆−(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙 ∫ 𝒆(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙  𝒒(𝒙)𝒅𝒙] . 
(raising to the exponent 𝟏

𝟏−𝒏
 ): 

𝒚 = [(𝟏 − 𝒏)𝒆−(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙 ∫ 𝒆(𝟏−𝒏)∫𝒑(𝒙)𝒅𝒙  𝒒(𝒙)𝒅𝒙]
𝟏

𝟏−𝒏 , 
which is the “general solution of Bernoulli’s equation”. At 
first sight the equation may appear to be difficult to 
memorize. However, this difficulty can be overcome by the 
following wording: “to solve Bernoulli’s equation, multiply 
the rectified non-homogeneity term [𝑞(𝑥)] by the integrating 
factor [𝑒(1−𝑛)∫𝑝(𝑥)𝑑𝑥], integrate, and then divide by the same 
factor. This “three-step multiply-integrate-and-divide 
method” is an inner component part to be complemented by 
multiplying by (1 − 𝑛) and raising to the exponent 1

(1−𝑛)
”. 

It can be seen that: (1) All the semi-exact three-term 
equations with two variable integrating factors (i.e., with 
non-singlet non-homogeneity terms) can be turned by 
factor (r1) into equations with one variable integrating 
factors (i.e., with singlet non-homogeneity terms). (2) What 
we have called “multiply-integrate-and-divide method” 
applies “after” multiplying the equations by (r1 and r2). 
This method is concerned only with (r3) which appears 
twice: inside the integral signs where it “multiplies” the 
rectified non-homogeneity terms and forms new integrands, 
and outside the integral signs where it “divides” the results 
of the integrations. That is simply what is denoted for 
brevity by the newly introduced term 
“multiply-integrate-and-divide formula”. It simply means 
that the solution of the non-linear semi-exact equations 
with singlet non-homogeneity terms, and with exact 
dependent arms, i.e., with 𝑹(𝒙,𝒚) = 𝒓𝟑(𝒙) is expressible 
in one direct step by the readily applicable formula: 
[ 𝒗(𝒚) = 𝟏

𝒓𝟑
∫ 𝒓𝟑 𝒒(𝒙) 𝒅𝒙 ]. This is actually the formula 

preceding the general solution formula above.  
Note that the general solution formula derived for 

Bernoulli’s equation is a function of x alone, and in it r3, 
(1 − 𝑛) , and 1

(1−𝑛)
 are readily obtainable by sight. This 

formula reduces the solution of Bernoulli’s equations to the 
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simpler problem of solving one integral whose integrand is 
the product of two functions of x.     

Example 2: A semi-exact equation in differential form 
solvable by separation of the variables by substitution 
and by integration by parts:  

(A): [Solve the equation (𝑥2 + 𝑦2)𝑑𝑥 + 𝑥𝑦 𝑑𝑦 = 0.  We 
put 𝑦 = 𝑣𝑥   then 𝑑𝑦 =  𝑣 𝑑𝑥 + 𝑥 𝑑𝑣  and the given 
equation becomes: 𝑥2(1 + 𝑣2)𝑑𝑥 + 𝑥2𝑣(𝑣 𝑑𝑥 + 𝑥 𝑑𝑣)    
= 0. ⇒(1 + 𝑣2)𝑑𝑥 + 𝑣(𝑣 𝑑𝑥 + 𝑥 𝑑𝑣) = 0 (dividing by  𝑥2). 
⇒ (1 + 2𝑣2)𝑑𝑥 + 𝑣𝑥 𝑑𝑣 = 0   (collecting coefficients). 
𝑑𝑥
𝑥

+ 𝑣𝑑𝑣
1+2𝑣2

= 0    (separating the variables). Consequently, 

the solution in terms of 𝑥 𝑎𝑛𝑑 𝑣 is ln 𝑥 + 1
4

ln(1 + 2 𝑣2) =
𝑘 ⇒ 4ln 𝑥 + ln(1 + 2 𝑣2) = 4𝑘⇒ ln 𝑥4(1 + 2𝑣2) = 4𝑘 . 
Hence, using each member as an exponent of e, we have 
𝑥4(1 + 2𝑣2) = 𝑒4𝑘 = 𝐶  and, replacing 𝑣 by 𝑦 𝑥⁄ , we get 
𝑥4 �1 + 2𝑦2

𝑥2
� = 𝐶. The form of the solution can be modified 

by removing parentheses. Thus, we find that 𝑥4 + 2𝑥2𝑦2 =
𝐶 is the general solution] [1].  

