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Two-Body Problem of Classical Electrodynamics with
Radiation Terms-Derivation of Equations (I)
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Abstract This paper is the first part of our investigations devoted to the two-body problem of classical electrodynamics.
The primary purpose of this first part is to derive equations of motion describing two moving charged mass particles taking
into account the radiation. We proceed from the suggestions given by J. L. Synge [1]. He has proposed a formulation of the
of relativistic two-body problem with usually accepted Dirac’s radiation terms [2] containing second derivatives of the
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Here we propose a general approach to introduce new equations of motion based on the same Dirac’s physical assumptions

from [2]. Instead of the above system of eight equations of motion we derive consider an analogous system
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radiation terms are replaced by newly derived ones. We show that two equations are consequences of the rest ones and so
we have to solve a system of six equations for six unknown velocities, issue that has not been discussed in the literature.
Instead of second order differential system (with respect to the unknown velocities) we obtain a first order neutral system
with both retarded and advanced arguments depending on the unknown trajectories. In the second part we solve the system
and so we give a method for overcoming the singularities arising in Dirac radiation terms.

Keywords Classical electrodynamics, Two-Body problem, Dirac-Lorentz radiation term, Neutral equations with both
delay and advanced arguments, Fixed point theorem

A lot of papers investigate equations with usually accepted
1. Introduction Dirac-Lorentz radiation terms [4]-[27]. In contrast of these
papers following the Synge’s formalism [1] here we derive a
new form of the radiation term leading to the first order
neutral equations with respect to unknown velocities and
introduce retarded and advanced arguments depending on
unknown trajectories [28]. We note that this new term is
applied in the one-dimensional case to overcome P.
Ehrenfest paradox [29] and in three-dimensional case for
correction of the Lorentz-Dirac equation [30].

We point out that the following difficulty arises that has
not been discussed in the literature. The relativistic Lorentz —
Dirac equations in the Minkowski’s space are four in number
for three unknown functions. In [30] we have proved that
4-th equation is a consequence of the first three ones. An
analogous problems arises in the two-body problem.

The equations of motion are eight in number for six
un-known functions velocities. Here we prove that the 4-th

] and the 8-th equation are consequence of the rest ones. In this
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angelov@mgu.bg (Vasil G. Angelov) manner we overcome a mathematical prgblem generateq by
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In [1] J. L. Synge has formulated a two-body problem in
the frame of classical electrodynamics and has mentioned at
the very end of [1] the possibility to generalize the model
including Dirac radiation terms [2]. The Synge’s
considerations [1] of two-body problem are based on the
Lorentz ponder-motive force derived in a relativistic form by
W. Pauli [3] via Lienard-Wiechert retarded potentials and
adding the Dirac’s radiation terms. Our goal is, following [1],
to give a unified approach of derivation of equations of
motion for two-body problem with radiation terms. We
propose a new mathematical formulation of the Dirac’s idea
based on retarded and advanced potentials. Let us note that
Dirac’s derivations lead to the second order differential
equations with respect to the unknown velocities which by
necessity needs prescribing of initial accelerations.
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4-th and 8-th equations we obtain the energy balance of the
moving particles.

In the second part we prove an existence-uniqueness of a
periodic solution of the system mentioned which means an
existence of a closed orbit of two-body problem. In this way,
we show that the Bohr-Sommerfeld stationary states (cf. [31],
[32]) are rather implicated by the classical electrodynamics
than contradict it.

Here we use the technique introduced in [33], [34] and
obtain a system of eight equations of motion with new form
of the radiation terms:
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Main results are given in Section 2. Subsection 2.1 is
devoted to the strict mathematical formulation of the original
Dirac’s assumptions. In fact, we compare the relative and
absolute times assuming that the past and future instants
depend only on the present instant. In Subsection 2.2 we
show that the 4-th equation is a consequence of the first three
ones and the 8-th equation is a consequence of the 5-th, 6-th
and 7-th ones. So we obtain a system of six equations for six
unknown functions — the velocities of the moving particles.
This system is of neutral type with respect to the unknown
velocities with both retarded and advanced arguments
depending on the unknown trajectories.

Section 3 is Conclusion.

