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Abstract  Switching systems are very  common in  various engineering fields (e.g. hydraulic systems with valves,.., electric 
systems with  diodes, relays,…, mechanical systems with clutches...). Such systems are a particu lar case of hybrid systems. 
These systems are characterized by a Finite State Automaton (FSA) and a set of dynamic systems, each one corresponding to 
a state of the FSA. The change of states can be either controlled or autonomous. The aim of this work is to investigate the 
structural controllability  for controlled  switching linear systems modelled by bond graph. Several concepts appeared in the 
last decade addressing the controllability problem of these systems: controllable sublanguage concept[1], hybrid 
controllability concept[2], between-block controllab ility concept[3]. Controlled Switching Linear Systems (CSLS) on which 
we focus in this work belong to the hybrid controllability concept as they address a reachability problem of hybrid states. In 
the other hand, the bond graph concept is an alternate representation of physical systems. Some recent works permit to 
highlight structural properties. In[13], the structural controllability property is studied using simple causal manipulat ions on 
the bond graph model. The objective of this work is to extend these properties to CSLS. In  this work, the structural 
controllability of CSLS by means of algebraic and graphical conditions is discussed. First, formal representations of 
controllability subspaces are given for switched bond graph. They are calcu lated through causal manipulations. Second, these 
subspaces are used to propose structured state feedback matrices in the context of pole assignment by static state feedback. 
Third, a simple example is given to illustrate the previous results. The proposed method, based on a bond graph theoretic 
approach, assumes only the knowledge of the systems structure. This result can be implemented by classical bond graph 
theory algorithms. 
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1. Introduction 
A broad class of hybrid systems is composed of physical 

processes with switching devices. Such processes are called 
switching systems and are very common in various 
engineering fields (e.g. hydraulic systems with valves,.., 
electric systems with diodes, relays,…, mechanical systems 
with clutches...). These systems are characterized by a Fin ite 
State Automaton (FSA) and a set of dynamic systems, each 
one corresponding to a state of the FSA. The change of states 
can be either controlled or autonomous. Various researchers 
investigated this problem using the bond graph tool 
[1,2,3,4,5,6]. The ideal and the non-ideal approaches are 
used : 

- In the non-ideal approach, switches are modelled as 
resistive elements associated with modulated transformer. 
The modulation is done using a boolean variable.  

-  In  the  id ea l  app roa ch ,  s w i tch es  c o mmu tate  
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instantaneously. Each switch is modelled as a null source: 
effort source for a closed switch state, and flow source for an 
open one. This approach is used in this work. 

Lately, there have been a lot of studies on stability analysis 
and design[4]-[5]-[6]. (Liberzon and Morse,[5]) summarize 
three basic problems regarding stability and design of 
switched systems. They are: (i) stability for arbitrary 
switching sequences; (ii) stability for certain useful classes 
of switching sequences; (iii) construction of stabilizing 
switching sequences. For problem (i), finding conditions 
under which there exists a common Lyapunov Function 
forthe system is a typical approach[6]. For problem (ii), 
multip le Lyapunov functions method, an extension of 
classical Lyapunov theory, is the main tool[7]. For problem 
(iii), there are many results available[4]. 

Petterson and Lennartson in[8] show that the search for 
Lyapunov functions can be formulated as a linear matrix 
inequality (LMI) problem. Xu and Antsaklis in[9] give a 
necessary and sufficient condition for the asymptotic 
stabilizability of switched systems consisting of several 
second-order subsystems with unstable foci. If the condition 
holds, an asymptotically stabilizing switching law can be 
obtained. Hu, Xu, Antsaklis and Michel in[4] discuss the 
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robustness of this kind of stabilizing control laws. 
This paper is briefly outlined as follows: The second 

section formulates the problem. In section three the CSLS 
algebraic controllab ility is reviewed. In section four, an 
asymptotically stable state feedback design algorithm is 
derived for such systems. In section five, the structural 
controllability of these systems is discussed, for which, we 
calculate a formal representation of controllability subspaces 
of switched bond graph. It allows to propose in section six, 
the structure of feedback matrices for the pole assignment 
control problem, this for all modes. Graphical procedures are 
proposed. Section seven contains an illustrating example. 
Finally, the conclusion is provided in section 8. 