(B): A differential equation is presented either in 
differential form as in this example or in derivative from as 
in the next example. Where the equation is presented in 
differential form we should cease to collect the like 
differentials on 𝑑𝑥 and 𝑑𝑦 separately. Instead, we should 
identify by sight which differentials are singlets 
(individually integrable), and which are non-singlets, and 
whether the latter constitute one or more doublets 
integrable by parts, or can be made so by an integrating 
factor that is also obtainable by sight”. 

The first step of the solution is to rearrange the given 
equation by putting the doublet on the left side of the 
equation and the non-homogeneity term on the right side: 
𝑥𝑦 𝑑𝑦 +  𝑦2𝑑𝑥 =  − 𝑥2 𝑑𝑥.  In applying the 
three-rectification process mentally we find that the 
non-homogeneity term is a singlet (i.e., in an already 
rectified form whose rectifying factor is r1= 1). The 𝑦 −arm 
( 𝑦2 → 𝑦 𝑑𝑦 ) is semi-exact (extending between power 
functions of y with exponents differing by unity) and its 
rectifying factor is r2 = 2, thereby obtaining the exact 
dependent arm ( 𝑦2→ 2𝑦 𝑑𝑦 ). The independent arm is 
initially exact (𝑥→𝑑𝑥 ) but has been turned semi-exact 
(𝑥→2𝑑𝑥) after multiplying by 2. It can be returned exact 
again by multiplying the equation by rectifying factor r3= 
𝑥−1+2 = 𝑥 and obtaining (𝑥2→2𝑥 𝑑𝑥). After such mental 
analysis we conclude that our equation is semi-exact having 
[r1,2,3 = 1, 2, 𝒙] as its three rectifying factors. The second 
step is to multiply the equation by the total integrating factor 
to become exact: [𝑥2( 2𝑦 𝑑𝑦 ) + 2𝑥 𝑑𝑥  ( 𝑦2)] = −2𝑥3𝑑𝑥. 
The brackets are meant to help the reader to identify the 
reciprocated arms between the two terms of the doublet, and 
when sufficient skill has been gained then such brackets can 
be dropped. The doublet is now the differential of a product, 
𝑑(𝑥2𝑦2) . The third step is to integrate the equation by the 
pair-wise and term-wise integrations and get: 𝑥2𝑦2 =
−𝑥4

2
+ 𝑐 , or 𝑥4 + 2𝑥2𝑦2 = 𝑐 , as in (A) above. Again, 

compared to the prolonged solution by the method of 

substitution and separation of the variables in (A), the 
considerably shortened three-step solution by the methods 
of test-by-sight and integration by parts in (B) may seem 
magical. The solution avoids the details of substitution and 
back substitution, solving the corresponding homogeneous 
equation,… The equation is a nonlinear, non-homogeneous, 
first-order equation with variable coefficients. We remind 
that, except for the three steps of the solution, the detailed 
writing above is for explaining the unwritten mental test and 
constitutes no part of the written solution. 
Example 3: A semi-exact equation in derivative form 
solvable by separation of the variables by substitution 
and by integration by parts.   

