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Abstract  Conformal fluctuations of the metric tensor are considered. They give rise to a Planck scale size lower bound of 
the proper length. Infinit ies arising from the point-like character of particles are thus avoided, expressions related to fermion 
propagators are finite  without the need to renormalize or regularize. The quark condensate, constituent quark mass, pion mass, 
and pion weak decay constant are calculated within the SU(2) Nambu--Jona-Lasinio model. The numerical values are con-
sistent with known strong interaction physics if one assumes very small values of the current quark mass and effective 
coupling constant. The usual values of these quantities in hadron phenomenology can be interpreted as resulting from 
dressing of the very s mall bare quantities with the fluctuations. With respect to the cosmological constant it is shown that a 
cosmological constant term, which may  initially exist in the gravitational action, is ”masked” by the fluctuations of the metric, 
i.e., it does not appear in the final Einstein equation. Instead, the fluctuations give rise to a cosmological constant themselves. 
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1. Introduction 
The concept of a particle in quantum field theory is point- 

like. This fact  leads to the known divergent expressions 
which are usually tackled  by renormalization or regulariza-
tion techniques. Quantum gravity, however, introduces a 
coarse graining of spacetime at  the Planck scale. In the 
present work an effective description of spacetime fluctua-
tions is proposed. On the microscopic scale, of interest in 
quantum field theory, the resulting fuzziness of spacetime is 
shown to render usually d ivergent expressions finite, without 
the need for renormalizat ion or regularization. On a ma-
croscopic scale, the fluctuations affect the behavior of the 
cosmological constant. 

The coarse graining of spacetime indicates that the metric 
tensor has to be considered a quantum variable. The idea that 
quantum fluctuations of the metric can have the effect of a 
regulator is not new, see for instance[1] and references 
therein, and[2,3]. The expected effect is that propagators 
should be “smeared out”[4]. In o rder to preserve the light 
cone structure, a necessary condition for not violat ing causal-
ity at any instant of the variation of the metric, only con- 
formal fluctuations[5] are studied here. The averaging over 
these fluct uat io ns results in a fuzziness of the light cone at the 
level of the Planck scale.  

A full theory of quantum gravity is expected to require 
more than the quantization of the conformal mode. Issues 
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related to gauge-fixing and the isolation of the relevant de-
grees of freedom are not addressed here. The conformal 
mode should nevertheless refle ct  the basic features of the 
effect of quantum gravity on the observables under consid-
eration. Due to the conformality and the fact that the field 
representing the fluctuations is treated in lowest order, i.e. in 
classical approximation when deriving Einstein’s equation 
from variat ion of the action, the present procedure is in this 
sense not fundamental but should be regarded as an effective 
approach. 

The fluctuations give rise to a lower bound of the proper 
length, as should be expected also on heuristic grounds. 
Thus the infinit ies mentioned above are avoided without the 
need for regularization. The consequences for several 
physical quantities related to Green’s functions are studied in 
the context of the Nambu--Jona-Lasinio  model[6,7] using 
standard techniques[8-11], adapted to the case at hand. The 
intention here is to check the consistency of the values, with 
the implicit assumption that the quarks do behave point-like 
down to the Planck scale (but not beyond that point), and that 
strong interactions do not introduce another (much larger) 
regularizat ion scale. 

An additional consequence of fluctuations of the metric is 
the emergence of a cosmological constant[12,13], like in 
other theories with scalar fields coupled to the metric (see 
e.g.[14] and references therein). This cosmological constant 
is independent of the one conjectured from vacuum fluctua-
tions of quantum field theory (QFT), which pose the 
well-known 120 orders of magnitude problem[15]. It  is 
shown that in the present approach this problem is of no 
relevance due to a cancellation of terms in Einstein’s equa-
tion. 
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The following section introduces the scalar field  which 
represents the fluctuations of the metric, and it is shown how 
they impose a lower bound on the proper length. Section 3 
discusses fermion propagation in curved spacetime. In sec-
tion 4 the formal expressions for the quark condensate and 
the quark mass are calcu lated, followed  by the expressions 
for the pion mass and weak decay constant in section 5. 
Section 6 is devoted to the cosmological constant which 
arises from the fluctuations of the metric. Numerical results 
and a discussion are presented in the final section. 