2. Problem Formulation 
Consider a CSLS[10], described by 

( ) ( ( )) ( ) ( ( )) ( )x t A t x t B t u tσ σ= +         (1) 

Where ( ) nx t R∈  is the state variable, ( ) mu t R∈  is the 
input variable, ( )tσ  is a piecewise constant switching 
function and ( , )i xσ  the hybrid state. According to values of 

( )tσ , there exists q configurations, { }1i qσ σ σ∈ 
. So

( ) n n
iA Rσ ×∈  and ( ) n m

iB Rσ ×∈ . 
If we consider this system in a part icular mode i, the 

equation (1) can be written as 
( ) ( ) ( )i ix t A x t B u t= +            (2) 

With ( )i iA A σ=  and ( )i iB B σ= , { }1, ,i q∈  . 
Remark 1 System (2) can be considered as a linear time 

invariant system (LTI). 
Assumptions 1 
1) We suppose that iA  and iB  matrices are constant on 

a time interval 0 0[ , )t t τ+ , where 0min >≥ ττ , and the 

constant minτ  is an arb itrarily s mall and independent of 
mode i . For instance, suppose that the dynamics in (1) are 
given by (2) over the finite time interval 1[ , )i it t + . At time 

1it +  the dynamic in interval 1 2[ , )i it t+ +  is given by 

( ) ( ) ( )j jx t A x t B u t= + .  
2) We assume that the state vector )(tx  does not jump 

discontinuously at 1it + . 
If we further assume that ( ) ( )iu t K x t=  then the 

following convenient representation of (2) is obtained 

)

)

1 0 1

1

,

,q q q

A x t t t
x

A x t t t


 




  −

∈

=

∈



  with i i i iA A B K= +    (3) 

We refer to systems (1) and (3) interchangeably as the 
switching systems 

3. Controllability of CSLS 
The controllability of (1) was defined: 
Definition 1[10] Given any pair of hybrid states, denoted 

as )( 0,0 xσ  and )( , qq xσ , respectively, if there exists a timed 

mode-switching set { }1 1( , , ) q
i i i itσ σ− =

 and a corresponding 

piecewise continuous-finite input signal )(tu , such that 
system (1) evolving under these two distinct inputs is 
reachable from )( 0,0 xσ  to )( , qq xσ  within a finite t ime 
interval, then the considered system (1) is controllable, 
otherwise, system (1) is uncontrollable. 

3.1. An Algebraic Sufficient Condition 

When system (1) has only one mode, the controllability 
can be analyzed through the controllability matrix (4). 

1[ ]ˆ nW B AB A B−= 
             (4) 

For the general case, a  controllab ility combined matrix 
CW  of system (1) is given by equation (5): 

1 1
1 2 1 1 1 1 1ˆ [ ] [ ]n n

C q q q qW W W W B A B A B B A B− −= =   

  (5) 
Theorem 1[10] The CSLS (1) with q  modes is 

controllable, if the controllability matrix CW  is of fu ll row 
rank. 

Remark 2  From this theorem, we can deduce that: 
1) The system (1) can be controllable, if there is only one 

controllable sub-system (mode).  
2) However, it is possible that no sub-system is 

controllable but that the system (1) is controllab le. 

4. Piecewise Constant Controller Design 
The controller design is based on placement of all poles of 

all modes to appropriate positions in the left hand side of the 
s-plane.   

In[11] the following lemma is proposed:  
Lemma 1[11] Given a controllable LTI system (A, B) in  

controller canonical form, i.e .,  

0 1 1

0 1 0
0

,
0 1 0

1n

A B

α α α −

   
   
   = =
   
   
− − −   

  



 

and a scalar h > 0, for any 0β > , there exists a constant 
state feedback u Kx=  such that  

[ ]exp ( ) exp( )A BK h hβ+ < −
 

    (6) 

This lemma can be extended to a more general case, which 
is the starting point to design the piecewise constant state 
feedback controller. 