(A): [Solve the equation: 𝑦′ = tan 𝑥 · 𝑦  + 𝑐𝑜𝑠 𝑥  . 
Solution: the corresponding homogeneous equation is 
𝑦′ − tan 𝑥 · 𝑦 = 0. Solving it we get:  𝑦 = 𝑐 ·
1

𝑐𝑜𝑠 𝑥
 . Considering 𝑐  as function of 𝑥 , and differentiating, 

we find: 𝑦′ = 1
cos𝑥

· 𝑑𝑐
𝑑𝑥

+ 𝑠𝑖𝑛 𝑥
𝑐𝑜𝑠2𝑥

· 𝑐 .  Putting  𝑦  and 𝑦′  into 

(…) we get: 1
𝑐𝑜𝑠 𝑥

· 𝑑𝑐
𝑑𝑥

+ 𝑠𝑖𝑛 𝑥
𝑐𝑜𝑠2𝑥

· 𝑐 = 𝑡𝑎𝑛 𝑥 · 𝑐
𝑐𝑜𝑠 𝑥

 
+ 𝑐𝑜𝑠 𝑥, or 

𝑑𝑐
𝑑𝑥

= 𝑐𝑜𝑠2𝑥, Whence 𝑐(𝑥) = ∫ 𝑐𝑜𝑠2𝑥  𝑑𝑥  = 1
2
𝑥 +

1
4
𝑠𝑖𝑛 2𝑥 + 𝑐1. Hence, the general solution of equation (…) 

has the form 𝑦 = � 1
2
𝑥 + 1

4
sin 2𝑥 + 𝑐1 � ·  1

cos𝑥
] [2]. 

(B): Checking mentally the possibility of the equation 
being semi-exact (i.e., possessing an integrating factor and 
solvable by integration by parts) we find: firstly, the 
rearranged equation [ 𝑦′ − 𝑡𝑎𝑛 𝑥 · 𝑦 = 𝑐𝑜𝑠 𝑥 ] has a 
semi-exact doublet with the exact y-arm [𝑦 → 𝑦′] and the 
semi-exact x-arm [1 → −𝑡𝑎𝑛 𝑥] and we thus have [r1,2,3 =1, 
1, 𝒄𝒐𝒔 𝒙] as the required integrating factor [recall that r3 for 
( 1 → −𝑡𝑎𝑛 𝑥) is 𝑐𝑜𝑠 𝑥 ], which yields the exact arm 
[𝑐𝑜𝑠 𝑥 → −𝑠𝑖𝑛 𝑥]. Secondly, we multiply by this factor and 
obtain [(𝑐𝑜𝑠 𝑥) · 𝑦′ + (−𝑠𝑖𝑛 𝑥)𝑦] = 𝑐𝑜𝑠2𝑥  which is now 
an exact equation reciprocating the arms [ 𝑦 → 𝑦′  and 
𝑐𝑜𝑠 𝑥 → −𝑠𝑖𝑛 𝑥 ], or whose doublet is the derivative of a 
product (𝑐𝑜𝑠 𝑥 · 𝑦)′ . The non-homogeneity term 𝑐𝑜𝑠 𝑥 
becomes 𝑐𝑜𝑠2𝑥 after multiplication by the integrating factor 
and its being individually integrable remains unaffected by 
such multiplication since the integrating factor is a function 
of 𝑥 alone. The integral of the exact doublet is the product of 
the outer functions of the doublet (𝑐𝑜𝑠 𝑥 · 𝑦)  and 
∫ 𝑐𝑜𝑠2𝑥 𝑑𝑥 is a tabular integral. Thirdly, we integrate and 
get: 𝑐𝑜𝑠 𝑥 · 𝑦 = ∫ 𝑐𝑜𝑠2𝑥 𝑑𝑥, or 𝑦 = 1

cos𝑥 ∫ 𝑐𝑜𝑠
2𝑥 𝑑𝑥 as in 

(A) above. We can also apply the three-step 
multiply-integrate-and-divide formula 
[𝑦 = 1

𝑅(𝑥)∫𝑅(𝑥). 𝑓(𝑥)𝑑𝑥] and obtain the same result in “one 
direct step by this readily applicable formula” followed by 
applying the tabular integral. The methods in (A) of solving 
the corresponding homogeneous equation for finding the 
complementary function and of using variation of parameters 
for finding the particular integral have become a past history. 
They are no longer practical and have to leave their places to 
the short methods of testing by sight and solving by 
integration by parts as in (B) (as far as exact and semi-exact 
equations are concerned). Again, we remind that the writing 
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above is mainly a description of the mental (unwritten) 
analysis of the problem and of the traditional methods 
dispensed with, and that the solution in (B) is much shorter 
and simpler than in (A). 

