International Journal of Theoretical and M athematical Physics 2012, 2(5): 130-135

DOI: 10.5923/}.ijtmp.20120205.06

The Regularization for the Zeta Functions with Physical
Applications I

Minoru Fujimoto', Kunihiko Uehara’

ISeika Science Research Laboratory, Seika-cho, Kyoto, 619-0237, Japan
2Department of Physics, Tezukayama University, Nara, 631-8501, Japan

Abstract Wehave proposed aregularization technique and applied it to the Euler product of the zeta functions in the part
one. In this paper that is the second part of the trilogy, we aim the nature of the non-trivial zero for the Riemann zeta function
which gives us another evidence to demonstrate the Riemann hypotheses by way of the approximate functional
equation.Some other results on the critical line are presented using the relations between the Euler product and the deformed
summation representations in the critical strip. We also discuss a set of equations which yields the primes and the zeros of the
zeta functions. In part three, we will focus on physical applications using these outcomes.
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1. Introduction

In the situation that the regularizations by the zeta function
have been successful with some physical applications,[2]
[51[13,14] we proposed a regularization technique[7]
applicable to the Euler product representation and gave an
evidence for the Riemann hypotheses by using this
technique in the part one. In this part, we now focus on the
zeros of the Riemann zeta function and the surrounding
properties of the zeros including other evidences to
demonstrate the Riemann hypotheses.[1] The Euler product

representation, which played an essential rolein the first part,

will be interpreted in terms of the summation representation
on the critical line Rz =1/2.
The definition of the Riemann zeta function is

Y-

for Rz >1, where the right hand side is the Euler product
representation and py is the k-th prime number. Hereafter we
adopt a notation F(z) for Rz >0 suchas
ISR
; @
which is well regularized even in the critical strip
0<Rz<1.
Considering the approximate expansion formula for the
Riemann zeta function, we propose an evidence for an
elegant proof of the Riemann hypothesis in section 2.and in
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Swe show surrounding properties of the zeros for the
Riemann zeta function by deforming the Euler product
representation to the summation form on the critical line.
We study the relation between the primes and the zeros of
the zeta function in connection with the Sato-Tate
conjecture in section 4, and we will discuss the equations
for these primes and zeros in&b.

2. The Expansion Formula and the
Riemann Hypothesis

The Euler- Mac laurin sum formula is given by

an /f dr+ (f(M) + F(N))

n=M
I3
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whereBy; is the 2]-th Bernoulll number and the remainder
term:

+ o, (3)
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Bopa(x) = Bapra(r — [2]).
We parametrize a complex variable z by two real variable
such as z=s(1/2+ it) as sameas that in the first part. Using the
Euler-Maclaurin  sum formula on the assumption of
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Z L = / rdr + l.”ﬁ + / - By(x) (=)= tdx
oy LY JM 2 M
: i 2j—2 5)
V= 1~ Boy oy b (
= oy tM FZ[%J’!M‘ T+ 0 + R
=1 =0
where
—z(z 1) (2 +2k) ok
Ry, = ( ) BQM( r)a = dr (6)

(2k +1)! M



131

As is well known we can go forward to the expansion

formula in the case of M > 2,
M-1 |

1-z
=X g
n* z—1
B 2j—-2
+Z ’J AT 1 +0+ Ra @)

=0
The re mainderterm R2k can be estimated as follows:

w2z 2%+ 1|2z 4 1) (2420)] . 1 oy
Ral < T T PR R
t 2k+2 (8)

where we put s = 1and C(k) is constant only depending on k.
This tells us that it is necessary for the remainder term to be

M >t/(2x) to converge.