Lemma 2 [12] Given a controllable LTI system ( , )A B  
and a scalar h > 0, for any 0β > , there exists a constant 
state feedback u Kx=  such that 

[ ]exp ( ) exp( ),A BK t t t hβ+ < − ∀ >        (7) 
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4.1. Asymptotic Stability 

Based on Lemma 2 and if each subsystem ( , )i iA B  is 
controllable, Xie and al in[12] gave the following theorem: 

Theorem 2 For the system (1), and for each subsystem 
( , )i iA B  there exists a state feedback iu K x=  such that the 
closed loop system ( ) ( ( )) ( ) ( ( )) ( ( )) ( )x t A t x t B t K t x tσ σ σ= + is 
asymptotically stable.  

Since each subsystem ( , )i iA B  is controllable, suppose: 
1

1 1 0det( ) ...n n
i nsI A s s sα α α−

−− = + + + + . Denote 

1 1

1 1

1
1[ ]

1

n n
i i i i i i

n

F A B A B B α

α α

 
 
 
 
 − −
 
 
 
 
 

− 

= + +

  



  

Then iF  is nonsingular.   
Using lemma 2 and theorem 2, an asymptotically stable 

state feedback controller design procedure can be 
constructed[12]. 

Procedure 1 For the system (1), for each subsystem 

( , )i iA B , a state feedback matrix iK  such that the 
closed-loop system is asymptotically  stable can be calculated 
as follows. 

1) Determine the nonsingular matrix iF  such that 

( , )i iA B  is in controller canonical form, where 

1
i i i iA F A F−= , 1

i i iB F B−= ; 

2) Calculate ( )11 lni i iF Fε −= − ; 

3) Select ,1iλ  such that 
2 2

,1 ,1exp( )( ) exp( )n
i i i in h nλ λ ε−+ ≤ , moreover, let 

, ,1 1i l i lλ λ= − + for 2, ,l n=  ; 

4) According to ,1 ,, ,i i nλ λ , calculate the state 

feedback matrix iK ; 

5) Let 1
i i iK K F −= . 

In the next  step structural controllability o f CSLS 
modelled by bond graph is studied. 

5. Bond Graph Approach 
The structure junction of a switching bond graph can be 

represented by figure 1[14]. Five fields model the 
components behaviour, 4 that belong to the standard bond 
graph formalis m: - source field  which produces energy, - 
detector field;  - R field  which dissipates it, - I and C field 
which can store it, and the Sw field that is added for 
switching components. This element (Sw) is made of the 
power variables imposed by the switches in the chosen 
configuration. 

Figure 1 represents the block d iagram that is deduced from 

the causal bond graph. 

 
Figure 1.  Structure junction 

The following key variables are used : 
- the state vector x(t) is composed of the energy variables 

on the bond connected to an element in integral causality (the 

momenta p f dt= ∫  on I e lements and charges q edt= ∫  

on C elements), and the complementary state vector z(t) is 
composed of power variables (the efforts e on C elements 
and flows f on I e lements);   

- ( )inD t  and ( )oD t  represent the variables going out 
of and into the R field;  

- the vector u(t) is composed of the sources;  

- ( )ini
T t  is composed of the zero valued variab les 

imposed by the switches in this configuration;  
- ( )oi

T t  is composed of the complementary variables in 
the switches;  

- the vector y(t) is composed of the continuous outputs. 
Assumptions 2 
To take into account the absence of discontinuities 

(Assumption 1), we suppose that there are no elements in 
derivative causality in the bond graph model in  integral 
causality, before and after commutation. 

