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Abstract The power-law dependence of correlation functions at low energies is what clearly distinguishes the
Tomonaga-Luttinger (TL) liquid and the Fermi liquid (FL). The correlation function critical exponent for the FL is usually
fixed to an integer, while that of the TL liquid varies continuously. We calculate the nature of power-law dependence in the
charge, spin and electron correlation functions for the TL liquid at both zero and small magnetic fields. In particular, our
approach centres on the Bethe Ansatz and conformal field theory (CFT). This is important since the concept of CFT relates
critical exponents of various correlation functions with the finite-size corrections to the energy spectrum. Our findings
show that increase in the particle density n., and external magnetic field B, increases the value of the critical exponents

while increase in the interaction strength u, decreases the value of the critical exponents.
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1. Introduction

In condensed matter physics, the Tomonaga-Luttinger
(TL) liquid [1-3] has received huge interest because of its
role in replacing the properties of the Fermi liquid (FL) in
one-dimension. The most significant behaviour of the TL
liquid is the unusual power-law dependence [4] appearing in
various correlation functions at low energies. For instance,
the charge, spin and electron correlation functions between

two positions X and X' shows a power-law dependence in
the long-distance region, where the critical exponent changes
continuously depending on the strength of interaction
between particles and spin dimension. This is quite different
from the FL behaviour where the critical exponent is fixed to
an integer. The typical FL theory in based on a quasi-particle
picture breaks down in one dimension due to large quantum
fluctuations, and therefore the TL liquid governed by
collective excitations of spin and charge takes over the role
of FL in one dimension [5]. The charge and spin fluctuations
scatter with different velocities and the correlations between
excitations are unusual and appears as interaction dependent
power-laws in physical quantities [6]. The concept of TL
liquid coined by Haldane [7] to describe general low-energy
properties of gapless one-dimensional (1D) systems and to
emphasize that an asymptotic description can be based on the
TL liquid in much the same way as the FL theory in
three-dimension is based on the Fermi gas, makes it clear
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that the TL liquid properties governs a large class of
universal lattice models in one dimension, such as the 1D
Hubbard model and #-J model [8].

Conformal field theory which has important applications
in string theory, statistical mechanics and condensed matter
physics provides a general method for calculating correlation
functions of interest. It relates the critical exponents of the
correlation functions with finite-size corrections to the
energy spectrum [9]. The dressed charge matrix is the basic
tool used to determine the critical exponents from the
finite-size correction. In this study, the CFT technique will
be used to calculate the power-law dependence of the
correlation functions and evaluate the nature of the critical
exponents of the highly correlated 1D repulsive Hubbard
model, as an example of a TL liquid at zero field and small
magnetic field.

2. Finite-Size Scaling in Conformal Field
Theory

The conformal dimensions will be obtained from the
Hamiltonian of the 1D Hubbard model, defined by [10]

_ T T
H= Z(Cj+1,acj,o tCioCjto | T “Z”j,T”j,¢
j’o— j

_/‘Z(”]‘,T +”j,¢)_gZ(nj,T _nj,i)
J J

Where

)



International Journal of Theoretical and Mathematical Physics 2015, 5(1): 8-15 9

cly (c o ) 2)

is creation (annihilation) operator with electron spin o at site
j and
n. =ch _c. 3)
Jo J,0 7 J,0
is the number operator. u is the on-site Coulomb repulsion, u
is the chemical potential and /4 is the external magnetic field.
The hopping integral /=1.
Eqn. (1) has been solved exactly using the Bethe Ansatz
by Lieb and Wu [11]. The wave function of the chain with
N sites can be written in terms of

NCZNT+N¢ 4)

electrons, where N, and N| are the number of electrons with
spin up and down, and N, =N, down spins are characterized
by the momenta k; of holons and rapidities 4, of spinons.
This leads to the Bethe Ansatz equations

sink; — A4
1(—1 ﬂj )
p=1 u
z2ta _1[ —smkj
u
Ny Ay —A
=27rJa+Z2tan_l(a—'B]

= "
with quantum number /; and J,, as integers or half-odd integer,

depending on the parities of the numbers of down and up
spins, respectively

NS
Nk;=2z1;+7 2tan

(6)

I‘=%mod1 Ne =N, +1

j and J, =

mod1 (7)

