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Abstract  In present paper for the first time it has been found that the conservation laws play regulating ro le in evolu-
tionary processes that occur in gas dynamical system also are accompanied by emergence vorticity and turbulence. And it is 
connected, as shown in this paper, with noncommutativity of conservation laws.   
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1. Introduction 
Before passing to the analysis of the conservation laws 

for the gas-dynamic system under consideration, it should 
be told a little of the concept of 'conservation laws'. 

Owing to the development of science the concept of 
'conservation laws' has assumed a different meaning in 
various branches of physics and mechanics.  

In areas of physics related to the field theory and in  the 
theoretical mechanics 'the conservation laws' are those ac-
cording to which there exist conserved physical quantities 
or objects. These are the conservation laws that above were 
named 'exact'. Such conservation laws are described be the 
closed exterior skew-symmetric fo rms[1]. (It is known that 
the differential of closed exterior form equals zero, that is, 
the closed form is a conserved quantity).  

In mechanics and physics of continuous media the con-
cept of 'conservation laws' relates to the conservation laws 
for energy, linear momentum, angular momentum, and 
mass that establish the balance between the change of 
physical quantities and external action. These conservation 
laws can be named the balance conservation laws. They are 
described by differential (or integral) equations. It may be 
pointed that all continuous media such as thermodynamic, 
gas dynamical, cosmic systems and others (which  can be 
referred to as material systems), are subject to the balance 
conservation laws.  

The analysis of the equations of balance conservation 
laws carried out using the skew-symmetric d ifferent ial 
forms showed that the balance and exact conservation laws 
are related to each other. The conserved physical quantities 
or objects, whose availab ility points out to that the exact 
conservation laws obey, are obtained from the equations 
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describing the balance conservation laws. The process of 
passing from the balance conservation laws to exact con-
servation laws is accompanied by the origination of a cer-
tain physical structures and the emergence in  material (con-
tinuous) media of observed formations (fluctuations, turbu-
lent pulsations, waves, massless particles and others)[2]. 
The processes of origination of the vorticity and turbulence 
are examples of such processes.  

As the analysis of the equations of the balance conserva-
tion laws showed, these processes are the results of non-
commutativity of the balance conservation laws.  

2. Gas Dynamical System of Ideal Gas  
First of all, we consider the simplest gas dynamical system, 

namely, a  flow of ideal (inviscous, heat nonconductive) gas. 
In the second part of the paper the gas dynamic system of the 
viscous heat conductive gas will be considered.  

2.1. The Equation of the Conservation Law. Evolutio-
nary Relation  

Assume that the gas is a thermodynamic system in the 
state of local equilib rium (whenever the gas dynamic system 
itself may be in nonequilibrium state), that is, the following 
relation is fulfilled [3]:  

de pdV Tds+ =             (1) 
Where T , p  and V  are the temperature, the pressure and 

the gas volume, s, e are entropy and internal energy per unit 
volume. [Relation (1) determines the entropy s as a ther-
modynamical state function. For the gas dynamical system 
the thermodynamical state function describes only the state 
of the gas dynamical element (a gas particle). For the gas 
dynamical system the state function is also the entropy. But 
in this case the entropy is a function of space-time coordi-
nate.]  

Let us introduce two frames of reference: an inertial one 
that is not connected with the gas dynamical system and an 
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accompanying frame of reference that is connected with the 
manifold formed by the trajectories of the system elements. 
(Both Euler's and Lagrange's systems of coordinates can be 
examples of such frames[4]). 

In the inertial frame of reference the Eu ler equations are 
the conservation laws for energy, linear momentum and 
mass of ideal gas[4].  

The equation of the conservation law of energy for ideal 
gas can be written as  

Dh 1 Dp 0
Dt ρ Dt

− =             (2) 

where D/ Dt is the total derivative with respect to time. Here 
ρ 1/ V=  and h are respectively the density and enthalpy of 
the gas.  