Using this structure, the following equation is given[14] : 

11 13 14 15

13 33 34 35

14 34 44 45
i

i

i i i i

init i i i
o

init it i i
o

z
x S S S S

D
D S S S S

T
T S S S S

u

 
    
    = −    
    − −    

 



    (8) 

Let the constitutive law of the R  field be linear: 

in i oD L D= . iL  is a positive matrix, with 1

2

1/ 0
0
R

R
L

 
  
 

= . 

Let assume that 
1

33( )i
i i iH L I S L −= −  is an invertib le 

positive matrix. 
In a linear case, the law constitutive for the fields of 

storage I  and C  can be written : z Fx= . Where F is a  
symmetric positive definite matrix. 

Then the second row leads to 

13 35 34 i

it i i
in i i i inD H S Fx H S u H S T= − + +
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The third line of (8) g ives: 

14 34 13 45 34 35

44 34 34

( ) ( )

( )

i

i

it it it i it i
o i i

i it i
i in

T S S H S Fx S S H S u

S S H S T

= − + + −

+ −					
  (9)  

The substitution in the first line of (8) gives:  

11 13 13 15 13 35

14 13 34

( ) ( )

( )
i

i i it i i i
i i

i i i
i in

x S S H S Fx S S H S u

S S H S T

= − + +

+ −



				
   (10) 

Then, we have:  

i i ii c d inx A x B u B T= + +         (11) 

This system is equivalent to system (2), where 

1311 13( )ii it
i iA S S H S F= − , 15 13 35i

i i i
c iB S S H S= +  and 

14 13 34i

i i i
d iB S S H S= + . 
When the elements of commutations are in the chosen 

configuration (mode i for example), then 0ini
T = . 

Therefore, for N  switchs, we have 2N q=  modes: 

11 0 1

1

( ) ( ) ( ) [ , )

( ) ( ) ( ) [ , )
q

c

q c q q

x t A x t B u t t t t

x t A x t B u t t t t−

 = + ∈


 = + ∈







 

 (12) 

This system is equivalent to system (1).  

5.1. Structural Controllability 

The bond graph concept is an alternate representation of 
physical systems. Many works allow to highlight structural 
properties of these systems[13]-[14]. In[13], the structural 
controllability property is studied using simple causal 
manipulations on the bond graph model. Th is result was 
extended to case of CSLS[14]. Our objective is to use the 
latter result for to propose structured state feedback matrices 
in the context of pole assignment by static state feedback. 

In the following we note that: 
-BG: acausal (without causality) bond graph model, 
-BGI: bond graph model when the preferential integral 

causality is affected, 
-BGD: bond graph model when the preferential derivative 

causality is affected, 
- it : the number of dynamical elements remaining in 

integral causality in the BGD of mode i.  

- i
st : the number of dynamical elements remaining in 

integral causality in  the BGD after the dualization of the 
maximum number o f input sources in order to eliminate 
these integral causalities. 

5.1.1. Graphical Sufficient Condition 1 

A system (1) with q  modes is controllab le if only  one 
system is controllable. This condition can be interpreted by 
using the result of structural controllability of LTI system. 

Indeed, this result is a simple recovery of those giving the 
necessary and sufficient condition of structural 

controllability of LTI system modelled by bond graph 
approach. 

Theorem 3[14] The CSLS system (12) is structurally  state 
controllable if: 

1- All dynamical elements in integral causality are 
causally connected with an input source. 

2- BG-rank [ ]
ii cA B n= . 

Property 1 [14] BG-rank [ ]i ciA B = i
sn t− . 

To study the controllability of system (12), it is necessary 
to apply this result to all modes; if one controllable mode 
exists, the procedure is stopped. 

The case where no mode is controllable, but when the 
system is controllable, can be verified  by formal calculation 
of combined matrix (4). Th is calcu lation can be formally 
effected by using the bond graph model in integral causality 
or by calcu lating the controllability subspace from bond 
graph model in derivative causality. We chose to translate 
the latter in the form of a second sufficient condition. 

5.1.2. Graphical Sufficient Condition 2 

Thereafter, formal representations of controllability 
subspaces, denoted as 0R , are g iven for bond graph models. 
They are calculated through causal manipulations. The bases 
of these subspaces are used to propose a procedure to study 
the controllability of system. 