Example 4: A multi-term equation with two semi-exact 
doublets requiring the same integrating factor (derivable 
by partial differentiation and by the three-rectification 
test-by-sight) 

(A): [Solve the equation: (2𝑥𝑦 + 𝑥2𝑦 + 𝑦3

3

 
) 𝑑𝑥 +

(𝑥2 + 𝑦2) 𝑑𝑦 = 0 . Solution: Here 𝑃 = 2𝑥𝑦 + 𝑥2𝑦 +
𝑦3

3
,𝑄 = 𝑥2 + 𝑦2and 1

𝑄
�𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
� = 2𝑥+𝑥2+𝑦2−2𝑥

𝑥2+𝑦2
= 1, hence, 

μ = μ(𝑥).  Since 𝜕(μ𝑃)
𝜕𝑦

= 𝜕(μ𝑄)
𝜕𝑥

, or μ 𝜕𝑃
𝜕𝑦

= μ 𝜕𝑄
𝜕𝑥

+ Q 𝑑μ
𝑑𝑥

, it 

follows that 𝑑μ
μ

= 1
𝑄
�𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
� 𝑑𝑥 = 𝑑𝑥 , and 𝑙𝑛 𝜇 = 𝑥, μ =

e𝑥. Multiplying the equation by  μ = e𝑥 , we obtain  
e𝑥(2𝑥𝑦 + 𝑥2𝑦 + 𝑦3

3

 
) 𝑑𝑥 + e𝑥(𝑥2 + 𝑦2) 𝑑𝑦 = 0  which is 

an exact differential equation. Integrating it, we get the 
general integral 𝑦𝑒𝑥 �𝑥2 + 𝑦3

3
� = 𝑐 ] [2]. 

(B): It is obvious that the quoted solution concentrates on 
establishing the semi-exactness of the given equation and 
determining its one-variable integrating factor by the 
method of partial differentiation. It does not mention the 
prolonged method of solution applied (i.e., integration in 
total differentials) leaving it to be impliedly understood for 
the sake of brevity. Let us also note that an exact triplet of 
terms can be reduced to an exact composite doublet 
reciprocating one composite and one simple arms: 
[ 𝑢𝑣𝑤′ + 𝑢𝑣′𝑤 + 𝑢′𝑣𝑤 = (𝑢𝑣)𝑤′ + (𝑢𝑣′ + 𝑢′𝑣)𝑤 ] with 
the exact composite arm [𝑢𝑣 → (𝑢𝑣′ + 𝑢′𝑣)] and the exact 
simple arm [𝑤 → 𝑤′ ]. The given equation is not a 
three-term, but a five-term equation. However, subjecting it 
to test- by- sight for establishing its semi-exactness and 
obtaining its integrating factor is still possible though not as 
easy as before. It actually requires some more skills to be 
gained since it is not so similar to the previous examples but 
possesses the following dissimilarities:  

In attempting to distribute the terms of the given equation 
among the defined combinations of terms it will be seen 
that three non-singlets out of the five terms of the equation 
[(2𝑥𝑦 𝑑𝑥 + 𝑥2𝑑𝑦) + 𝑑𝑥(𝑥2𝑦)] constitute a semi-exact 
composite doublet having an exact composite arm 
(𝑥2𝑦) → [𝑦 (2𝑥 𝑑𝑥) + 𝑑𝑦 (𝑥2)] and a semi-exact 
independent arm [1 → 𝑑𝑥] requiring the integrating factor 
𝑒𝑥 to become exact [𝑒𝑥 → 𝑒𝑥𝑑𝑥]. 