2. Conformal Fluctuations of the Me-
tric 

This section summarizes and adapts some known results 
(see [5] for instance). The starting point of the present ap-
proach is a scalar field 𝜑𝜑 which is to represent the quantum 
fluctuations of the generalized  metric 𝑔𝑔𝑖𝑖𝑖𝑖  about its “classical” 
or “background” value 𝑔𝑔𝑖̅𝑖𝑖𝑖 . All “background” quantities and 
operators are denoted by overbars. In the sign convention 
applied here the Ricci tensor is calculated by the contraction 
𝑅𝑅𝑚𝑚𝑚𝑚 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙  and all spacetime indices, Lat in or Greek, run 
from 0 to 3, with the signature (+ - - -). A large part of the 
following discussion assumes flat background spacetime, so 
𝑔𝑔𝑖̅𝑖𝑖𝑖 = ηij  = di ag(1, −1, −1, −1), except for the section on 
the cosmological constant, as in cosmology 𝑔𝑔𝑖̅𝑖𝑖𝑖  is usually the 
Friedman-Lemaı̂tre-Robertson-Walker metric, although this 
fact is not used explicitly. In most expressions, natural units 
with ħ = c = 1 are used. 

The simplest kind of metric variation is 
𝑔𝑔𝑖𝑖𝑖𝑖 =  𝑔𝑔𝑖𝑖𝑖𝑖 (1 + 𝜑𝜑)2 ≡ 𝑔𝑔𝑖̅𝑖𝑖𝑖  𝛷𝛷2 ,            (1) 

where the spacetime coordinate dependent function 𝜑𝜑(x) is a 
scalar field representing the quantum fluctuations of the 
metric about the classical value. The fluctuation average 
(vacuum expectation value) is required to be <𝜑𝜑> = <𝜑𝜑,m> = 
0 (the comma denotes partial derivative), meaning that the 
center of the fluctuations is the classical value and that there 
is no drift o f 𝜑𝜑 in spacetime, a fact consistent with energy 
conservation[13]. The field 𝜑𝜑  represents an additional, 
conformal degree of freedom. 

The full metric  𝑔𝑔𝑖𝑖𝑖𝑖   is now inserted into the Hilbert ac-
tion of General Relativity  

𝑆𝑆𝐺𝐺 = (16𝜋𝜋𝜋𝜋 )−1  ∫ d4𝑥𝑥�−𝑔𝑔𝑅𝑅 .      (2) 
Due to the presence of 𝜑𝜑 the total scalar curvature is  

𝑅𝑅 = 𝑅𝑅�
(1 +𝜑𝜑)2 –

6  𝑔𝑔�𝑚𝑚𝑚𝑚   𝜑𝜑;𝑚𝑚𝑚𝑚
(1+𝜑𝜑)3   ,            (3) 

where 𝑅𝑅� denotes the classical background scalar curvature, 
i.e. the usual one without fluctuations, and the semicolon 
denotes covariant derivative. In the special case of flat 
background spacetime (𝑅𝑅�=0) which is studied next, the ac-
tion reduces to 

𝑆𝑆𝐺𝐺 = 3
8𝜋𝜋 𝑙𝑙𝑃𝑃

2 ∫ d4𝑥𝑥 𝜕𝜕𝑖𝑖 𝜑𝜑𝜕𝜕𝑖𝑖 𝜑𝜑  ,          (4) 

with the Planck length 𝑙𝑙𝑃𝑃 = √𝐺𝐺 (in natural units), 𝐺𝐺 being 
the gravitational constant. (The sign convention differs from 
the one used in an earlier version of this work [16]). Note that 

the resulting action is proportional to the usual scalar action, 
with the additional factor 3/ 4 𝜋𝜋 𝑙𝑙𝑃𝑃2 . 