Expressing enthalpy in terms of internal energy e with the 
help of fo rmula /h e p ρ= +  and using relation (1), the bal-
ance conservation law equation can be put to the form  

Ds 0
Dt

=                  (3) 

And respectively, the equation of the conservation law 
linear momentum can be presented as [4, 5] 

( )0 / /qrad s qrad h rot t T= − × + × + ∂ ∂U U U F U   (4) 
Here U is the velocity of the gas particle, ( )0 / 2h h= • +U U , 

F is the mass force ( qrad  in this equation is defined only in 
the plane normal to the t rajectory).[Here it  was tolerated a 
certain incorrectness. Equations (3) and (4) are written in 
different forms. However, this incorrectness will not effect 
on results of the qualitative analysis of the evolutionary 
relation obtained from these equations.]  

Since the total derivative with respect to time is that along 
the trajectory, in the accompanying frame of reference the 
equation of the conservation law for energy takes the 
form: 

11
s = А
ξ

∂
∂

                  (5) 

Here 1ξ  is the coordinate along the trajectory, 0А1 = .  
In the accompanying frame of reference the equation of 

conservation law for linear momentum can be presented 
as  

νν
s = А
ξ
∂
∂

, 2 .ν= ,..            (6) 

where ξν  is the coordinate in the direction normal to the 
trajectory, / νs ξ∂ ∂  is the left -hand side of equation (4), and 
νА  is obtained from the right-hand side of equation (4).  
Equations (5) and (6) can be convoluted into the relation  

d s ω=                     (7) 
where  

A dξααω =  
is the first degree differential form (here να ,1= ).  

Since the equations of conservation law are evolutionary 
ones, the relation obtained is also an evolutionary relation.  

2.2. Analysis of the Evolutionary Relation. Nonidenti ty 
of the Evolutionary Relation  

The evolutionary relation (7) is a nonidentical one as it 
involves the unclosed differential form. 

While describing actual processes, the evolutionary form 
ω is not closed. The differential of evolutionary form ω  
and its commutator are nonzero. The d ifferential o f evolu-
tionary form  

A dξααω =  is expressed as α β
αβdω K dx dx=   

where αβK  are the components of the form commutator.  
The commutator of differential form ω is nonzero. 

Without accounting for terms that are connected with the 
deformation of the manifold formed by the trajectories, the 
commutator can be written as  

β α
αβ α β

A A
K = ( )

x x

∂ ∂
∂ ∂

−  

The coefficients αA of the form A dξααω =  have been ob-
tained either from the equation of the balance conservation 
law fo r energy or from that for linear momentum. This 
means that in the first case the coefficients depend on the 
energetic action and in the second case they depend on the 
force action. In actual processes energetic and force actions 
have different nature and appear to be inconsistent. The 
commutator of the form A dξααω = constructed of the de-
rivatives of such coefficients is nonzero. 

This means that the differential of the form A dξααω =  is 
nonzero as well. Thus, the form ω  proves to be unclosed 
and is not a differential. In the left-hand side of relation (7) it 
stands a differential, whereas in the right-hand side it stands 
an unclosed form that is not a differential. 

Such a relat ion cannot be an identical one. 
The nonidentity of the evolutionary relation means that the 

balance conservation law equations are inconsistent. And 
this indicates that the balance conservation laws are non-
commutative. (If the conservation laws be commutative, the 
equations would be consistent and the evolutionary relation 
would be identical).  

The evolutionary relation obtained from the balance con-
servation laws reflects the character of interactions of the 
balance conservation laws. The nonidentity of the evolu-
tionary relation means that the balance conservation laws are 
noncommutative, that is, the results of action of the conser-
vation laws depend on the order in what they act.  

{It should be noted that for all material systems (such as 
thermodynamic, gas dynamical, cosmic and others) the 
evolutionary relation obtained from the equations of balance 
conservation laws is nonidentical, and this points to the 
noncommutativity of balance conservation laws.  

The 'noncommutativity' of the balance conservation laws 
can be exp lained in the following manner.  

