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Abstract  We have proposed a regularization technique and applied it to the Euler product of the zeta functions in the part 

one. In this paper that is the second part of the trilogy, we aim the nature of the non-trivial zero for the Riemann zeta function 

which gives us another evidence to demonstrate the Riemann hypotheses by way of the approximate functional 

equation.Some other results on the critical line are p resented using the relations between the Euler product and the deformed 

summation representations in the critical strip. We also discuss a set of equations which yields the primes and the zeros of the 

zeta functions. In part three, we will focus on physical applicat ions using these outcomes. 
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1. Introduction 

In t he  si tu at ion t h at  th e r e gul ari z at ions  b y th e  z et a f u n ct ion

have been successfu l with  some phys ical app licat ions,[2]

[5][13,14] we proposed a regularizat ion technique[7] 

applicable to the Euler product representation and gave an 

evidence for the Riemann hypotheses by using this 

technique in the part one. In this part, we now focus on the 

zeros of the Riemann zeta function and the surrounding 

properties of the zeros including other evidences to 

demonstrate the Riemann hypotheses.[1] The Euler product 

representation, which played an essential rolein the first part, 

will be interpreted in terms of the summation representation 

on the critical line 2/1z . 

The definit ion of the Riemann zeta function is  

   (1) 

for 1z , where the right hand side is the Euler product 

representation and pk is the k-th prime number. Hereafter we 

adopt a notation )(ˆ z  for 0z  such as 

  (2) 

which is well regularized even in the critical strip  

10  z .  

Considering the approximate expansion formula for the 

Riemann  zeta function, we pro pose an evidence for an 

elegant proof of the Riemann hypothesis in section 2.and in 
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§3we show surrounding properties of the zeros for the 

Riemann zeta function by deforming the Euler product 

representation to the summation fo rm on the critical line. 

We study the rela tion between the primes and the zeros of 

the zeta function in connection with the Sato-Tate 

conjecture in section 4, and we will discuss the equations 

for these primes and zeros in§5. 

2. The Expansion Formula and the 
Riemann Hypothesis 

The Euler-Maclaurin sum formula is given by 

 

           (3) 

whereB2j is the 2j-th Bernoulli number and the remainder 

term: 

  (4) 

We parametrize a complex variable z by two real variable 

such as z = s(1/2+ it) as sameas that in  the first part. Using the 

Euler-Maclaurin  sum formula on the assumption of 

kzs 22/  , we get the relation  

(5) 

where  

(6) 
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As is well known we can go forward to the expansion 

formula in the case of 2M , 

 

     (7) 

The remainder term R2k can be estimated as follows: 

(8) 

where we put s = 1 and C(k) is constant only depending on k . 

This tells us that it is necessary for the remainder term to be 

)2/( tM   to converge.  

Taking account of the Euler-Maclaurin sum formula, we 

can put the regularized zeta function as  

        (9) 

and a zero in the critical strip is the solution to the equation 

          (10) 

These equations (9) and (10) are identical to the equation 

(A4) in the first part. As stated in Appendix A in the first part, 

Eq.(2) can be derived by way of the regularizat ion method 

developed in the part one, which means that we can  reach 

here besides using the Euler-Maclaurin sum formula. As (1 

−ρ) is also the solution when ρ is the solution of Eq.(10), 

asolution of the equation 

             (11) 

is also a zero. Now we transform Eq.(9) to  

      (12) 

and substituting (1−z) for z, we get  

     (13) 

Combin ing these equations (12) and (13), we get 

    (14) 

namely, 

    (15) 

The solution ρn of the equation 0)(ˆ zn is satisfied the 

relation  

       (16) 

On the other hand, the approximate functional equation by 

Hardy and Littlewood[4], which leads to the Riemann-Siegel 

formula, is given by  

 
       (17) 

where ||2,1,1,1)(2/0 txyyxzs   and )(ˆ zH  is 

given by 

       (18) 

For s>2, the relation 

    (19) 

is satisfied and we write down )1(ˆ z  for 10  z as, 

       (20) 

Then the relation 

          (21) 

is satisfied fo r 0z  and substituting (1−z) for z, we 

conclude Eq.(21) is satisfied for all z. 