The vacuum expectation value of the line element be-
comes 

< 0|𝑠𝑠2|0 > = < 0�𝑔𝑔𝑖𝑖𝑖𝑖 �0 > d𝑥𝑥𝑖𝑖d𝑥𝑥𝑗𝑗   
=  < �1 + 𝜑𝜑(𝑥𝑥)�

2
>  𝑔𝑔𝑖̅𝑖𝑖𝑖  d 𝑥𝑥𝑖𝑖d 𝑥𝑥𝑗𝑗      (5) 

The quantity <  𝜑𝜑2 >  is calcu lated formally as the limit 
𝑥𝑥 → 𝑦𝑦 of the scalar propagator [17] but with the additional 
factor mentioned above appropriately included [5]: 

< 𝑇𝑇 𝜑𝜑(𝑥𝑥)𝜑𝜑(𝑦𝑦) > =
𝑙𝑙𝑃𝑃
2

3𝜋𝜋 ((𝑥𝑥−𝑦𝑦)2−i𝜖𝜖).      (6) 

The quantity < 𝜑𝜑2 > diverges as 
limd𝑥𝑥→0+ < 𝜑𝜑(𝑥𝑥 + d𝑥𝑥)𝜑𝜑(𝑥𝑥) >  = lim

d𝑥𝑥→0
 

𝑙𝑙𝑃𝑃
2

3𝜋𝜋 � 𝑔𝑔�𝑖𝑖𝑖𝑖 d𝑥𝑥𝑖𝑖 d𝑥𝑥𝑗𝑗 �
 , (7) 

leading to the result 
lim

d𝑥𝑥→0
< 𝑠𝑠2 > =

𝑙𝑙𝑃𝑃
2

3𝜋𝜋
≡ 𝜆𝜆2              (8) 

(𝜆𝜆2 = 𝐺𝐺ℏ/3𝜋𝜋𝑐𝑐3 , written here in  its fu ll form, will appear 
frequently in the following expressions). This means that 
the fluctuations of the metric impose a lower bound on the 
proper length. Any point-like object is "smeared out" at the 
level of the Planck length. Infinit ies arising from the 
point-like character of particles are thus avoided. Moreover, 
due to the presence of the fluctuations, the classical squared 
distance 𝑥𝑥2  is replaced by 

< 𝑥𝑥2 > = 𝑥𝑥2 + 𝜆𝜆2               (9) 
in the expressions considered here. This implies also that, 
after averaging over the fluctuations, the light cone is 
smeared out at the level of the Planck length. 

3. Fermions in Curved Spacetime 
When dealing with fermion propagators one has to take 

into account that any deviation of the metric from Min-
kowski spacetime 𝜂𝜂𝑖𝑖𝑖𝑖  alters the Dirac equation. Its general 
form is [18,19] 

(i𝛾𝛾𝑘𝑘 ∇k − 𝑚𝑚)Ψ = 0 ,             (10) 
where ∇𝑘𝑘  is the covariant derivative of a spinor, 

∇𝑘𝑘Ψ = 𝜕𝜕𝑘𝑘 Ψ − Γ𝑘𝑘Ψ .             (11) 
The 4x4 matrices Γ𝑘𝑘  are obtained from the relation  

𝜕𝜕𝑘𝑘 𝛾𝛾𝑖𝑖 − Γ𝑖𝑖𝑖𝑖
𝑗𝑗 𝛾𝛾𝑗𝑗 + 𝛾𝛾𝑖𝑖 Γ𝑘𝑘 − Γ𝑘𝑘 𝛾𝛾𝑖𝑖 = 0 ,      (12) 

where the Christoffel symbols 
Γ𝑘𝑘𝑘𝑘
𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑗𝑗 (𝜕𝜕𝑘𝑘  𝑔𝑔𝑠𝑠𝑠𝑠 + 𝜕𝜕𝑖𝑖  𝑔𝑔𝑠𝑠𝑠𝑠 − 𝜕𝜕𝑠𝑠  𝑔𝑔𝑘𝑘𝑘𝑘 )/2    (13) 

contain the full metric 𝑔𝑔𝑖𝑖𝑖𝑖  and where the 𝛾𝛾  matrices are 
related to the flat spacetime 𝛾̅𝛾 mat rices by 

