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Abstract  The power-law dependence of correlation functions at low energies is what clearly distinguishes the 
Tomonaga-Luttinger (TL) liquid and the Fermi liquid (FL). The correlation function critical exponent for the FL is usually 
fixed to an integer, while that of the TL liquid varies continuously. We calculate the nature of power-law dependence in the 
charge, spin and electron correlation functions for the TL liquid at both zero and small magnetic fields. In particular, our 
approach centres on the Bethe Ansatz and conformal field theory (CFT). This is important since the concept of CFT relates 
critical exponents of various correlation functions with the finite-size corrections to the energy spectrum. Our findings 
show that increase in the particle density nc, and external magnetic field B, increases the value of the critical exponents 
while increase in the interaction strength u, decreases the value of the critical exponents. 
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1. Introduction 
In condensed matter physics, the Tomonaga-Luttinger 

(TL) liquid [1-3] has received huge interest because of its 
role in replacing the properties of the Fermi liquid (FL) in 
one-dimension. The most significant behaviour of the TL 
liquid is the unusual power-law dependence [4] appearing in 
various correlation functions at low energies. For instance, 
the charge, spin and electron correlation functions between 
two positions x  and x′  shows a power-law dependence in 
the long-distance region, where the critical exponent changes 
continuously depending on the strength of interaction 
between particles and spin dimension. This is quite different 
from the FL behaviour where the critical exponent is fixed to 
an integer. The typical FL theory in based on a quasi-particle 
picture breaks down in one dimension due to large quantum 
fluctuations, and therefore the TL liquid governed by 
collective excitations of spin and charge takes over the role 
of FL in one dimension [5]. The charge and spin fluctuations 
scatter with different velocities and the correlations between 
excitations are unusual and appears as interaction dependent 
power-laws in physical quantities [6]. The concept of TL 
liquid coined by Haldane [7] to describe general low-energy 
properties of gapless one-dimensional (1D) systems and to 
emphasize that an asymptotic description can be based on the 
TL liquid in much the same way as the FL theory in 
three-dimension is based on the Fermi gas, makes it clear  
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that the TL liquid properties governs a large class of 
universal lattice models in one dimension, such as the 1D 
Hubbard model and t-J model [8]. 

Conformal field theory which has important applications 
in string theory, statistical mechanics and condensed matter 
physics provides a general method for calculating correlation 
functions of interest. It relates the critical exponents of the 
correlation functions with finite-size corrections to the 
energy spectrum [9]. The dressed charge matrix is the basic 
tool used to determine the critical exponents from the 
finite-size correction. In this study, the CFT technique will 
be used to calculate the power-law dependence of the 
correlation functions and evaluate the nature of the critical 
exponents of the highly correlated 1D repulsive Hubbard 
model, as an example of a TL liquid at zero field and small 
magnetic field.   

2. Finite-Size Scaling in Conformal Field 
Theory 

The conformal dimensions will be obtained from the 
Hamiltonian of the 1D Hubbard model, defined by [10] 
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( )†
, ,j jc cσ σ                     (2) 

is creation (annihilation) operator with electron spin σ at site 
j and 

†
, , ,j j jn c cσ σ σ=               (3) 

is the number operator. u is the on-site Coulomb repulsion, μ 
is the chemical potential and h is the external magnetic field. 
The hopping integral t=1.  

Eqn. (1) has been solved exactly using the Bethe Ansatz 
by Lieb and Wu [11]. The wave function of the chain with 
N  sites can be written in terms of 

cN N N↑ ↓= +                  (4) 

electrons, where N↑ and N↓ are the number of electrons with 
spin up and down, and Ns =N↓ down spins are characterized 
by the momenta kj of holons and rapidities λα of spinons. 
This leads to the Bethe Ansatz equations 
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with quantum number Ij and Jα as integers or half-odd integer, 
depending on the parities of the numbers of down and up 
spins, respectively 
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The state corresponding to the solution of Eqns. (5) and (6) 
has energy and momentum given by [12, 13] 
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To leading order in 1/N the energy and momentum of the 
excitations can be written in the form [14] 

, , 0( , , )

2 1  
12

2 1 1  
12

c c s c s

c c c c c

s s s s s

E N D N E

v N N
N

v N N O
N N

π

π

±

+ − + −

+ − + −

∆ −

 = ∆ + ∆ + + − 
 
   + ∆ + ∆ + + − +   
   

(10) 

( )
( )

, , 0

, , ,

( , , )

2    

2    

1    2 ( ) 2

c c s c s

c c c c

s s s s

c sF F F

P N D N P

N N
N

N N
N

D k k D k O
N

π

π

±

+ − + −

+ − + −

↑ ↓ ↓

∆ −

= ∆ − ∆ + −

+ ∆ − ∆ + −

 + + + +  
 

(11) 

Where the conformal dimensions are given by 
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The Dc and Ds takes integer or half-odd integer values and 
Z  is the dressed charge matrix defined by 
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The elements of the dressed charge matrix (14) are given 
by the coupled integral equations  
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Where the kernel is defined as 
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It is well known that the CFT expressions for correlation 
function of a primary operator [11] contains factors from 
holons and spinons, given by 
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Where ΟΔ
± is the field operator, kF,↑ and kF,↓ are the Fermi 

momenta for electrons with spin up and down, respectively. 
vc and vs are the Fermi velocities of charge and spin density 
waves andɑk are constant coefficients. 