Suppose that firstly the energetic and then the force per-
turbations act onto a local domain of the material system (an 
element and its neighborhood). Let the local domain be in 
some state A in the initial instant. According to the balance 
conservation law for energy, under exposure to the energetic 
perturbation the local domain develops from the state A into 
the state B. Then, accord ing to the balance conservation law 
for momentum, under exposure to the force perturbation it 
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develops from the state B to the state C. Suppose now that 
the sequence of the actions is changed, namely, firstly the 
force perturbation and then the energetic one act, and the 
system develops firstly into any state B` and then it proceeds 
into the state C`. If the state C` coincides with the state C 
(this corresponds to the local equilibrium state of the system), 
that is, the result does not depend on the sequence of per-
turbations of different types (and on the sequence of im-
plementing the relevant balance conservation laws), then this 
means that the balance conservation laws are commutative. 
If the state C` does not coincide with the state C (that is, the 
system state turns out to be not the equilibrium one), this 
means that the balance conservation laws prove to be non-
commutative.  

The reason for noncommutativ ity of the balance conser-
vation laws is connected with the fact that the material sys-
tem is subject to actions of different nature, the nature of 
these actions is inconsistent with the nature of the material 
system.} 

Thus, if we even doesn't know the specific expression of 
the formω , one can state that, due to inconsistence of ex-
ternal actions, the evolutionary relation turns out to be non-
identical one for real processes, and this points out to the 
noncommutativity of balance conservation laws.  

To what results the noncommutativ ity of balance conser-
vation laws leads? 

2.3. Nonequilibrium of the Gas Dynamical System  

The further analysis of the evolutionary relat ion allows to  
disclose the effect of noncommutativity of the balance con-
servation laws on the evolutionary processes in gas dy-
namical system that lead to  development of instability and 
origination of vort icity.  

The role of the evolutionary relation  in  evolutionary 
process is due to the fact that this relation includes the dif-
ferential of entropy s , which specifies the state of gas dy-
namical system.  

However, here there is a subtle point. One can obtain the 
differential of entropy s  from the evolutionary relation only 
if this relation proves to be identical. When the relation (7) 
appears to be identical one (if the fo rm ω be a closed form, 
and hence it is a  differential), one can obtain the d ifferential 
of entropy s and find entropy as a function of space-time 
coordinates. It  is precisely the entropy that will be the gas 
dynamic function of state. The availab ility of the gas dy-
namic function of state would point to the equilibrium state 
of gas dynamic system. If relation (7) be not identical, from 
this relation the differential of entropy s cannot be defined. 
This will point to an absence of the gas dynamic function of 
state and nonequilibrium state of the system. 

{It should be noted once more that in  the relation (1), 
which describes the thermodynamic system state, the de-
pendence of entropy on thermodynamical variables is 
considered, whereas in the evolut ionary relat ion for gas-dyn
amic system the dependence of entropy on space-time co-
ordinates is analyzed. The entropy, which depends on ther-
modynamic variables, is a state function of thermodynamic 

system, and the entropy, which depends on space-time co-
ordinates, is a state function of gas dynamic system. In the 
gas dynamic system the entropy as a thermodynamic func-
tion specifies the state of gas rather then of the gas dynamic 
system.} 

It has been shown above that, since the evolutionary rela-
tion is not identical because of the noncommutativity the 
conservation laws, from th is relation one cannot get the state 
differential ds  that may point out to the equilibrium state of 
the gas dynamical system. Th is means that the gas dynamical 
system state is nonequilibrium.  

The nonequilibrium is produced by internal forces that are 
described by the commutator of the form ω . (If the evolu-
tionary form commutator be zero, the evolutionary relation 
would be identical, and this would point out to the equilib-
rium state, i.e. the absence of internal forces.) Everything 
that gives the contribution into the evolutionary form com-
mutator leads to emergence of the internal force that causes 
the nonequilibrium state and leads to development of insta-
bility.  

It becomes evident that a cause of the gas dynamic non-
equilibrium and instability is something that contributes into 
the commutator of the form ω .  

From the analysis of the coefficients αA  (see the 
right-hand side of equation (4) and with taking into ac-
count that 1А 0= , one can see that the terms related to the 
multip le connectedness of the flow domain (the second term 
in (4)), the nonpotentiality of the external forces (the third 
term in (4)) and the nonstationarity of the flow (the forth 
term in (4)) contribute to the commutator. A ll these factors 
lead to the emergence of internal forces, the nonequilibrium 
state and the development of instability.  