The state corresponding to the solution of Eqns. (5) and (6)

has energy and momentum given by [12, 13]

NC
NC
E=—2Zcoskj + uN, +h(NS —7) (8)
j=1
A 2z
P=Yk; = 21 +ZJ ©)
Jj=1

To leading order in 1/N the energy and momentum of the
excitations can be written in the form [14]

E(Ah D Nc,s) EO
lj
12

(O]
27z
+2Wﬂ-vs (A; +A; + NS +N; —é}o(%j

+ + -
(A +A.+N,+N, (10)

P(AN,,D,,N,. s)—R)

2”(A+ A, + N7 —N;)
(11)
2”(A+ AT +NJ =N
+2D, (kg4 +kp )+ 2Dk | +0(%j

Where the conformal dimensions are given by

2
2Af:(zccpc Zs A]:detZZAN +Z, Dj +2N2(12)

2
2A§=(ZSSDS Ze A];IdetZZAN +Z, Dj +2N7(13)

The D, and D, takes integer or half-odd integer values and
Z is the dressed charge matrix defined by

Z:(ch ch}:(‘fcc(ko) §CS(/10)j (14)
Z z é:sc(k()) gss(ﬂ’o)

sc Ss
The elements of the dressed charge matrix (14) are given
by the coupled integral equations

fcc(k):l+i_|‘_ﬂ20d/1 K, (sink—2)&,(2) (15)

&)= [ dkcosk Ky (A-sink)&,. (k)
—ko
(16)
0 o ' '
g | A Ka (A= 2)E ()
& (k):Ljﬂ‘) dA K, (sink—2)E () (7
sc o ~J 1 KXy
fss(ﬂ)=1+ij.k2 dkcosk Kl(ﬁ—sink)fsc(k)
K0
(18)
% 1 ! !
_#J‘_ﬂodﬂ’ KZ(X’_X’ )(:Ecs(ﬂ')
Where the kernel is defined as
K (x)— - 5 (19)

ﬂ(nu) + X

It is well known that the CFT expressions for correlation
function of a primary operator [11] contains factors from
holons and spinons, given by



10 Nelson O. Nenuwe et al.:

ak (DC9DS) e

Power-Law Dependence of Correlaration Functions in the Tomonaga-Luttinger Liquid

—ZkaF,Tx e—Zi(DC +Dy )kF’¢x

2

<0Ai (t,x)OZi (0, 0)> ~

Where O,"is the field operator, kx;and kg are the Fermi
momenta for electrons with spin up and down, respectively.
v. and v, are the Fermi velocities of charge and spin density
waves anda; are constant coefficients.

3. Power-Law Decay of the Correlation
Functions

In this section we proceed to calculate the charge, spin and
electron correlation functions at zero magnetic field and
small magnetic field for the 1D Hubbard model.

3.1. Zero Magnetic Field

At zero magnetic field the ground state of the Hubbard
model is antiferromagnetic, and the dressed charge matrix

Z takes the form

$(k) 0
“lsetn) £ .

2 2

and

(det 2)* =(22.+ 23 (25 + 72 )

(22)
- (chZsc + chZss )2
Using Eqn. (21) on (22), we obtain
det Z=—-&(ko) (23)

Using Eqn. (21) on Eqns. (12) and (13), we obtain the
consequence of the dressed charge matrix on the conformal
dimensions as

24

2
2AY :(§(DC +%Ds)i%ANC) +2N*

oAt =1(D +(AN. —LAN )| 42N @)
s — 2\ s —( s c) + s

Therefore, the correlation functions are obtained as
follows.

(1) The power-law decay for the charge density
correlatororiginates from the quantum numbers (D,,
Dy) = (0, 1), (1, 0), (1, -1), AN,=AN,=0 and N*.,=0.
The equivalent conformal dimensions to these set of
quantum numbers are obtained as

(26)

c

1., 1,
AT =—E2 QAT =—
c=7% i

= - (0
DDy (x— ivct)zAz (x+ ivct)ZAC (x— ivst)ZA; (x+ ivst)zAs

2AT =2, 2A; =0 27)

for (D,, Dy) = (0, 1), with
QAT =E% 2A7 = &2 (28)
2AT =0, 2A; =0 29)

for (D, Dy) = (1, 0), and

1., I
2N =Z§ , 24, _Zg (30)
1 _ 1

2AT = 24, = 31)

for (D, D) = (1, -1). Therefore, the correlation function is
obtained as

ik | x

a Fi

N(x,t) = const + )
|x + ivctr: ? |x + ivst|
—2ikF’¢x

a, e
+ 2

(32)
|x + ivct|§2/2 |x + ivst|

=2i(kp p+kp |)x
e ) ;

a
!