On the BGDi (and dualization o f input sources) there 

exists i
st  elements remain ing in integral causality and 

i
sn t−  elements in derivative causality. 

i
st  algebraic equations can be written (equation 13): 

0i ik i
k r r

r

g gα− =∑           (13) 

 - i
kg  is either an effort variable re  for I -element in 

integral causality or a flow variable rf  for C -element in 
integral causality; 

- i
rg  is either an effort variable re  for I -element in  

derivative causality or a flow variable rf  for C - element 
in derivative causality; 

- ik
rα  is the gain  of the causal path between the thk  I  

or C -elements in integral causality and the thr  I  or C
-elements in derivative causality. 

Let us consider the i
st  row vectors ( 1, , )i i

k sz k t=   
whose components are the coefficients of the variables 

( , )i
lg l k r=  in the equation (13). 

Property 2 The 
i
st  row vectors ( 1, , )i i

k sz k t=   are 
orthogonal to the structural controllab ility subspace vectors 

of the thi  mode. We write 1, ,( ) i
s

i
i k k tZ z

=
=



 and 
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0 Im( )i
iR Z⊥ = . 

Using the bond graph model in derivative causality, the 

uncontrollable 0
iR ⊥

 subspace can be calculated[14].  

Procedure 2  Calcu lation of 0
iR ⊥  

1) On the BGDi, dualize the maximum number of input 
sources in order to eliminate the elements remain ing in 
integral causality, 

2) For each element remain ing in integral causality, write 
the algebraic relations with elements in derivative causality 
(equation 13), 

3) Write a row vector 
i
kz  for each algebraic relation  with 

the causal path gains and write 1, ,( ) i
s

i
i k k tZ z

=
=



. 

In order to calculate an 0
iR  basis, it is enough to find 

i
sn t−  independent column vectors ( 1, , )ir i

sw r n t= −
. 

These vectors are gathered in the matrix 

1, ,( ) i
s

i ir
r n tW w
= −

=


. 
From the BGDi (and dualization of inputs sources), i

sn t−  
algebraic relat ions can be written (14). 

0i ir i
r k k

k

g gγ− =∑            (14) 

-
i
rg  is either a flow variab le rf  for I -element in  

derivative causality or an effort variable re  for C - 
element in derivative causality; 

- i
kg  is either a flow variab le rf  for I -element in 

integral causality or an effort  variab le re  for C - element 
in integral causality; 

-
ir
kγ  is the gain of the causal path between the thr  

element in derivative causality and the 
thk  element in 

integral causality.  

Suppose now 
i
sn t−  column vectors 

irw  whose 

components are the coefficients of i
rg  and i

kg  variables 
in equation (14). 

Procedure 3  Calculation of 0
iR  

1) On the BGDi, dualize the maximum number of 
continuous input sources in order to eliminate the elements 
in integral causality; 

2) For each element in derivative causality, write the 
algebraic relations with  elements in  integral causality 
(equation 14);  

3) Write a column vector 
irw  for each algebraic relat ion 

with the causal path gains (equation 14), with 

0 Im( )i iR W= . 

Property 3[14] 
i
sn t−  column vectors 

( 1, , )ir i
sw r n t= −  compose a basis for the structural 

controllability subspace of thi  mode. 
The graphical calculat ion of structural controllability 

subspaces and theorem 1 leads to theorem 4: 

Theorem 4[14] If rank 1[ ]=qW W n , the system CSLS 
(12) is structurally controllab le. 

6. Pole Assignment 
Now, we suppose a monovariable (m=1) linear sub-system 

(mode i), that is ( 1( ) n
iB Rσ ×∈ ) in equation (1). The problem 

is to find a state feedback law ( ) ( )iu t K x t=  to each mode 
i in the time interval t ∈[ti-1, ti) such that the closed loop state 
matrix iA  has the desired poles. In fact, the number of 
assignable poles is equal to the rank of the controllability 
matrix, this for each possible mode. It is deduced that the 

number of independent parameters in the matrix iK  is 
equal to the controllable subspace in mode i. The objective is 
to find these parameters. 