One can see that the development of instability is caused 
by the not simple connectedness of the flow domain, the 
nonpotential external (for each local domain of the gas dy-
namic system) forces and the nonstationarity of the flow. (In 
the common case, the thermodynamic, chemical, oscillatory, 
rotational and translational nonequilibrium will effect on the 
gas dynamic instability). 

All these factors lead to emergence of internal forces, that 
is, to nonequilibrium and to development of various types of 
instability. (It  may be noted that, for the case of ideal gas, 
Lagrange derived the condition of the eddy-free stable flow. 

This condition is as follows: the domain must be simple 
connected one, forces must be potential and the flow must be 
stationary. One can see, that under fulfillment of these con-
ditions there are no terms that contribute into the commuta-
tor).  

And yet, for every type of instability one can find an ap-
propriate term g iving contribution into the evolutionary form 
commutator, which is responsible for this type of instability. 

Thus, there is the unambiguous connection between the 
type of instability and the terms that contribute into the 
evolutionary form commutator in the evolutionary relat ion. 
{In the general case one has to consider the evolutionary 
relations that correspond to the balance conservation laws for 
angular momentum and mass as well}. 
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Hence one can see that the noncommutativity of the bal-
ance conservation laws leads to emergence of internal forces 
(whose value is described by the evolutionary form com-
mutator) and to appearance of the nonequilibrium. 

The nonidentical evolutionary  relation is selfvarying  one. 
(Since one of the objects is an unmeasurable quantity, the 
other cannot be compared with the first one, and hence, the 
process of mutual variation cannot stop.)  

Such selfvarying of evolutionary relation points to the fact 
that the gas dynamic system state changes. However, in this 
case the gas dynamic system state remains nonequilibrium 
because the nonidentity of evolutionary relation holds.  

Whether the gas dynamic system can get rid of the internal 
force and transit into the equilibrium state?  

2.4. Transition of the Gas Dynamic System into a Local-
ly Equilibrium State. Origination of Physical 
Structures  

It turns out that the gas dynamic system can transit into the 
locally equilibrium state.  

From the properties of nonidentical relation it fo llows that 
under selfvariat ion of nonidentical relation it can proceed the 
degenerate transformat ion when from the unclosed evolu-
tionary form the skew-symmetric differential form closed on 
some structure (pseudostructure) can be obtained and the 
identical relat ion can be obtained from nonidentical relat ion. 
The degrees of freedom of gas dynamic systems (transla-
tional, rotating, oscillating and others) are the conditions of 
degenerate transformation. The conditions of degenerate 
transformation specify the pseudostructures: characteristics, 
singular points, envelopes of characteristics and so on. The 
realization of the conditions of degenerate transformation 
leads to the realization of pseudostructure π  (the closed 
dual form) and formatt ing the closed inexact form  

πω  
whose closure conditions have the form  

πd ω 0= , *
πd ω 0=  

On the pseudostructure π  from evolutionary relation (7) 
it is obtained the identical relat ion 

π πd s ω=                   (8) 
from which the differential πd s can be obtained. This means 
that there exists the state function of gas dynamic system, 
namely, the entropy whose availability points to the lo-
cally-equilibrium state of the gas dynamic system. (In the 
papers on gas dynamics it is assumed that from equation (5) 
one can obtain the entropy along the trajectory. However, it 
occurs that entropy as a function of space-time coordinates 
cannot exist if the conditions of degenerate transformations 
are not satisfied. Entropy as a function of the state has to be 
satisfied both to equation (5) and equation (6).  

Realization of pseudostructure π  and formatting the 
closed inexact fo rm πω  points to emergence of physical 
structure, i.e . a certain conserved object. The characteristics, 
the singular points, the envelopes of characteristics and so on 
(pseudostructures - the closed dual forms) with conserved 

quantities (closed inexact fo rm) are examples of such 
physical structures.  

One can see that the identical relat ion (8) holds the duality. 
The left-hand side of this relation includes the differential 

πd s , which specifies gas dynamic system and whose 
availability points to the locally-equilibrium state of gas 
dynamic system. And the right-hand side includes a closed 
inexact form πω , which is a characteristics of physical 
structures.  