2
. 2
|x + zvct| ¢
It is well known that at vanishing magnetic field
kg =kpy=kp (33)

Expressing the critical exponents of the correlator as
function of

0 =2&2 (34)
Eqn. (32) becomes
—2ikpx
a, e
N(x,t) =~ const + 1 )
|x + ivct| |x + ivst|

4ik (35)

az e— IKpX

|x + ivct|0

The critical exponent # changes continuously with change
in interaction strength.
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(i) The power-law decay for the transverse spin
correlatororiginates from the quantum numbers (D,,
Dy)=(1/2,0), (-3/2, 1), and (-5/2, 1), AN.=0, AN,=1
and N*,,=0. The equivalent conformal dimensions

are
+ 1 -1

2A; :Z(’E , 2A, :Zg (36)
207 =4, 247 =1 37)

for (D., D) = (1/2, 0), with

2 - 2

QAT =E7, 2A, =€ (38)
2AT =2, 2A; =0 (39)

for (D, Dy) =(-3/2, 1), and
2N =4E%, 2A7 =482 (40)
2AT =2, 2A;=0 (41)

for (D, Dy) = (-5/2, 1). Therefore, the spin correlator is then
given by

a eszFx

x(x,t) = const +
|x + ivct|(9/4) |x + ivsz‘|

a, e4lkFx

42
|x+ivct|0 (x—ivsz‘)2 “

a3 e—81kpx

|x + ivct|49 (x - ivst)z

The spin correlator decays in powers of 6 and the critical
exponent 6 changes continuously as the interaction strength
u, changes.

(iii) Power-law decay for the electron correlator with spin
up originates from the quantum numbers (D,, D;) =
(-1/2, 1/2), (-3/2, 3/2), AN,=1, AN,=0 and N*,,=0.
The equivalent conformal dimensions are

2
20 8 2&728° 2

(43)
1 o1
2\6 16 72
By using
+l=l+ﬁ (44)
2 6 16
on Eqn. (43), we obtain
1
2AF =L, 2AT =—(a+1 45
c=7 c 2( ) (43)

_ 1
2AT =0, 2A; = (46)
for (D., Dy) = (-1/2, 1/2), and for (D, Dy) = (-3/2, 3/2), we
obtain
1(1 96 _3
ANF=—| —+ 232 47
©77 (9 16 " 2) “7
Using
3 1 96
+—=—+— 48
P 2 6 16 49
on (47), we obtain
ZAZ:E, 2A;:l(ﬂ+3) (49)
2 2
L1 B
20y =2, 26 =2 (50)
The electron correlation function is then obtained as
ik
0 @ ¢ 1
G (xt)~ 2, 2.2a2
\/(x+ivct)(x+ vt) (x“+vt7)
(51)

3iky rx
e F1 1

(x+iv 1) \/(x + ivct)3 (x—ivg) (x + Vgtz)ﬁ/z

Here the electron correlator decays as functions of a for
contributions from kF, 1 and B for contributions from 3kF, 1.
The critical exponents

_|_

1 6 1
=—+——— and (52)

6 16 2

1 99 3
=—+—-— 53
o 0 16 2 9

change continuously as € also changes with change in the
interaction strength u.

3.2. The Limit of Small Magnetic Field

Solving the dressed charge matrix Eqns. (15) to (18) for
small magnetic field with the Wiener-Hopf technique gives