Some cumbersome calculations
Supplement 1 and Supplement 2.

are separated in

2. Main Results

2.1. Derivation of Equations of Motion for Two-Body
Problem with New Dirac Radiation Term

The considerations are in the Minkowski’s space [3].
Roman suffixes run over 1, 2, 3, 4 while Greek — 1, 2, 3 with
Einstein summation convention. We use denotations from

[1]. By <,> 4 we denote the dot product in the Minkowski

space, and by <,> — the dot product in three-dimensional
Euclidean subspace. The space-time coordinates of the

moving particles are (xl(p)(t),xép)(t),xgp)(t),xip) = ict) ,
(»=1,2). Quantities relating to the particles are denoted in
the following way: Lp —world lines; 7, — proper masses;

€, — charges. The components of unit tangent vectors to

world lines are
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are velocities of the moving particles. The components of the
accelerations are
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Let e, be acharge describing any curve L; in space-time
(cf. [1]). Let A, be any event and let 4; be an intersection of

L, with the null-cone drawn into the past from 4, Let l,fl)

be the unit tangent vector to L; at 4;, and let §r(21) be the

null-vector 4,4,. Then, by hypothesis from [1], the field at 4,
due to L, is given by the retarded potential 4-vector

®
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and the corresponding electromagnetic tensor is
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is an isotropic vector, i.e. it lies on the light-cone [1]. The
world-line L, of the charge e, , passing through 4, satisfies
the equations of motion
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We have to add however the radiation field caused by the
particle itself. Then equations of motion for the second
particle are the following four ones:

di?

ds,
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If we interchange the roles of the two world-lines we have
the following equations of motion for the first particle:

diV e
DS (BD 20 AN @

m
1 n
ds, ¢

or

A2’ _ee T ooy /0 a2 a2/ ,0) p)
ds,  mc? [P" </1 S >4 e </1 - >4J
®)

€ (Drad 4 (1)
+—=F, Ay

mc

where

7 :_</1<2)/1i()12>>3 1+<§<12),%(:)>
’ 4
. 1 : di?
< 20, §<lz>>4 ds,

So we obtain eight equations of motion for two-body
problem with radiation terms:
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(pg)=(12),(21)(k =1,2,3,4).

We recall that derivation of the radiation term is based on
the physical assumptions from [2].

Consider a charge e, (p=1,2) describing any curve

L, in the space-time. Let
A, (57 (0,57 (0), %47 (1), ict)
be any event,
N \4 \4 A\ A\ \Y4
AP (1), 57 (1), 57 (1), det,), tp <t
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be the intersection of Lp with the null-cone drawn into the
future from Ap.

The components of the velocity (tangent) vector to the

world-line L, at AP are
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Similarly the components of the velocity (tangent) vector

to the world-line L, at AP are
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In accordance with Dirac assumptions [2] the radiation term is defined as a half of the difference between both retarded and

advanced potentials, that is,
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So in view of (3) we obtain the following eight equations:
d /Lgp) %

e
(@) [ 2(p) £(p)\ _ £(pq) [ 7(p) plq) p (p)rad 4(p)
ds, m, c? [P <l o > Sk <;L P >4J+ 7 E A

mpc

or

dﬂ(p) ee 62 aAy(,p) ret aA,Ep) ret aAr(lp) adv aA’Ep) adv
] [Pkm <;L(p>,§(pq>>4 g </1“’),P(q)>J+ » _ _ -

dsp m,c 2mpcz axl((P) ret ax’(lp) ret axl(cp) adv axflp) adv
(k=1,2,3,4), (pg)=,(12), (21)).

Now follow [33] and [34] we obtain

» ézu(tpq) ﬁ(p),/ﬂt(q) _ﬂ;q) ﬂ(p)’é(pq) @)
dla — ePeq < >4 < >4 <| 1+ da ’é;(pq) +
4

ds, mpc2 </1(q)’§(pq)>j ds,
1 dﬂ(q) d;t(q)
+ ; o </1(P)’é:(pq)>4 _ éépq) 1(}7),
</1(q),§<pq>> ds, ds, [,

N e F(p)» (AP A0y 30 g0 a0y [ <d/1(p)r f(p)r> }r 1 . (6pa)
l(p)r é:(p)r ds ) <1(p)r,é:(l7)r>i

2
2m,c p

r 2 a a a a
[‘“( (o gy g<p>r<ﬂ<p> 4 > ] o F;’” (AP AP DU,
o ’ 2 (Pla gp)ay3
ds, ds, [, 2m,c (A gy,

r

o 142 NN 1 | 2" (& 2wy, _gral g GAT i
ds, > ) </1(p)a’§(p)a>i ds, ds, )