Of the two remaining terms the singlet y2dy will not be 
integrated individually, (contrary to what we usually do), 
since the other non-singlet 𝑦

3

3
𝑑𝑥 would then be floating 

outside the combinations leading us nowhere. It can be seen 
that these two terms constitute a second semi-exact simple 
doublet [(𝑦2𝑑𝑦) + 𝑑𝑥 (𝑦

3

3
)]  with the exact y-arm 

�𝑦
3

3
→ 𝑦2𝑑𝑦� and the semi-exact x-arm [ 1 → 𝑑𝑥 ] that 

requires the same integrating factor 𝑒𝑥  to become 
[𝑒𝑥 → 𝑒𝑥𝑑𝑥] as in the first doublet. Having performed our 

mental analysis (i.e., having rearranged the terms of the 
given equation in a first step, and found the integrating factor 
by sight) we then take the second step of multiplying this 
semi-exact equation by its integrating factor 𝑒𝑥 and obtain it 
in its exact form. [𝑒𝑥(𝑦2𝑑𝑦) + 𝑒𝑥𝑑𝑥(𝑦

3

3
)] + [𝑒𝑥(2𝑥𝑦 𝑑𝑥 +

𝑥2𝑑𝑦) + 𝑒𝑥𝑑𝑥(𝑥2𝑦)] = 0 . Recalling that the integral of an 
exact doublet is the product of the outer functions of the 
doublet, we apply the one-step integration by parts as the 
third step, and obtain 𝑒𝑥 · 𝑦

3

3
+ 𝑒𝑥 · 𝑥2𝑦 = 𝑐 or, 𝑦𝑒𝑥 �𝑥2 +

𝑦2

3
� = 𝑐 , as in (A) above. It is also noted that if to this 

five-term equation a sixth singlet term 𝑓(𝑥)𝑑𝑥 is added as a 
rectified non-homogeneity term, the equation will still 
remain integrable in the same manner since the individual 
integrability of the added term will not be  disturbed by 
multiplication by the integrating factor. 

The solution in (B) is by far shorter and simpler than that 
in (A) which employs prolonged methods for determining 
the integrating factor by partial differentiation and for 
integrating in total differentials (not mentioned in the 
quoted solution in (A), obviously for brevity, and assuming 
the reader to be familiar with it).  

NOTE: The following three examples have been 
postponed to the next paper so as to avoid the present paper 
becoming excessively lengthy.  

Example 5: Semi-exact first order equations (linear and 
non linear, with constant and with variable coefficients). 
Applications from classical mechanics and nuclear 
physics 
Example 6: Equations with semi-exact second order 
doublets (an application from quantum mechanics- 
Schrödinger’s equation)  
Example 7: Generalization of the solution of the 
semi-exact linear equation with constant coefficients to 
the n-th order case by a readily applicable formula 

3. Practicing the Test-by-sight for 
Establishing the Semi-exactness and 
Determining the Integrating Factors 
of Miscellaneous Semi-exact 
Equations. [2, 3] 

Semi-exact equations with two-variable integrating 
factors are not so frequently encountered in the literature, 
and if they are ever encountered (such as Bernoulli’s 
equation) then they are solved by such prolonged methods 
as that of separation of the variables by substitution without 
realizing the integrability of the equations by the integrating 
factor method (i.e., by integration by parts). The 
two-variable integrating factors cannot be derived by partial 
differentiation which is the only method known so far 
(before the newly introduced test-by-sight method) and is 
restricted to the case of one-variable factors only. Solution 
of the n-th order linear equation with constant coefficients 
by using “n integrating factors in n successive integrations 
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by parts” will be dealt with in the next paper. Examples of 
equations with two-variable factors derived by sight are 
already given in [part A-4-b]. This part C of the paper 
concentrates on semi-exact equations with one-variable 
integrating factor (either r1, r2, or r3) that rectifies only one 
of the three constituents of the equations below. The two 
other constituents are either initially given in rectified 
forms, or created or rectified subsequently by the first 
rectifying factor r1 itself. The below mentioned equations 
are meant by their references for practicing the 
determination of integrating factors by the partial 
differentiation method and solving by integration in total 
differentials. We shall, however, replace these prolonged 
methods with the much shorter and simpler test-by-sight 
and integration by parts. If an equation is given in 
differential form, we disregard the collection of the terms 
on like differentials and rearrange them often with the 
singlet and non-singlet non-homogeneity terms put on the 
right side (unless otherwise is required for constructing 
doublets in certain cases) and the doublets on the left side of 