This shows that the transition of gas dynamic system into 
the locally equilibrium state (under realization of degrees of 
freedom) is accompanied by the origination of physical 
structures.  

The origination of physical structure reveals as a new 
measurable and observable format ion that spontaneously 
arises in gas dynamic system.  

In gas dynamical system of ideal gas format ions that 
correspond to emerged physical structures are waves, shock 
waves, vortices.  

(In gas dynamical system of viscous gas, formations that 
correspond to emerged physical structures are turbulent 
pulsations). 

Since the created formation is a result of transition of an 
unmeasurable quantity described by the evolutionary form 
commutator into a measurable physical quantity, it is evident 
that the intensity of the formation created is controlled by the 
quantity that was stored by the evolutionary form commu-
tator.  

One can see that in gas dynamical system, even in the case 
of ideal gas, it can originate the physical structures and 
relevant format ions that lead to emergence of vorticity.  

It should be emphasized once more that the origination of 
various structures only proceeds under realizat ion of the 
conditions of degenerate transformat ions that are condi-
tioned by the degrees of freedom such as translational, ro-
tating, oscillating and others.  

The conditions of degenerate transformations are realized 
as vanishing some functional expressions such as determi-
nants, Jacobians of transformations, etc. These conditions 
specify the integral surfaces (pseudostructures): the charac-
teristics (the determinant of coefficients at the normal de-
rivatives vanishes), the singular points (Jacobian is equal to 
zero), the envelopes of characteristics of the Eu ler equations 
and so on. Under passing throughout the integral surfaces the 
gas dynamic functions or their derivatives suffer shocks 
(contact shocks). Below we present the expressions for cal-
culation of such shocks of derivatives in the direction normal 
to characteristics (and to trajectories).  

The degenerate transformation is realized as a transition 
from the accompanying noninertial frame of reference to the 
locally inertial frame of reference, that is, the transition one 
frame of reference to another nonequivalent frame of refer-
ence. The evolutionary form and nonidentical evolutionary 
relation are defined in the noninertial frame of reference 
(deforming manifo ld). But the closed exterior form and the 
identical relation are obtained with respect to the lo-
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cally-inert ial frame of reference (pseudostructure).  
Let as analyze which types of instability and what gas 

dynamic formations can orig inate under given external ac-
tion.  

1). Shock, break of diaphragm and others. The insta-
bility originates because of nonstationarity. The last term in 
(4) gives a contribution into the commutator. In the case of 
ideal gas whose flow is described by equations of the hy-
perbolic type the transition to the locally equilib rium state is 
possible on the characteristics and their envelopes. The 
corresponding formations are weak and shock waves.  

2). Flow of ideal  (inviscous, heat nonconductive) gas 
around bodies. Action of nonpotential  forces. The insta-
bility develops because of the multiple connectedness of the 
flow domain  and a nonpotentiality of the body forces. The 
contribution into the commutator comes from the second and 
third terms in (4). Since the gas is ideal one and 

1
1/ 0s ξ A∂ ∂ = = , that is, there is no contribution into the each 

flu id particle, the instability of convective type develops. For 
a>U ( U is the velocity of the gas particle, a  is the speed of 

sound) the set of equations of the balance conservation laws 
belongs to the hyperbolic type, and hence the transition to the 
locally equilib rium state is possible on the characteristics and 
on the envelopes of characteristics as well, and weak and 
shock waves are formations of the system. If a<U  when the 
equations are of elliptic  type, such a transition is possible 
only at singular points. The formations emerged due to the 
convection are of vortex type. At long acting the large-scale 
structures can be produced. 

Studying the instability on the basis of the analysis of en-
tropy behavior was carried out in the works by Prigogine and 
co-authors [6, 7]. In that works the entropy was considered as 
the thermodynamic function of state (though its behavior 
along the trajectory was analyzed). By means of such state 
function one can trace the development (in gas fluxes) of the 
thermodynamic instability only [7]. To investigate the gas 
dynamic instability it is necessary to consider entropy as the 
gas dynamic state function, i.e. as a function of the 
space-time coordinates. Whereas for studying the thermo-
dynamic instability one has to analyze the commutator con-
structed by the mixed derivatives of entropy with respect to 
the thermodynamic variables, for studying the gas dynamic 
instability it is necessary to analyze the commutators con-
structed by the mixed derivatives of entropy with respect to 
the space-time coordinates.  