3. Power-Law Decay of the Correlation 
Functions 

In this section we proceed to calculate the charge, spin and 
electron correlation functions at zero magnetic field and 
small magnetic field for the 1D Hubbard model. 

3.1. Zero Magnetic Field 
At zero magnetic field the ground state of the Hubbard 

model is antiferromagnetic, and the dressed charge matrix 
Z  takes the form 
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Using Eqn. (21) on (22), we obtain 
1

02
det Z ( )kξ=             (23) 

Using Eqn. (21) on Eqns. (12) and (13), we obtain the 
consequence of the dressed charge matrix on the conformal 
dimensions as  
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Therefore, the correlation functions are obtained as 
follows. 

(i)  The power-law decay for the charge density 
correlatororiginates from the quantum numbers (Dc, 
Ds) = (0, 1), (1, 0), (1, -1), ΔNc=ΔNs=0 and N±

c,s=0. 
The equivalent conformal dimensions to these set of 
quantum numbers are obtained as 
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It is well known that at vanishing magnetic field  

, , FF Fk k k↑ ↓= ≡               (33) 

Expressing the critical exponents of the correlator as 
function of  
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Eqn. (32) becomes 

( )

2
1

4

4
2

  ( , ) const

                            

F

F

ik x

c s
ik x

c

a eN x t
x iv t x iv t

a e
x iv t

θ

θ

−

−

≈ +
+ +

+
+

   (35) 

The critical exponent θ changes continuously with change 
in interaction strength. 
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(ii)  The power-law decay for the transverse spin 
correlatororiginates from the quantum numbers (Dc, 
Ds) = (1/2, 0), (-3/2, 1), and (-5/2, 1), ΔNc=0, ΔNs=1 
and N±

c,s=0. The equivalent conformal dimensions 
are   
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given by 
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The spin correlator decays in powers of θ and the critical 
exponent θ changes continuously as the interaction strength 
u, changes. 

(iii)  Power-law decay for the electron correlator with spin 
up originates from the quantum numbers (Dc, Ds) = 
(-1/2, 1/2), (-3/2, 3/2), ΔNc=1, ΔNs=0 and N±

c,s=0. 
The equivalent conformal dimensions are 
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The electron correlation function is then obtained as 
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Here the electron correlator decays as functions of α for 
contributions from kF, ↑ and β for contributions from 3kF, ↑. 
The critical exponents 
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change continuously as θ also changes with change in the 
interaction strength u. 

3.2. The Limit of Small Magnetic Field 

Solving the dressed charge matrix Eqns. (15) to (18) for 
small magnetic field with the Wiener-Hopf technique gives 
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Where B is an external field, Bc is the critical field u is the 
interacting strength and nc is the particle density. 

Using Eqns. (54) to (57) on Eqns. (12) and (13), we obtain 
the magnetic field dependence of the conformal dimensions 
as  
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Using Eqn. (58) and (59), we proceed to calculate the 
power-law dependence for the correlation functions in the 

presence of small magnetic field. 
(i) The power-law decay for the charge density correlator. 

The conformal dimensions here are obtained as 
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Where 
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Here, the charge density correlator decays as functions of 
the critical exponents given in Eqns. (68) to (72).It can be 
seen that the critical exponents has logarithmic dependence 
and also varies as functions of interaction strength u, electron 
density nc and external magnetic field. 

(ii) The power-law decay for the transverse spin correlator. 
The equivalent conformal dimensions are   
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for (Dc, Ds) = (-5/2, 1). 
Therefore, the transverse spin correlation function is given 

by 
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Where 
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The critical exponents Eqns. (80) to (85) change 
continuously as functions of interaction strength u, electron 
density nc, and external magnetic field B. From the critical 
exponents, it is obvious that the spin correlation function also 
has logarithmic dependence.  

(iii) The power-law decay for the electron correlator with 
spin up. The equivalent conformal dimensions here are 
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for Dc, Ds) = (-3/2, 3/2). 
Then, the electron correlation function ( , )G x t↑  is 

given by 
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The electron correlator, ( , )G x t↑  
decays in powers of 

the critical exponents Eqns. (91) to (94), which varies 
continuously with change in interaction strength u, electron 
density nc, and external magnetic field. 

4. Conclusions 
We have calculated the nature of power-law dependence 

of correlation functions for the TL liquid and discovered that 
the correlation functions decay as powers of varying critical 
exponents. It is generally believed that, the physics of 
power-law behaviour of most correlated 1D electron systems, 
differentiates the TL liquid from the three dimensional 
electron systems governed by the FL. For the 1D Hubbard 
model (Section 3), at zero magnetic field, the charge, spin 
and electron correlation functions decay as power of the 
critical exponent θ , which varies with varying interaction 
strength u, while in the limit of small magnetic field, the 
charge, spin and electron correlation functions decay as 
powers of the critical exponents given by Eqns. (68) to (72), 
Eqns. (80) to (85) and Eqns. (91) to (94), respectively. The 
values of the critical exponents for small magnetic field, 
increase with increasing particle density nc, and magnetic 
field B, while increasing the interaction strength u, 
decreases the value of the critical exponents. Therefore, it is 
expected that our calculation will provide very useful 
insights in investigating how power-law behaviour affects 
other physical properties of interest in TL liquids. 
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