the equation, and thereby perform the first introductory 
step for rearrangement of the equation. After 
rearrangement of the given equations the three rectifying 
factors become readily determinable by sight in the order: r1 
for the non-homogeneity term, r2 for the dependent arm, 
and r3 for the independent arm. As already mentioned factor 
r2 is determined after multiplying the equation by r1, and 
factor r3 after multiplying by r2. The second step is to 
multiply the semi-exact equation by the one-variable 
integrating factor to turn the equation into the exact form. 
The third step is to integrate the resulting exact doublets by 
parts, and the singlets by the basic formulas. This new 
method of solution by integration by parts is by far superior 
to the traditional method of solving by integration in total 
differentials, in terms of the space, time, and mental effort 
expended on the solution.  

Greater attention and concentration may have to be 
exercised in solving the following semi-exact equations by 
applying the short methods of the “three-rectification test 
by sight” and “integration by parts”.   

 
1. (𝑥2 − 𝑦)𝑑𝑥 + 𝑥 𝑑𝑦 = 0 ⇒ [𝑥 𝑑𝑦 − 𝑦 𝑑𝑥] = −𝑥2 𝑑𝑥,   𝑟1 = 1, 𝑟2 = 1,  

    and 𝑟3 𝑓𝑜𝑟 [𝑥 → −𝑑𝑥] = 𝑥−1−1 = 1
𝑥2

, �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟏, 𝟏
𝒙𝟐
� ,𝑑 �𝑦

𝑥
� = −𝑑𝑥 ⇒   𝑦

𝑥
= −𝑥 + 𝑐 ⇒ 𝑦 = −𝑥2 + 𝑐𝑥.   

2. (𝑒2𝑥 − 𝑦2) 𝑑𝑥 + 𝑦 𝑑𝑦 = 0 ⇒ [𝑦 𝑑𝑦 − (𝑑𝑥)𝑦2] = −𝑒2𝑥𝑑𝑥, 𝑟1 = 1, 𝑟2 = 2,  and  𝒓𝟑 for [1 → −2𝑑𝑥]= 𝑒−2𝑥,  
�𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟐,𝒆−𝟐𝒙�, 𝑑(𝑦2𝑒−2𝑥) = −2𝑑𝑥 ⇒  𝑦2𝑒−2𝑥 = −2𝑥 + 𝑐 ⇒ 𝑦2 = 𝑒2𝑥(−2𝑥 + 𝑐).   

3. (1 + 3𝑥2 sin𝑦)𝑑𝑥 − 𝑥 cot 𝑦 𝑑𝑦 = 0 ⇒ [𝑥(− cot 𝑦 𝑑𝑦) + 𝑑𝑥] = sin𝑦(−3𝑥2𝑑𝑥),     

    �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏
𝒔𝒊𝒏 𝒚

,𝟏,𝟏� , �𝑥 �− cos𝑦
𝑠𝑖𝑛2𝑦

𝑑𝑦� +   𝑑𝑥 � 1
sin𝑦

�� = −3𝑥2𝑑𝑥 ⇒  𝑥
sin𝑦

= −𝑥3 + 𝑐 ⇒ sin𝑦 = − 𝑥
𝑥3+𝑐

. 

4. 𝑦2𝑑𝑥 + (𝑦𝑥 − 1)𝑑𝑦 = 0    ⇒    [𝑦2(𝑑𝑥) + 𝑦 𝑑𝑦(𝑥)] = 𝑑𝑦, [𝑞 = 𝑞(𝑦)],   𝒓𝟑 for [𝑦2 → 𝑦 𝑑𝑦]= 𝑦−2+1 = 1
𝑦
 ,     

           �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟏, 𝟏
𝒚
� ,   [𝑦(𝑑𝑥) + 𝑑𝑦(𝑥)] = 1

𝑦
𝑑𝑦 ⇒  𝑥𝑦 = 𝑙𝑛 𝑦 + 𝑙𝑛 𝑐 ⇒ 𝑥 = 𝑙𝑛 𝑐𝑦

𝑦
. 