2
2n,. o 4n.( B
é:cc(k())—l‘F » ln2 EZM(BCJ
5 (54)
B] [ln(Bo/B)]z
Ses (o) = 2—nC\/5 (EJ +0 5 2 (55)
u B, B,[In(B,/B)]
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1 nln2 4 (B presence of small magnetic field.
C
Sse (ko) = E + 1- _ZEB_j (i) The power-law decay for the charge density correlator.
a ¢ (56) The conformal dimensions here are obtained as
2|\ Bl B opt L, mn2 2 (B 4nIn2( B
7>\ B, B.In(B,/B) T4 w2\ B ) 2% \B.
(60)
2n, B 4 ( B 1 nIn2 2 B\ 4n.In2( B
gss(%) \/—l: (1__2[_J]:| ZAC =—+-C€ 5| CZ -
=\ B, 7 4 u /A Bc Tu B c
57
1 1 B 1 1 2n,( B
+—= +0 2A+ =—+4 + ¢l —
J2 4In(B,/B) {111(30 /3)2} * 2 4In(By/B) u \ B,
61
Where B is an external field, B, is the critical field u is the | 1 2n.( B D
interacting strength and n. is the particle density. 2A = E + BB +—= B_
Using Eqns. (54) to (57) on Eqns. (12) and (13), we obtain ( 0/ ) u c

the magnetic field dependence of the conformal dimensions ¢, (D, D) = (0, 1), with
as

1 In2 2 (B 4n.In2( B
. . . 5 2A::_+ncn 22, nczn B
2A° =| D +—D —AN 4 u T B Tu B
C c 2 2 (62)
_ 1 nln2 2 ( B 4nn2( B
4 (B 1 1 DA =—+ | el =
7(3—}”{’%*5 sizANc) T4 (BJ 7u (BJ
c
2 1 B
4n,In2 1 At =— 4+ =
+ cu !(DJEDSJ - ] S 2 d4n BO/B [Bj
(58) (63)
_ 1 B
4nn2( B 1 1 2A Sl
ey (B— Ds(DﬁgD gAch 72 din BO/B [BJ
C
for (D, Dy) =(1, -1), and
i4nc [EJ(lANC_ANSJ 4n 1n2
u \ B, )\2 2N, =1+—¢
u
64
D, +1D lAN +2N* _ 4n, In2 (64
2 2 2A; =1+
u
L1 1 2 N _
2 =5(ANS—5ANciDs] 247 =0, 247=0 (65)
2 (B | for (D,, Dy) = (1, 0). The correlation function then decay as
+_2(B_jANC(ANS_EANCiDSJ N(x,t) =~ const
1 ( 1 ) +
—| AN, —=AN (59) T P
—2ik
A (BEJ(DCJF%DSJ(ANS_%ANCJ—FDS) + a e T (60)
u
¢ . (AT +2A0) . |2AT+2AY)
andn2(BY (L R A
T2 | B, ) e AN T e R + ol 2k ek )

Using Eqn. (58) and (59), we proceed to calculate the

(AL +2A7)
power-law dependence for the correlation functions in the |

|x +iv.t
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—2iky | x
a e F
N(x,t) = const +

|x + ivctrgc1 |x + ivst|9s1

—2ik
a, e il 6N
|x + l'vct|6"’2 |x + ivst|6’s2
a e_Zi(kF,T+kF,¢)x
|x+ivct|gc3
Where
1 2n.In2 4 8nIn2)\ B
6'01:5+ “ —(—2+CTJ— (68)
u T T u ¢
1 2n.In2 4 8nIn2)\ B
ch :54' e +(—2+nch_ (69)
u T Tu ¢
8n,In2
O0;=2+ T (70)
6, =1+ ! +4nc B (71)
2In(By/B) u \ B.
4
032:14' 1 - nc ﬁ (72)
2In(By/B) u |\ B,

Here, the charge density correlator decays as functions of
the critical exponents given in Eqns. (68) to (72).It can be
seen that the critical exponents has logarithmic dependence
and also varies as functions of interaction strength u, electron
density n. and external magnetic field.

(i1) The power-law decay for the transverse spin correlator.

The equivalent conformal dimensions are

2AF =l+ncln2+2nc B
4 u u \ B

c

(73)

2A;:l+nln2 2n( J
4 u
b1 1 [ B
) 41n(BO/B u \ B,
(74)
2A; = 1 : | B
2 4ln(BO/B u \ B.
for (D, D) = (1/2, 0), with
2A2=1+4ncln2+(i2 8n, ln2 n, Jﬁ
u V4 BC
(75)