We set nnxytynxn  222||and, 2  , then 

  (22) 

where the remainder term Rn(z): 

    (23) 

can be ignored by taking the limit of n→∞, namely 

  (24) 

We put the relations at zeros  

    (25) 

into Eq.(22) together with 0)(ˆ nn  , we can write  

    (26) 

Taking the limit of n →∞, we get the relat ions 

   (27) 

The right hand side of Eq.(27) is fin ite, so the numerator of 

the left hand side ||lim
21 nnn



 must be finite. This 

means that the real part of (1 −2ρn) must converge to 0 in the 

limit  of n →∞when the real part  of (1 −2ρn) is positive. When 

0)21(  n , we rewrite the left hand side of Eq.(27) like 

   (28) 

so we get the same goal as 0)12(lim  nn  . After all, 

the Riemann hypothesis is satisfied including the triv ial case 

0)12(  n , 

    (29) 

whereλ is real but tn is not necessarily a real number.[8] 

Now we think about the values of tn, which  converge to a 

positive λ in the limit  of n→∞ and put it into Eq.(16) 

     (30) 

Thus we write the solution to the equation 0)(ˆ z  



 Minoru Fujimoto et al.:  The Regularization for the Zeta Functions with Physical Applications II  132 

 

 

    (31) 

Using the n-th order relat ion of Eq.(21) 

    (32) 

we get the relat ion 

    (33) 

This form will be utilize to calculate zeros of the Riemann 

zeta function by way of the limit o fn→∞. 

3. The Euler Product and a Summation 
Representation 

We write down the Euler product representation for the 

standard form described as same as the equation (25) in the 

first part 

 

    (34) 

Here fn(s, t) and log fn(s, t) will d iverge at the same time in 

n→∞, because fn(s, t )is positive. As all non-triv ial zeros of 

the Riemann zeta function is expected on s  =1, we study the 

following relat ion for s≥1 

 

     (35) 

 

 

We regularize Eq .(35) in order to apply it even in the case 

s = 1. We try to regularize Eq.(35) by way of divid ing an 

appropriate factor 1

1

n

kk
p 

 , which leaves a leading 

divergence divergent and makes a non-leading divergence 

convergent. In fact, we div ide Eq.(35) by  

              (36) 

which we also adopted in the equation (26) of the first part.[7] 

Thus we study the divergence in the form of  

       (37) 

which corresponds in the summation form as  

    (38) 

where we set s = 1. The leading divergent term of Eq .(38) in 

n→∞is 

              (39) 

The form of div isor  




n

k kp
1

1
)1( means that using 

Mertens' theorem 

      (40) 

and the Euler's )2(  

          (41) 

we get 

(42) 

 (43) 

where 

           (44) 

The Euler product representation for n→∞ is only valid 

for s≥2, and we restrict  our interest for t>0. The zeros of the 

Riemann zeta function make Eq.(34) divergent, which means 

that products are multiplied maximally in the right hand side. 

Each term in  Eq.(34) is maximized  when 1)logcos( kpst , 

namely, 
kpst log/)12(   ( =natural number). We give 

graphs for the superposition of cosine functions, which 

indicate the solution of 1)logcos( kpt as local maximum 

values,  

         (45) 

The graph of yn,α(t) for α =1/2 is printed as Figure 1, and 

judging from the graph of α =1 (Figure 2), the denominator 

pk seems to be well-matched to cancel the notches come from 

the superposition of cosine functions. Figure 1 is also such an 

example of notches. Figure 2 has the positive maximal 

values that correspond to the non-trivial zeros of the zeta 

function except the one appeared in t<6. Thus zeros of the 
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Euler product representation in Eq.(34) preserve the value 

even in the form of the summation in Eq.(45).  

 

Figure 1.  The graph of yn,αfor n =10
4 
andα=1/2 

 

Figure 2.  The graph of yn,αfor n =10
6
andα=1 

The terms to regularize the divergence will be discussed, 

which is essential to the order on the crit ical line and seems 

to be closely related to the von Mangoldt function,[9] in  a 

separate paper.  

On the other hand, the sum over the zeros of the zeta 

function for a certain prime p  

         (46) 

leads us a graph which  indicates locations of the prime 

numbers.[3]  

4. Nature of the Prime Numbers 

Here we can show that the Riemann hypothesis holds for 

the L-function by using the approximate functional equation 

for the Dirich let’sL-function as well as that by using the 

regularizat ion for the Euler p roduct as stated in part one. 