5.  (𝑥2 − 3𝑦2)𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 = 0 ⇒ [(𝑥)2𝑦 𝑑𝑦 + (−3𝑑𝑥)𝑦2] = −𝑥2𝑑𝑥, 𝒓𝟑 for [𝑥 → −3𝑑𝑥]= 𝑥−1−3 = 1
𝑥4

 , 

           �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟏, 𝟏
𝒙𝟒
�, �� 1

𝑥3
�2𝑦 𝑑𝑦 + �− 3

𝑥4
𝑑𝑥� 𝑦2� = − 1

𝑥2
𝑑𝑥 ⇒ 𝑦2

𝑥3
= 1

𝑥
+ 𝑐 ⇒ 𝑦2 = 𝑥2 + 𝑐𝑥3. 

6. (sin 𝑥 + 𝑒𝑦)𝑑𝑥 + cos 𝑥 𝑑𝑦 = 0 ⇒ [(cos 𝑥)𝑑𝑦 + (− sin 𝑥 𝑑𝑥)(−1)] = −𝑒𝑦𝑑𝑥, �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝒆−𝒚,𝟏,𝟏�, [(cos 𝑥)𝑒−𝑦𝑑𝑦          

       +(− sin 𝑥 𝑑𝑥)(−𝑒−𝑦)] = −𝑑𝑥 ⇒  −𝑒−𝑦 cos 𝑥 = −𝑥 + 𝑐,⇒ 𝑒−𝑦 cos 𝑥 = 𝑥 + 𝑐 ⇒ 𝑒𝑦 = cos 𝑥
𝑥+𝑐

⇒ 𝑦 = 𝑙𝑛 cos𝑥
𝑥+𝑐

  

7. (𝑥 sin𝑦 + 𝑦)𝑑𝑥 + (𝑥2 𝑐𝑜𝑠 𝑦 + 𝑥 𝑙𝑛 𝑥)𝑑𝑦 = 0 ⇒ [(𝑥 𝑙𝑛 𝑥)𝑑𝑦 + (𝑑𝑥)𝑦] + [𝑥2(cos𝑦 𝑑𝑦) + 𝑥 𝑑𝑥(sin𝑦)] = 0, 𝒓𝟑  for 
[𝑥 𝑙𝑛 𝑥 → 1]= 1

𝑥
 , and 𝒓𝟑 for [𝑥2 → 𝑥]= 𝑥−2+1 = 1

𝑥
, (two semi-exact doublets requiring the same integrating factor, 

( 1
𝑥
 ) ⇒ [(𝑙𝑛 𝑥)𝑑𝑦 + �1

𝑥
𝑑𝑥�𝑦] + [𝑥(𝑐𝑜𝑠 𝑦 𝑑𝑦) + 𝑑𝑥(𝑠𝑖𝑛 𝑦)] = 0 ⇒   𝑦 𝑙𝑛 𝑥 + 𝑥 𝑠𝑖𝑛 𝑦 = 𝑐. 

8. (𝑥 + 𝑦2)𝑑𝑥 − 2𝑥𝑦 𝑑𝑦 = 0 ⇒ [(𝑦2)𝑑𝑥 + (2𝑦 𝑑𝑦)(−𝑥)] = −𝑥 𝑑𝑥,  𝒓𝟑 for �– 𝑥 → 𝑑𝑥�, or for – [𝑥 → −𝑑𝑥] = 

     −𝑥−1−1 = − 1
𝑥2

 , �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟏,− 𝟏
𝒙𝟐
� , �𝑦2 �− 1

𝑥2
𝑑𝑥� + 2𝑦 𝑑𝑦 �1

𝑥
�� = 1

𝑥
𝑑𝑥 ⇒  𝑦

2

𝑥
= 𝑙𝑛 𝑥 + 𝑙𝑛 𝑐 .⇒ 𝑦2 = 𝑥 𝑙𝑛 𝑐𝑥. 