𝛾𝛾𝑘𝑘 = Φ 𝛾̅𝛾𝑘𝑘  .                   (14) 
A rather lengthy calculation is needed to obtain the explicit 
form of the matrices Γ𝑘𝑘  from (12). Inserting them back into 
the covariant derivative, the Dirac equation can be written 
for the case at hand as  

(p;/−𝑚𝑚)Ψ = 0 ,               (15) 
where the operator p;/ reads 

p;/ = Φ−1   +i 3
2
Φ−2 𝛾̅𝛾𝑘𝑘  𝑔𝑔̅𝑘𝑘𝑘𝑘 𝜕𝜕𝑘𝑘 Φ  ,   (16) 

with  = 𝛾̅𝛾𝑘𝑘  𝑔𝑔̅𝑘𝑘𝑘𝑘 𝑝̅𝑝𝑘𝑘  and 𝑝̅𝑝𝑘𝑘 = i𝜕𝜕𝑘𝑘  . 

p;/;
-

p;/;
-
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4. Quark Condensate and Quark 
Mass 

Passing now to the discussion of quantities containing a 
single fermion propagator, the quark condensate is known to 
be related to the fermion propagator by 

< 𝑞𝑞� 𝑞𝑞 >= −i lim𝑦𝑦→ 𝑥𝑥+�𝑁𝑁𝑓𝑓 �
−1

Tr 𝑔𝑔𝐹𝐹(𝑥𝑥, 𝑦𝑦)  ,  (17) 
where 𝑁𝑁𝑓𝑓  is the number of flavors and Tr stands for the trace 
in flavor, color and Dirac spaces. The spacetime dependent 
propagator 𝑔𝑔𝐹𝐹 (𝑥𝑥)  is obtained from its four-momentum 
dependent counterpart 𝐺𝐺𝐹𝐹 (𝑝𝑝) by a Fourier transform. The 
condensate becomes 

< 𝑞𝑞�𝑞𝑞 > = −3i lim𝑦𝑦→𝑥𝑥+(2𝜋𝜋)−4  ∫ d4 𝑝̅𝑝   

× (−𝑔𝑔)−
1
2   e−i 𝑝𝑝 ̅⋅(𝑦𝑦−𝑥𝑥) tr ��p;/ − 𝑚𝑚�

−1
�  .    (18) 

Here, tr  is the Dirac trace and 𝑚𝑚  the constituent quark 
mass (see below), and the +i𝜖𝜖 term has been omitted from 
the denominator, for simplicity of notation. Also implicit is 
the evaluation of the vacuum expectation value of the fluc-
tuations. The momentum p;/A  is the full one (16), and 𝑔𝑔 
refers to the determinant of the metric tensor 

𝑔𝑔 = det 𝑔𝑔𝑘𝑘𝑘𝑘 = Φ8 det 𝑔𝑔𝑘̅𝑘𝑘𝑘  = −Φ8  .     (19) 
To calculate the vacuum expectation value of the fluctuating 
field, it  is convenient to rewrite the denominator in terms of 
𝑝̅𝑝 2. After some algebra one has 

tr ��p;/ −𝑚𝑚�
−1
� = 4𝑚𝑚Φ2  

× (𝑝̅𝑝 2 − 𝑚𝑚2Φ2 − 3iΦ−1𝜕𝜕𝑘𝑘Φ 𝑝̅𝑝𝑘𝑘 )(𝑝̅𝑝 2 − 𝑚𝑚2Φ2)−2  (20) 
and then 

< 𝑞𝑞�𝑞𝑞 >= − lim𝑥𝑥→0 12 i 𝑚𝑚Φ−2(2𝜋𝜋)−4  
× ∫ d4 𝑝̅𝑝e−i𝑝𝑝 ̅⋅ 𝑥𝑥(𝑝̅𝑝2 − 𝑚𝑚2Φ2)−1  .  (21) 