(@ =1,2,3),(p,q) =(2,1),(1,2)




124 Vasil G. Angelov: Two-Body Problem of Classical Electrodynamics
with Radiation Terms-Derivation of Equations (I)

diip) B e.e, é’ipq)(ﬂ(p),l(q)h —liq)</1(p),"§(pq)>4 | 1+ dﬂ' é:(pq) + 1

= 1 —_—— X
ds, m,c’ < 2@, §<pq)>i ds, ) AD,8P0N
2 r r r r

y d/uq) <A(P) é‘”"”) §<pq) /1(17) a9 N e, ﬁp) </1(P) 2@ Yy A(p) <§(p) /1(p)>

ds, ’ ds, [, ]| 2m,’ (AP EDIry3
SIPrCC R - { qgor gy, PG AN o

dsret 4 </’t([7)"’§(17)r>‘2‘ dsret dsret 4
e; é:(gp)a </1(p) l(p)ll) ﬂ(p)a é(p)a ﬂ(ﬁ)) . éz(p)a da e . 1
2mp02 <;L(p)a é:(P)a> > dsadv <l(p)a’§(p)a>i
x| (P 20, 2 {/1(1’) dA > )
dSadv dSadv 4

(p.q)=(2,1),(1,2). (6.p.4)

2.2. The Fourth Equation Is a Consequence of the First Three Ones
The system (S.p. & ), (S.p.4) obtained in Supplement 1 can be rewritten as (ua t)=du,(t)/ dt)
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Proceeding as in [30], [34] we multiply (7.p.cx) by u,(¢), summing up in ¢ and dividing into ¢* we obtain (7.p.4) .

In other words the fourth equation is a consequence of the first three ones and the eighth equation is a consequence of the
previous three ones. In this way we obtain 6 equations for 6 unknown functions.

The system from Supplement 2 can be written in the following form (a =1, 2,3) ; (pg)=(12),(21):
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We make the following:

Assumption (C): All velocities satisfy the inequalities
‘ua"’)(z)‘ < <u(”),u<”)> <c<c

and then ¢ — <u(” ),u(” )> > -2 >0. Therefore, the determinant of the above system is & p = c/ Ai >0 and
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consequently we reach the system:
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3. Conclusions

Here we introduce a unified approach to derive two-body problem with radiation terms. The system obtained is of neutral
type containing both retarded and advanced arguments. The unknown functions are velocities of the moving particles. The
deviating arguments depend on the unknown trajectories. We would like to point that we follow physical reasoning due to
Dirac [2] which leads to assumption

D7 (1) =tV () = 7 = const.

But with accordance of special relativity theory we have to consider radiation time in the form 7 =7y\1-/f * where

B=c/c<l.Inviewof 7,=r,/c~9,1.10**sec and 7—>0 as B —>1 then the parameter 7 should be consider as

an infinitely small parameter. Extending the technique from [30] and [34] we replace the usually accepted second order
Dirac’s system of ordinary differential equations by a first order system of neutral equations with both retarded and advanced

arguments.
We would like to comment our basic assumption (C): [<u(” ) u'? )> <c¢ <c (cf. also [30]). In the Newton theory — the
speed of propagation of the interaction is oo, but anybody cannot reach this speed oo . Here the role of oo is played by c.

Supplement 1

In 2.1 we have obtained system (6.p. @ ), (6.p.4). In order to solve it we have to transform it in a suitable form. First of all
we have to find a relation between the relativistic and absolute time. Indeed, following [19], [33], and [34] we assume that
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We have to find relations between the derivatives at past, present and future instants. Indeed, extending reasoning from
[19], differentiating the relations

3
t—t,, =%\/Z[x;p)(t)—x;q)(tpq):|2

r=l1

and solving with respect to we obtain
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q

) 2
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(q) g(pa)y _ .2
U, £y~
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<§ > d > ' pq 2 + 4 <u 5u > >
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In a similar way we differentiate

v 1 3 Vv 2
t—t, :—\/Z [x;")(t) - x;p)(tp)}
C

r=l

\' \
with respectto f, (considering ¢ =¢(¢,)) and obtain

3
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and similarly
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Further on we have
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dlip)r ~ iCD(p)r <u(P) (f _ T(P)V ),Z/.l(p) (t _ z_(p)r)>

b

4
S e Ay
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Substituting the expressions obtained we reach the system
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