We recall some relat ions 0 ImiR = {Wi} and 

. 0i
iZ W = . We can write: Im Imi

iX W Z= ⊕  with X 

the state space, and 0i iZ A = . 

Now, we calculate det( )isI A− . The roots of this 
characteristic polynomial are the closed loop roots. 

First, the different matrices are decomposed. A 
permutation between the dynamical elements enables us to 

write 11 12[ 0]i i
iZ Z Z=  with 11rank rank i

iZ Z=  such 

that in the state vector, the 
i
st  first variables are the 

non-controllable variab les, which  are the dynamical 
elements which remain in integral causality in  BGDi  model. 
The following variab les are the dynamical elements 
appearing in the algebraic relations after BGDi and 
dualization. 

Suppose now this new matrix : 

11 12
*

0
0 0
0 0

i i

i

Z Z
Z I

I

 
 
 
 
 
 
 
 

=  

With *dim iZ n=  and I  is identity matrix.  

The matrices iA , iB  and iK  are decomposed as *
iZ .  

11 12 13

21 22 23

31 32 33

i i i

i i i
i

i i i

A A A

A A A A

A A A

 
 
 
 
 
  
 

= , 
1

2

3

i

i
i

i

B

B B

B

 
 
 
 
 
  
 

=  and 
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( )1 2 3
i i i

iK K K K=  
Then, the characteristic polynomial of i i iA B K+  is : 

11 1 1 12 1 2 13 1 3

det( ) det 21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

i i i i i i i i isI A B K A B K A B K

i i i i i i i i isI A A B K sI A B K A B Ki
i i i i i i i i iA B K A B K sI A B K

 − − − − − − 
 

− − − − − − − 
 
 − − − − − − 

=

11 12

11

11 1 1 12 1 2 13 1 3

21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

0
1 det( 0 0det( )

0 0

)

i i

i

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

Z Z
IZ

I

sI A B K A B K A B K
A B K sI A B K A B K
A B K A B K sI A B K

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

=

− − − − − −
− − − − − −
− − − − − −

 

From the relation 0i iZ A = , we obtain : 

011 12

21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

*

det( )

1 .det
det( )

i
i isZ sZ

i i i i i i i i iA B K sI A B K A B K
i i i i i i i i i iA B K A B K sI A B K

sI A

Z

 
 
 
− − − − − − 
 
 − − − − − − 

−

=

		

1( ) 011 120 0111
det( 0 0 )21 2 1 22 2 2 23 2 3*det( ) 0 0

31 3 1 32 3 2 33 3 3

i ii sI s Z ZZ
i i i i i i i i iI A B K sI A B K A B K

Zi I i i i i i i i i iA B K A B K sI A B K

 −   
   
 = − − − − − − 
    
   − − − − − −   

After manipulat ions, we have 

0 0
1 *( )21 2 1 22 21 11 12 2 2 23 2 3

1 *( )31 3 1 32 31 11 12 3 2 33 3 3

det( )

d et

i

sI
i i i i i i i i i i i iA B K sI A A Z Z B K A B K

i i i i i i i i i i i iA B K A A Z Z B K sI A B K

sI A
 
 
 −− − − + − − − 
 − − − − + − − − 

−

=

		

 

With * 1
2 2 1 11 12( )i i i i iK K K Z Z−= −  

Then 2
iK  becomes 

*
2
iK . The pole assignment problem 

consists in calculat ing 
*

2
iK  and 3

iK , with 1 0iK = . It 

comes ( )2 3
*0 i

i
iK K K= .  

The i
st  non-controllable poles are equal to zero, because 

they correspond to zero eigenvalues of the state matrix. 
Proposition 4 For each mode, the independent parameters 

of the closed loop characteristic polynomial det( )isI A−  

are the parameters of the two matrices 
*

2
iK  and 3

iK . 