3. Gas Dynamical System of Viscous Gas  
In the case of ideal gas the expression 1А  in the equa-

tion of energy (see equations (5)) is equal to zero. In the case 
of the viscous heat-conductive gas the expression 1А will 
depend on the viscosity and the heat-conductivity.  

3.1. The Equation of the Conservation Law of Energy 
for Viscous Gas  

The expression 1А of the equation of energy of the vis-
cous heat-conductive gas described in the inertial frame of 
reference by a set of the Navier-Stokes equations can be 
written as [4] 

i i ki i
1

i i k

q q τ u1 TА
ρ x T ρT x ρ x

∂∂ ∂ = − − + ∂ ∂ ∂ 
     (9) 

Here iq  is the heat flux, kiτ  is the viscous stress tensor. 
In the case of viscous gas the terms connected with the 

transport phenomena (viscous and heat-conductive) will 
contribute into the evolutionary form commutator. Th is term 
is responsible for emergence of turbulent pulsations.  

In the general case, the expression 1А will include the 
terms accounting for the chemical, oscillatory, rotational, 
translational and other effects [4] that will contribute into the 
evolutionary form commutator and influence on the devel-
opment of instability.  

Let as analyze the following example.  

3.2. Boundary Layer  
The instability originates due to the multip le connectness 

of the domain and the transport phenomena (the effect of 
viscosity and thermal conductivity). Contributions into the 
commutator produce the second term in (4) and the second 
and third terms in  expression (9). The transition to the locally 
equilibrium state is allowed at singular points because in this 
case 1

1s/ ξ A 0∂ ∂ = ≠ , that is, the external exposure acts onto 
the gas particle separately, the development of instability and 
the transitions to the locally equilibrium state are allowed 
only in  the indiv idual fluid part icle. Hence, the formations 
emerged behave as pulsations. These are turbulent pulsa-
tions. 

It is commonly believed that the instability is an emer-
gence of any structures in the gas dynamic flow. From this 
viewpoint the laminar boundary layer is regarded as stable 
one, whereas the turbulent layer regarded as unstable layer. 
However the laminar boundary layer cannot be regarded as a 
stable one because of the fact that due to the not simple 
connectedness of the flow domain and the transport proc-
esses the instability already develops although any forma-
tions do not originate. In the turbulent boundary layer the 
emergence of pulsations is a transition to the locally equi-
lib rium state, and the pulsations themselves are local forma-
tions. The other matter, due to the global nonequilibrium the 
locally equilibrium state is broken up and the pulsations 
weaken. 

4. Modeling Instable Flows  
It should be said a little about modelling instable flows. 
As it is known, some authors tried to account for the de-

velopment of instability by means of improving the equa-
tions modelling the balance conservation laws (for example,  

by introducing the high-order moments) or by introducing 
additional equations. However, such attempts give no satis-
factory results. To describe the nonequilibrium flow and the 
emergence of the gas dynamic structures (waves, vortices, 
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turbulent pulsations) one must add the evolutionary relation 
obtained from the balance conservation law equations to the 
balance conservation law equations. Under numerical mod-
elling the gas flows one has to trace for the transition from 
the evolutionary nonidentical relation to the identical relation 
(for the transition from an evolutionary unclosed form to an 
exterior closed form), and this will point to the emergence of 
a certain physical structure.  

Below we present an example of calculating the breaks of 
derivatives of the gas dynamic functions that are necessary 
for numerical analysis of gas dynamic flows. 