We listed the condition which leads a verificat ionalong 

these lines for the Riemann hypotheses as  

1. the existence of the Euler product representation,  

2. the prime number theorem xxx log/)(   is 

satisfied,  

3. the approximate functional equation of the 

Dirich let’sL-function is satisfied.  

Exclusive uses of the Euler-Maclaurin  expansion for the 

zeta function, which is actually an asymptotic expansion, 

have prevented the Riemann hypothesis from being 

demonstrated.  

According to the conclusion of the first part, the Riemann 

hypothesis for the Ramanujan’s zeta function or another 

zeta function is realized because each function has the Euler 

product representation. The Ramanujan’s conjecture for the 

Euler product corresponds the cosine term of the standard 

form for the Riemann zeta function, so it will hold because 

|cos|  is less than one due to the independence of logpk’s.  

About the zeta functions, which have no non-trivial zero  

besides zeros of the Riemann hypotheses, we parametrize 

them to the standard form. In this case, the product of the 

zeros λj of the Riemann zeta function and log  pk, the 

logarithm of the p rimes pk has a similar structure to θ of the 

Sato-Tate conjecture or the Sato-Tate theorem for the zeta 

function associated with the elliptical function proved by 

Richard Taylor. Moreover, in spite that theλj’s obey the 

uniform d istribution to modulus one,[6] we claim that the 

response of j-direction increase(j =1, 2, ··· ,∞) forλj yields 

the similar distribution of the Sato-Tate conjecture,[11][16] 

once we takeλjlogpk to modulus 2π. The Sato-Tate 

conjecture claims that the response of k-direction increase(k 

=1, 2, ··· ,∞) for pk yields the distribution of 

 

Figure 3.  The histograms(divided 21st) of distributions for pk= 2, 3, 5, 7, 11 and 13 beginning withj = 10
6
 up to 2×10

6
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Figure 4.  The histograms(divided 21st) of distributions for p = 6, 10, 12, 14, 15 and 16 beginning withj = 10
6
 up to 2×10

6
 

             (47) 

where  0 . On the other hand, once we put 

kj plog2   , we may claim that the response of 

j-d irection increase ofλj yields the distribution of the 

Wigner’s semi-circle law, which is related by regarding 

cos  of Eq.(47) as a single variab le.  

Figure 3 is the histograms of distributions for pk= 

2,3,5,7,11 and 13. In contrast to these histograms, the 

histograms of distributions in case that we put composite 

numbers(= 6,10,12,14,15 and 16) into pk, are also printed in 

Figure 4. In the cases for the power of one prime like p = 16, 

a shape of the peak around π slightly remains in the 

histogram, whereas the shape of the tales near 0 or 2π 

would be convex downwards. 

 

Figure 5.  The histogram(class interval = 0.1) for the distribution of the 

interval of pk/ log pk for 10
6
 primes beginning with k = 10

6
 

A nature of primes is also found in a distribution for the 

interval of succeeding primes, 

            (48) 

where the logarithm terms exist in order to normalize to one. 

We present the histogram for 10
6
 primes beginning with k = 

10
6
 in Figure 5 for example. The fluctuation in the 

histogram which rather looks like an oscillation never 

vanish for larger number of primes and is deeply related to 

the Wilson theorem and the Hoheisel's constant.[10] 

5. Discussions and Remarks 

We discuss the equations which yield the primes and the 

zeros of the zeta functions in this section. We normalize the 

product of λjand log pkintroducing new notations μjand νkas 

              (49) 

and the k-direction(k = 1, 2, ··· , ∞) average of  

μjνk−1/2−[μjνk] will be 0 by the distribution like the 

Sato-Tate conjecture, where[   ] is the Gauss symbol. By 

the law of large number, we can write down 

     (50) 

so we get  

     (51) 

We can estimate the denominator as [15] 

 
         (52) 

(53) 

(54) 

After all, we write a following approximate relation for 

anyμj, 

(55) 

usingλj= μj,νk=log pk/(2π),we write the relat ion for any λj 
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(56) 

In the similar way,[12] we take the j-direct ion average 

ofμjνk−1/2−[μjνk], we can writedown by a symmetric 

property as illustrated in Figure 3, we get 

      (57) 

We also estimate the denominator as  

         (58) 

(59) 

so we write a following approximate relat ion for any νk, 

(60) 

Finally we write down the relat ion for any pk 

 

(61) 

(62) 

Equations (56) and (62) are a set of equations which gives 

prime numbers and zeros of the Riemann zeta function. 
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