2AT =1+

C

4n.In2 ( 4 8n, ln2 4n, j B
+ —2+ —
u T B

2AY =

(76)

for (D, D) =(-3/2, 1), and

2Aj:4+8(%+n—cj B\, 1on 1+L2£
T u Bc u T Bc
(77
2A;:4+8 L_n_c £ +16ncln2 1+L£
7> u )\ B, u 7z’ B,
PTG LU A J YN (78)
u \ B,

for (D, D) =(-5/2, 1).
Therefore, the transverse spin correlation function is given
by

ik Atk
el( FAThE L)X

2060~ —
, |x + ivct|9”1 |x + ivSt|'9S1

i(SkF’¢+2ij¢)x
a, e - - (79)
|x+ivct| 2 |x+ivst| 52
a, ei(SkF,T+4kF,¢)x
|x + ivct|903 |x + ivsz‘rgs3
Where
1 2n.In2
0.=—+ 2T (80)
2 u
0,=2+ 8n.In2 +%(1+ 2n.In2\ B &
u T u c
2n.In2 2n,In2
€c3 :8+M+[%+%J16_B (82)
u 7 Tou ¢
0 =1-— L
1 2in(B,/B) (83)
8n, B
Op =2 ——— (84)
’ u B,
l6n, B
O0=2- uCB_ (85)

The critical exponents Eqns. (80) to (85) change
continuously as functions of interaction strength u, electron
density n., and external magnetic field B. From the critical
exponents, it is obvious that the spin correlation function also
has logarithmic dependence.

(iii) The power-law decay for the electron correlator with
spin up. The equivalent conformal dimensions here are
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ZA::L_MCIHZ_ 1 31n2+l n. | B
16 4y 27[2 7[2 2)u Bc
(86)
2A;:i_3ncln2+ 3 (2 33n. ) B
16 4u 272'2 72'2 2)u Bc
2A7 =0
(87)
oL (2 [y an2)n ) B
2 72'2 7[2 u Bc
for (D,, D;) = (-1/2, 1/2), and
20T = 1 Sncln2 151n2_l nc B
16 4u B,
(88)
27 = 25+5n 1n2 15 1n2 5 ﬁ
16  4u B,
2A;:l+;+ i_(3+4ln2jn_c ﬁ
2 2In(By/B) \x? z* )u )B,
(89)

A;=2+;_ i+(6_81n2j”_c B
2In(B,/B) \ z* 7> )Ju )B,

for D,, D) = (-3/2,3/2).
Then, the electron correlation function Gip(x,1)

given by
ikF X
a e
GT (x,t) = 1
|x+iv l‘|9€1 |x+iv t|6’s1
C S
3k (90)
1 X
a, e F
. 7 . 0
|x+zvct| c2 |x+zvst| 52
Where
5 3n.lIn2 1 In2 2n.\ B
On=c———+ 5+ —+l|—|= 0O
8 2u V4 T u Bc

8 2u T /s

1 2 4In2 B
Qsl =—— —2+ 1——2 —
2 T VA u Bc

2 —£+;_ i.}. 9_@ n_c ﬁ 94
272 In(By/B) \ 22 2 )u )8,

The electron correlator, GT (x,1) decays in powers of

g, =3 o2 (iz + (—911122 + 1] 21, jBﬁ (92)

93)

the critical exponents Eqns. (91) to (94), which varies
continuously with change in interaction strength u, electron
density 7., and external magnetic field.

Power-Law Dependence of Correlaration Functions in the Tomonaga-Luttinger Liquid

4. Conclusions

We have calculated the nature of power-law dependence
of correlation functions for the TL liquid and discovered that
the correlation functions decay as powers of varying critical
exponents. It is generally believed that, the physics of
power-law behaviour of most correlated 1D electron systems,
differentiates the TL liquid from the three dimensional
electron systems governed by the FL. For the 1D Hubbard
model (Section 3), at zero magnetic field, the charge, spin
and electron correlation functions decay as power of the
critical exponent @, which varies with varying interaction
strength u, while in the limit of small magnetic field, the
charge, spin and electron correlation functions decay as
powers of the critical exponents given by Eqns. (68) to (72),
Eqns. (80) to (85) and Eqns. (91) to (94), respectively. The
values of the critical exponents for small magnetic field,
increase with increasing particle density n., and magnetic
field B, while increasing the interaction strength u,
decreases the value of the critical exponents. Therefore, it is
expected that our calculation will provide very useful
insights in investigating how power-law behaviour affects
other physical properties of interest in TL liquids.
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