Now we write 11 21( 0)i i i tW W W=  and we calculate 

*
2
iK  directly from the controllability space matrix 0

iR .  

It is possible to write 0
iR  as : 

11

0 21

0

Im 0
0

i

i i

W

R W
I

 
 
 =
 
 
 

 

From the relation 0i
iZ W = . Then we have 

1
11 11 12 21( )i i i iW Z Z W−= −  and  

1
2 1 11 12 21 3( ( ) )i i i i i i i

iK W K K Z Z W K− = − 
, 21

iW  is a square  

matrix and can be chosen invertible, and equal to the unity 
matrix, because 0

iR  has maximal rank.  
In fact, it  is enough to keep only the min imum number of 

independent parameters in the matrix 
1

2 1 11 12 21( ( ) )i i i i iK K Z Z W−− . 

7. Example 
Let us consider the following acausal BG model : 

 
Figure 2.  The acausal Bond Graph 

This model contains one switch, then we have 2 possible 
configurations (mode F: Sw  : 0=Se , mode E: Sw  : 

0=Sf ).  
■ The BGIi o f these modes are shown in figure 3. 

 
Figure 3.  a) BGI of mode F 

 
Figure 3.  b) BGI of mode E 

There are six state variab les  on ,  on  

( ). The d imension of the system is . 
For models  and  all state variables are causally 

iP iI jq jC

1, 4 ; 1,2i j= = 6=n

1BGI 2BGI
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connected with the sources, and are in integral causality. 
There is no storing element in derivative causality in these 
configurations, so the state variables are g iven by : 

. 

■ The BGDi and dualization (figure 4). 

 
Figure 4.  a) BGD of mode F 

 
Figure 4.  b) BGD of mode E 

 For mode F 
The element 4I  is in integral causality, we can  write 

1 4
0I Ie e− = , thus ( )1

1 1 0 0 1 0 0z = − . 
The four dynamical elements 1C , 2C , 2I  and 3I  are not 

causally connected with 4I , we can write 

1 2 2 3
0c c I Ie e f f= = = = . The four corresponding vectors are

( )12 0 1 0 0 0 0 tw = , ( )13 0 0 1 0 0 0 tw = , 

( )14 0 0 0 0 1 0 tw =  and ( )15 0 0 0 0 0 1 tw = . 
The algebraic equation corresponding to the element 1I  is 

given by: 
1 4

0I If f+ = . Then ( )11 1 0 0 1 0 0 tw =  

and { }1 11 12 13 14 15
0 Im , , , ,R w w w w w= . 

We have 1 1BG rank[ ] 5A B− = 1 1BG rank[ ] 5A B− =
, 

this mode is not controllable. 
 For mode E 
After commutation, we pass in mode E and we have 

2 2BG rank[ ] 6A B− =
. The mode E is controllab le by two 

inputs, then this system is controllab le. 
Case : m=1 (Monovariable system) 
In this part, we eliminate the second source and we affect 

the derivative causality (and dualization) on the BG model. 
■ The corresponding BG models are d rawn on figure 5. 

 
Figure 5.  a) BGD of mode F 

 
Figure 5.  b) BGD of mode E 

We have 1 1BG rank[ ] 4A B− =
 and 

2 2BG rank[ ] 5A B− =
, these modes are not controllable. 

 For mode F 

The elements 3I  and 4I  are in  integral causality, we 

have ( )1
1 1 0 0 1 0 0z = −  and 

1
2

10 0 0 0z c
b

 =  
 

. 

The two dynamical elements 1C  and 2C  are not causally 

connected with 3I  and 4I , we can write 
1 2

0c ce e= = , 
the two corresponding vectors are 

( )13 0 0 0 0 1 0 tw =  and ( )14 0 0 0 0 0 1 tw = .  
The algebraic equations corresponding to the elements 1I  

and 2I  are given by: 

2 3

1 0I Ibf f
c

− =  ⇒  11 10 0 0 0
t

w b
c

 = − 
 

 and 

1 4
0I If f+ =  ⇒  ( )12 1 0 0 1 0 0 tw =  and 

{ }1 11 12 13 14
0 Im( , , ,R w w w w= . 