Taking account of the Euler-Maclaurin sum formula, we
can put the regularized zeta function as
n

1=z
Tim Gu(2) = Tim {en(:) - } ©)
and a zero in the critical strip is the solution to the equation
{(z) = Jim (a(z) = 0. (10)
These equations (9) and (10) are identical to the equation

(A4) in the first part. As stated in Appendix A in the first part,

Eq.(2) can be derived by way of the regularization method
developed in the part one, which means that we can reach
here besides using the Euler-Maclaurin sum formula. As (1
—p) is also the solution when p is the solution of Eq.(10),
asolution of the equation

C(1—2)=0 (11)
is also a zero. Now we transform Eg. (9) to
lim {(1 — 2)Gu(2) — n'=* 1 =0 (12)
and substituting (1-z) for z, we get
lim {z(,(1 — 2) —n*} = 0. (13)
Combining these equations (12) and (13), we get
nli_n;_{:(l — 2)Gu(2)G(1 —2) —n} =0, (14)
namely,
22 — 24+ lim ;70
) N noe Q.hn(‘:}(:n(]- o ‘:) . (15)

The solution p, of the equation fn(z) =0is satisfied the

relation
1 n
Pn = . j: 1 — — .
2 \/Qﬂ(pn)gn(l - f’n)

On the other hand, the approximate functional equation by
Hardy and Littlewood[4], which leads to the Riemann-Siegel
formula, is given by

(=Y HEY

n<x n<y

(16)

+ O(x=5/%) £ O([t|1/2=s/2y=/271), (17)

where 0<s/2(=Rz) <1, x>1,y>1 22y =|t|and H(z) is
given by

T

2

[

= 20(1 — 2)(27)" *sin (18)
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For s>2, the relation

)Y = HEK—2) ()

n=1

is satisfied and we write down £ (1—z) for O<%z<1as,

- 1 o0 (_1 _
CU-2)=1—52 ,nl),z : (20)

n=1

Then the relation

C(z) = H(z)¢(1 = z) (21)
is satisfied for 9z >0 and substituting (1-z) for z, we
conclude Eq.(21) is satisfied for all z.

Weset n<x,n<yand |t|=2mxy >2n° > 22n , then

C(2) = Gu(2) + H(2)G(1 — 2) + Ra(2),

where the remainder term R, (2):
R.(z) = Om™2) + O(|t|"*=/*n=/271)
= O(n~%?) + o((2mn)Y/?=s/2ps/271)
can be ignored by taking the limit of n—o0, namely
lim 1,(z) = lEn»{O(n*S/z) +o(n ) =0.
We put the relations at zeros
. nle -
Qn(pn) - 1 s (n(l*pn):
— Pn Pn
into Eq.(22) togetherwith & (p,) =0, we can write

nl=rn . nPr
H Op ) ——
e (r ) o

1-2pn ;
L Hpa) -+ Ru(p)— = 0.
J- — Pn Pn nen
Taking the limit of n —oo, we get the relations
1-2p, F ) g
,n :flimM:fM.
1 — Pn n—00 Pn 9
The right hand side of Eq.(27) is finite, so the numerator of
the left hand side lim __ |n*?* | must be finite. This

means that the real part of (1 —2p,) must converge to 0in the
limit of n —cowhen the real part of (1 —2p,) is positive. When

R(@L-2p,) <0, we rewrite the left hand side of Eq.(27) like

(22)

(23)

(24)

nen

(25)

+R-n(pn) - O:
(26)

lim
nN—00

(27)

nl-2(1-ps) n2en—1
lim ——— = lim (28)
n—0Q J_ — (J_ — '[)n) n—0o0 n
so we get the same goalas lim,  R(2p,—1)=0. After all,

the Riemann hypothesis is satisfied including the trivial case
R(2p,-1)=0,

1 1
p= lim p, = hm (E — iz‘n) =3 + PN, (29)

n—od

where/, is real but t, is not necessarily a real number.[8]
Now we think about the values of t,, which converge to a
positive A in the limit of n—oo and put it into Eq.(16)

Ly \/;
. Cn(/)n)gn(l — Pn)

2
1 iy n

= —+1, /- — —.
2 Qn(% + ?tn)(,n(% - nLn)