9. 𝑦(1 + 𝑥𝑦)𝑑𝑥 − 𝑥 𝑑𝑦 = 0 ⇒ [𝑦 𝑑𝑥 − 𝑥 𝑑𝑦] = −(𝑦2)𝑥 𝑑𝑥, �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏
𝒚𝟐

 ,𝟏,𝟏� ,𝑑 �𝑥
𝑦
� = −𝑥 𝑑𝑥 ⇒  𝑥

𝑦
= −𝑥2

2
+ 𝑐 ⇒ 

     𝑦 = − 2𝑥
𝑥2+𝑐

  

10.  𝑦
𝑥
𝑑𝑥 + (𝑦3 − 𝑙𝑛 𝑥)𝑑𝑦 = 0 ⇒ [𝑦 �1

𝑥
𝑑𝑥� − 𝑑𝑦 (𝑙𝑛 𝑥)] = −𝑦3 𝑑𝑦,  [𝑞 = 𝑞(𝑦)], 𝒓𝟑 for [𝑦 → −𝑑𝑦] = 𝑦−1−1         

        =  𝟏
𝒚𝟐

, �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟏, 𝟏
𝒚𝟐
�  ,𝑑 �𝑙𝑛 𝑥

𝑦
� = −𝑦 𝑑𝑦 ⇒ 𝑙𝑛𝑥

𝑦
= −𝑦2

2
+ 𝑐 ⇒ 𝑙𝑛 𝑥 = −𝑦3

2
+ 𝑐𝑦.  
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11. 𝑦𝑦′ + 𝑦2 = cos𝑥,   𝒓𝟑 for [1 → 2] = 𝑒2𝑥,       �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏,𝟐, 𝒆𝟐𝒙� ,    𝑒2𝑥(2𝑦𝑦′) +  2𝑒2𝑥(𝑦2) = 2𝑒2𝑥 cos 𝑥 
        ⇒ 𝑒2𝑥𝑦2 = 2∫ 𝑒2𝑥 cos 𝑥 𝑑𝑥, (applying the tabular integral: ∫ 𝑒𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 = 𝑒𝑎𝑥(𝑏 sin𝑏𝑥+𝑎 cos𝑏𝑥)

𝑎2+𝑏2
+ 𝑐, we finally  

   obtain  𝑦2 = 𝑐𝑒−2𝑥 + 2
5

(sin 𝑥 + 2 cos𝑥). 

12. 𝑦𝑦′′ − 𝑦′2 = 6𝑦2𝑥 , second order equation, �𝒓𝟏,𝒓𝟐,𝒓𝟑 = 𝟏
𝑦2

,𝟏,𝟏� , [�𝟏
𝑦
� 𝑦′′ + �− 𝟏

𝑦2
𝑦′� 𝑦′] = 6𝑥 . The first 

integration is 𝑦
′

𝑦
= 3𝑥2 + 𝑐1. The second integration is 𝑙𝑛 𝑦 = 𝑥3 + 𝑐1𝑥 + 𝑐2  ⇒ 𝑦 = 𝑒𝑥3+𝑐1𝑥+𝑐2 = 𝑐2𝑒𝑥

3+𝑐1𝑥. 

4. Conclusions 
In semi-exact equations the three rectifying factors are 

determined by sight to constitute one-variable, or 
two-variable integrating factors that turn these equations 
into exact ones. The table of integrating factors is intended 
for general acquaintance, is easily memorized, and can be 
extended further. Semi-exact equations are solvable by the 
three methods of separation of the variables, integration in 
total differentials, and integration by parts, of which the last 
is the most convenient and the first two are no longer 
required, having become unnecessary prolongation as far as 
exact and semi-exact equations are concerned. It must, 
however, be stressed that the separation method retains its 
importance in solving the separable non-exact equations to 
which integration by parts is inapplicable and the separation 
of the variables is the only applicable method. Finally, the 
previous and present papers will serve as a basis for revising 
other related topics to be handled in forthcoming papers. 
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