 For mode E 
The element 4I  is in integral causality, thus we have 

2
1

1(1 1 0 0)z c
b

= −  and 
1 2

0c ce e= = . The two 

corresponding vectors are ( )24 0 0 0 0 1 0 tw =  and 

( )25 0 0 0 0 0 1 tw = . The algebraic equations 

( )1 2 3 4 1 2

t

I I I I C Cx P P P P q q=
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corresponding to the elements 21, II  and 3I  are given by: 

2 4
0I I Swbf f f+ − = , 

3 4

1 0I I Swf f f
c

+ − =  and 

1 4
0I If f+ = ; then ( )21 0 0 1 0 0 tw b= , 

22 10 0 1 0 0
t

w
c

 =  
 

, ( )23 1 0 0 1 0 0 tw =  

and { }2 21 22 23 24 25
0 Im , , , ,R w w w w w= . 

We apply theorem 4, we have 

( )11 12 13 14 21 22 23 24 25rank 6w w w w w w w w w = , this system 

is controllable. 
The studied system has two modes, Suppose 

( )1 11 12 13 14 15 16K k k k k k k=  and 

( )2 21 22 23 24 25 26K k k k k k k= . 

For mode F there are two uncontrollab le states variables 
associated the dynamical elements 3I  and 4I , and for 
mode E there is one uncontrollable state variable associated 
the dynamical element 3I . We conclude that for mode F, 

13k  and 14k  can be arbitrarily chosen, from the same 

manner for the variable 24k  in mode E.  
The four (respectively five) independent coefficients of 

the state feedback matrix are highlighted  
1

12 13 11 14 15 161
1 , , ,K W bk k k k k kc

 
  
 

= − +  and 

2
22 24 23 24 21 24 25 262

1, , , ,K W bk k k k k k k kc
 
  
 

= + + + .  

These coefficients are the unknown parameters for the 
pole assignment problem relat ing to each mode. They are the 
parameters of the characteristic polynomial of the state 
matrices  

iA , { }1,2i∈ . 
Case : m>1 (Multivariable system) 
The min imum number o f parameters in the state feedback 

matrices for the pole assignment problem is n. In case of 
multivariable systems, the choice is not unique even for 
controllable systems.  

Suppose now the BG model (mode F and E) (figure 3).  

Suppose 
1 1 1 1 1
11 12 14 15 16

1 1
23

0
0 0 0 0 0
k k k k kK

k

 
 
 
  
 

=  and  

2 2 2 2 2
11 12 13 15 16

2 2
24

0
0 0 0 0 0
k k k k kK

k

 
 
 
  
 

= .  

For mode F there is one uncontrollable variable associated 
the dynamical element 4I  and for the mode E all the 
variables are controllable. We conclude that for mode F, 

1
14k  can be arbitrarily chosen, 
The state feedback matrices can then be  

1 1 1 1 1
1 11 14 12 15 16

1 1
23

0
0 0 0 0

k k k k kK W
k

 
 
 
  
 

+
=  and 

2 2 2 2 2
2 11 12 13 15 16

2 2
24

0
0 0 0 0 0

k k k k kK W
k

 
 
 
  
 

= .  

8. Conclusions 
This paper has studied the controllability property of a 

class of switched linear systems with the aid of simple causal 
manipulations on the bond graph model. Thus, formal 
calculation enables us to know the reachable variables, its 
checking is immediate on the BGI; on the other hand the 
BGD enables us to characterize from a graphic point of view 
the whole of the subspaces that are controllable with respect 
to each mode. While employing these subspaces, we have 
proposed a simplified state feedback matrices for the pole 
assignment problem, this for all the possible configurations 
of the system. The application was made on an example. The 
problem is now to highlight more structural info rmation in 
order to solve other current questions from a structural point 
of view. It  will be done in a future work. 
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