Thus we write the solution to the equation ¢(z) =0

Pn =

(30)
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p =
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i.e. (31)

n
A = lim : _—
neee \/g"(é + n"n)@n(% - i'tn)

Using the n-th order relation of Eq.(21)

AP 1
(,71(5 - “Ln) — H(z )gn( + H( ) (32)
we get the relation
n
th, = T - - - 5

w(E it H(E —it,)G(E + ity

¢ (12 M (5 )Cnl5 ) (33)
_ n
G+t H(E —ty,)

This form will be utilize to calculate zeros of the Riemann
zeta function by way of the limit ofn—o.

3. The Euler Product and a Summation
Representation

We write down the Euler product representation for the
standard form described as same as the equation (25) in the
first part

1

(s(5 + zt))|

: ;= fuls.t)
|Ga(s(d

n

2 1
= 1- —7 cos(stlog pr) + . (34)
e Pr®

k=1

Here fy(s, t) and log f,(s, t) will diverge at the same time in
n—oo, because f,(s, t)is positive. As all non-trivial zeros of
the Riemann zeta function is expected on s =1, we study the
following relation for s>1

loe, Tul(s,1)
= Zloe,(

1
(os(sz‘lubpk) +
PE°
- 2 1
Z log{ 1 — [ — cos(stlogpr) —
Pl P

k=1

(35)

n
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cos(stlog pr) — —)
Pi”

3
1 L. )
cos(stlog pr) — —— ) + (Onite terms for n — o0).
Pk’

We regularize Eq.(35) in order to apply it even in the case
s = 1. We try to regularize Eq.(35) by way of dividing an

appropriate factor 22—1 pkfl, which leaves a leading

divergence divergent and makes a non-leading divergence
convergent. In fact, we divide Eq.(35) by

LN |
kHl(1+pk).

which we also adopted in the equation (26) of the first part.[7]
Thus we study the divergence in the form of

(36)
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1
(O\ (stlogpr) +
PE®

-

(37)

H (1 + i)
iy Pk
which corresponds in the summation form as
3 Z cos(tlog pr) (ms(z‘log i) ) Z 1
Pk N
k=1 n - (38)
>

where we sets= 1. The Ieadlng divergent termof Eq.(38) in
n—oois

" cos(tlog pr)
; \/]T ! (39)

The form of divisor H (1+ [ )means that using
Mertens' theorem

s 1 e (1
—— | = ] @]
g (l ])k) log pim (l o (@)) (40)
and the Euler's £(2)
o 6
IT(1- )—_ A1
k=1 ( i’ m (1)
we get
) m ( 1 ) m (J_ _ ple) 50 ( 1 )
C H 1+—) = -— - —
k=1 Pr k=1 (1 — L) k=m+1 Pi
Pk 42
= Oil 14+ 0 !
= 2 0g Pm + N ;
log 1+—) = log (1 + —)
(7)) = 2 (i
SN )@
= e 2\ e
~ loglog pm,
where
Ge” .
< <e (44)

The Euler product representation for n—oo is only valid
fors>2, and we restrict our interest for t>0. The zeros of the
Riemann zetafunction make Eq.(34) divergent, which means
that products are multiplied maximally in the right hand side.
Each termin Eq.(34) is maximized when cos(st log p)=-1,

namely, st=(2¢/-1)z/log p, (¢ =natural number). We give

graphs for the superposition of cosine functions, which
indicate the solution of cos(t log p,) =—1as local maximum

values,

a(t) = — 3 <5(tlozPE), (45)

—1 Pk

The graph of yp,(t) for « =1/2 is printed as Figure 1, and
judging from the graph of a =1 (Figure 2), the denominator
pkxseems to be well-matched to cancelthe notches come from
the superposition of cosine functions. Figure 1 is also such an
example of notches. Figure 2 has the positive maximal
values that correspond to the non-trivial zeros of the zeta
function except the one appeared in t<6. Thus zeros of the
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Euler product representation in Eq.(34) preserve the value
even in the form of the summation in Eq.(45).
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Figure 1. The graph of y» for n =10*anda=1/2
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Figure 2. The graph of y» Jfor n =10%anda=1

The terms to regularize the divergence will be discussed,
which is essential to the order on the critical line and seems
to be closely related to the von Mangoldt function,[9] in a
separate paper.