4.1. Breaks of Normal Derivatives on Characteristics and 
Trajectories  

While studying the effects connected with  the orig ination 
of the vorticity one can notice a certain specifics of nu-
merical solving the Eu ler equations[4]. Th is may be dem-
onstrated by the following example. Assume, that the init ial 
conditions correspond to the isentropic flow, that is, entropy 
is the same along all trajectories. For ideal gas under con-
sideration the entropy conserves along the trajectory. From 
this it follows that entropy has to conserve during all t ime of 
flow. However, in  actual cases (unsteady flow, flow along 
the body, heterogeneous medium) the derivative of entropy 
along the direction normal to trajectory suffers the break. 
Thus we have that, from one side, entropy (function) must be 
constant and, from other hand, its derivatives suffer the 
breaks. This contradiction is resolved with taking into ac-
count the fact that the break of derivative is compensated by 
changing the stream function or bending the trajectory. It is 
this effect that must be accounted for in the process of nu-
merical calculat ion. In  particular, when calculating the 
one-dimensional nonstationary nonisentropic flow of gas, 
the conditions on the characteristics includes the derivative 
of entropy with respect to the coordinate normal to trajectory 
(in space of two variables, namely, t ime and coordinate). To 
calculate this derivative one must know the break of deriva-
tive of entropy. This can be obtained from the relations that 
connects the breaks of derivatives of the gas dynamic func-
tions.  

These relations are found from the dynamic conditions of 
the consistency of the Eu ler equations. In paper[8] the dy-
namical conditions of consistency of the Euler equations for 
the case ( )p f ρ=  were considered.  

In the present work by a similar manner it is analyzed the 
case when ( )p f ρ,s= , where s is the entropy, and the rela-
tions that connect the breaks of derivatives of the functions 
describing the particle velocity, the sound speed, and entropy 
are obtained. These relations enable one to  carry  out nu-
merical calculat ions of the nonisentropic gas flows.  

The scheme of obtaining these relations for one- d imen-
sional nonstationary equations is the following. At the be-
ginning, the Eu ler equations are written down. Then the 
equations for characteristics and the conditions on charac-
teristics are derived. The kinematic conditions of consis-
tency[8], which  mutually  connect the breaks of derivatives 
of the gas dynamic functions, are written down. These con-

ditions are substituted into the Euler equations. As a result, 
the homogeneous set of equations for the breaks of deriva-
tives of the functions desired is obtained. On the character-
istic surface the determinant of this set equals zero, and from 
this it is found the nontrivial solution for the breaks of de-
rivatives of the functions desired in their dependence on a 
value of one of others. 

If to take u  (the gas velocity), a  (the sound speed), and 
s, the following relations are obtained[9]: 

1) In  the direct ion normal to the trajectory the derivatives 
of the sound speed and entropy suffer breaks (the derivative 
of velocity does not suffer a break). These breaks are con-
nected between them by the relat ion: 

1 1.2
a a s

sη γ η
  ∂ ∂

=   ∂ ∂   
 

where 1η is the direction normal to the trajectory, γ is the 
Poisson constant.  

2) In the direction normal to the characteristics the de-
rivatives of the as velocity and the speed of sound suffer 
breaks (the derivative of ntropy does not suffer break). These 
breaks are connected between them y the relation:  

2
1

u a
η γ η+− +−

   ∂ ∂
=   ∂ − ∂   


 
where η+− are the directions normal to the corresponding 
characteristics.  

5. Conclusions  
It has been shown that the conservation laws of energy and 

linear momentum turn out to be noncommutative. The 
noncommutativity of the conservation laws that leads to an 
emergence of internal forces and an appearance of the non-
equilibrium is a cause of development o f instability in  
gas-dynamic system that are accompanied by origination of 
vorticity and turbulence.  

These investigation can be used in solving the gas dy-
namical problem and an interpretation of the results ob-
tained. 

It should be noten that these results it appeared possible to 
receive only by means of the skew-symmetric d ifferential 
forms, which properties correspond to conservation laws. 
The skew-symmetric d ifferential forms on deforming (non-
integrable) manifolds were used in addition to exterior forms, 
which have differentiab le manifolds as a basis. Such 
skew-symmetric forms  (whose existence was established by 
the author) are evolutionary ones and possess a nontradi-
tional mathemat ical apparatus (such as nonidentical relations, 
degenerate transformat ions, the transition from nonintegra-
ble manifold to integrable one, and others).  

Use of such skew-symmetric forms allowed to open 
properties of the conservation laws and their role in evolu-
tionary processes. 
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