On the other hand, the sum over the zeros of the zeta
function for a certain primne p

-2 Z VP cos(Ajlog p)
=1

leads us a graph which indicates locations of the prime
numbers.[3]

p=2 p=3
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Figure 3.

The hisogramg(divided 214) of digributions for pi=2, 3,5, 7, 11 and 13 beginning withj
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4. Nature of the Prime Numbers

Here we can show that the Riemann hypothesis holds for
the L-function by using the approximate functional equation
for the Dirichlet’sL-function as well as that by using the
regularization for the Euler product as stated in part one.
We listed the condition which leads a verificationalong
these lines for the Riemann hypotheses as

1. the existence of the Euler product representation,

2. the prime number theorem 7(x)=x=x/logx is
satisfied,

3. the approximate functional
Dirichlet’sL-function is satisfied.
Exclusive uses of the Euler-Maclaurin expansion for the
zeta function, which is actually an asymptotic expansion,
have prevented the Riemann hypothesis from being
demonstrated.

According to the conclusion of the first part, the Riemann
hypothesis for the Ramanujan’s zeta function or another
zeta function is realized because each function has the Euler
product representation. The Ramanujan’s conjecture for the
Euler product corresponds the cosine term of the standard
form for the Riemann zeta function, so it will hold because
|cosé@ |is less than one due to the independence of logpy’s.

About the zeta functions, which have no non-trivial zero
besides zeros of the Riemann hypotheses, we parametrize
themto the standard form. In this case, the product of the

equation of the

zeros J; of the Riemann zeta function and log py, the
logarithm of the primes py has a similar structure to 6 of the
Sato-Tate conjecture or the Sato-Tate theorem for the zeta
function associated with the elliptical function proved by
Richard Taylor. Moreover, in spite that the/;’s obey the
uniform distribution to modulus one,[6] we claim that the
response of j-direction increase(j =1, 2, --,0) forl; yields
the similar distribution of the Sato-Tate conjecture,[11][16]
once we takeljlogpx to modulus 2z. The Sato-Tate
conjecture claims that the response of k-direction increase(k
=1, 2, —) for pi yields the distribution of

5000 [P= 19
40000
30000

20000

10000

T 2m 0 T 2n

=10° up to 2x10°



Minoru Fujimoto et al.:

p=6 p=10

40000 40000

30000 30000
20000

20000

10000 10000

p=14

40000

p=I5
40000
30000 30000

20000 20000

10000 10000

0 T 2r 0

The Regularization for the Zeta Functions with Physical Applications 11

134

p=12

40000
30000
20000

10000

p=16|
40000
30000
20000

10000

T 27 0 T 2

Figure 4. The hisograms(divided 21s) of distributionsfor p =6, 10, 12, 14, 15 and 16 beginning withj = 10° upto 2x10°

9 [B
— / sin® 6, (47)
™ (a3

where 0<a <6< g <7x.0n the other hand, once we put
20=A;logp,, We may claim that the response of

j-direction increase ofj; yields the distribution of the
Wigner’s semi-circle law, which is related by regarding
cos@ of Eq.(47) as asingle variable.

Figure 3 is the histograms of distributions for p=
2,3,5,7,11 and 13. In contrast to these histograms, the
histograms of distributions in case that we put composite
numbers(= 6,10,12,14,15 and 16) into py, are also printed in
Figure 4. In the cases for the power of one prime like p = 16,
a shape of the peak around = slightly remains in the
histogram, whereas the shape of the tales near 0 or 2z
would be convexdownwards.

Counts

120000

100000

80000

60000

40000

20000

0

1 2 3 4 5

Figure 5. The histogram(class interval = 0.1) for the digribution of the
interval of pi/ log px for 10° primes beginning with k = 10°

A nature of primes is also found in a distribution for the

interval of succeeding primes,
Pr+1 Pk

1 - log oy’ (48)
og 1 logpy

where the logarithmterms exist in order to normalize to one.
We present the histogram for 10° primes beginning with k =
10° in Figure 5 for example. The fluctuation in the
histogram which rather looks like an oscillation never
vanish for larger number of primes and is deeply related to
the Wilson theorem and the Hoheisel's constant.[10]

5. Discussions and Remarks

We discuss the equations which yield the primes and the
zeros of the zeta functions in this section. We normalize the
product of Ajand log pyintroducing new notations gand vyas

101:-); Pk
L = i = — N 4
Fbj )\_7 5 Vi 9 : ( 9)

and the k-direction(k =1, 2, -+, ) average of
uivi—U2—[ujwd will be 0 by the distribution like the
Sato-Tate conjecture, where[ ] is the Gauss symbol. By
the law of large number, we can write down

- 1 - 1
Z (Hjl’k - 5) - Z[Hj”k] =0 (E) , (50)
k=1 k=1
so we get
1 i m 1
i = — [M-Vk]++0()}.
Y {Z 2 Am (51)
k=1
We can estimate the denominator as[15]
logpr = log(klogk + O(log k))
= logk + O(loglog k), (52)

1 1
v = log pp, = g(log k+ O(loglog k)), (53)

2r
m m 1
S = > Lo
k=1 periil
1 m
o 2—/ (log z + O(loglog z))dz (54)
T J1
1
o~ Q—-m(log m — 1)+ O((loglogm)logm).
™
After all, we write a following approximate relation for
anyu;,
- m 1
. ool
;Wﬂ +5 (m>
Hi =

2m(logm — 1) + O((log logm) log m)

m (55)
27 Z[pjuk]
B — T o 1
~ m(logm — 1) + logm — 1 * (mz log m) ’
using4= uj,v=log pi/(2z),we write the relation for any J;
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o L[ A log py
o kz [7% } )
=1 ‘ . O
m(logm — 1) + logm — 1 * m2logm
In the similar way,[12] we take the j-direction average
ofujw—1/2—[ujw], we can writedown by a symmetric
property as illustrated in Figure 3, we get

v = 5 {% + i[,ujwk] +0 (%)} :

i =

) ©

1L J=1 (57)
j=1
We also estimate the denominator as
21 . J
A = 0 :
J log j + log 27 + (logzj) (58)

A =

n . n .
] ]
AL+ 27 — (@] =
- Z) lng.j Z) <|ng_"“"j)
J=< ==

= 27 / ] T dr + / O (I 'I_v, )r/,r
Jo logr Ja2 og-r
e T + 54469
= 2 |——]| +7 / dr + —5
2 |Hj_; A 2 5 l()u T ]“g_,/ 2

n?
- iugni <]u ) Z/’

so we write a following approxm\ate relation for any vy,
n

n (1
Z[ﬂj’/k] + 3 + O (;)

Jj=1

n? Lo 7;
log n log™ n

vV —

n (60)
2logn Z[ﬂjl/k]
1 =1 n logn 40 logn
T oo n2 n n3 )
Finally we write down the relation for any py
logpr = 2wy
Ajlogp
2 log I?Z|: ZQ“\:|
“ logn logn (61)
B n2 n n3
)I”’”Z { *am} log n logn
P = exp 2 + . cexpg O 3
(62)

('2};;71[}"{-‘:;\*_ :le 1)
T R
= n .n2s)

Equations (56) and (62) are a set of equations which gives
prime numbers and zeros of the Riemann zeta function.
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