By using the identity (𝑎𝑎 + i𝜖𝜖)−1 = −i ∫ d𝛼𝛼
∞

0 ei𝛼𝛼 (𝑎𝑎+i𝜖𝜖)   
(remembering the presence of the term i𝜖𝜖 in the denomi-
nator), the d4𝑝̅𝑝 -integration can be performed, 

< 𝑞𝑞�𝑞𝑞 >= − lim𝑥𝑥→ 0
3i𝑚𝑚2

2𝜋𝜋
 ∫ d𝛼𝛼

∞
0  e−

i𝑚𝑚
2
�𝛼𝛼Φ2𝑥𝑥2 +𝛼𝛼−1�  

= − 3i𝑚𝑚2

2𝜋𝜋
∫ d𝛼𝛼
∞

0  e−
i𝑚𝑚
2
�𝛼𝛼λ2 +𝛼𝛼−1�  ,         (22) 

where use of (7) has been made to write the fluctuation av-
erage 

lim𝑥𝑥→0 < Φ2x2 > = 𝜆𝜆2  .            (23) 
The remain ing integral evaluates to 

< 𝑞𝑞� 𝑞𝑞 >= −3i𝑚𝑚2𝜋𝜋−2𝜆𝜆−1𝐾𝐾1(i𝑚𝑚𝑚𝑚) ,      (24) 
with 𝐾𝐾1  being the modified Bessel function. In the s mall 
argument limit, 𝐾𝐾1  behaves as the inverse of the argument, 
so one finally gets 

< 𝑞𝑞� 𝑞𝑞 >= −3𝑚𝑚𝜋𝜋−2𝜆𝜆−2  .        (25) 
To proceed to the discussion of the constituent mass of the 

quark one needs an explicit interaction lagrangian. An often 
used effective chiral model lagrangian is due to Nambu and 
Jona-Lasinio[6] The modern version of the model in quan-
tum chromodynamics (QCD) is reviewed for instance in[7]. 
The lagrangian of the simplest SU(2) version is written as 
𝐿𝐿 = Ψ��i𝛾𝛾𝜇𝜇 ∇𝜇𝜇 − 𝑚𝑚0�Ψ + 𝑘𝑘[(Ψ�Ψ)2 − ( Ψ�𝛾𝛾5Ψ)2]  ,  (26) 

where 𝑘𝑘 is the effective strong coupling constant, 𝑚𝑚0  is the 
current quark mass and Ψ is the quark field. As one can see, 
the quark fields are the only degrees of freedom in this model, 

the information on the gluons is residing in the constant 𝑘𝑘. It 
has been shown in[20] that this type of lagrangian can be 
obtained from QCD by integrating out the gluonic degrees of 
freedom. It is reasonable to expect that gluonic degrees of 
freedom are unimportant at  "high energy" where we know 
that quarks are asymptotically free. But how high is "high 
energy"? Asymptotic freedom is observed in QCD where 
energy scales are measured in terms of GeV, but since in this 
work energ ies up to the Planck energy are considered, there 
is no guarantee that the present type of lagrangian can still be 
used, the gluons could become important again. Let me 
simply assume  here the validity of this lagrangian down to 
the Planck scale and use it to study the consequences of the 
fluctuations, remembering the words of caution about its 
applicability. After Fierz symmetrizat ion in color, flavor and 
Dirac spaces the lagrangian acquires more terms which are 
not written exp licitly here, since they do not contribute to the 
quantities to be studied. The coupling constant is redefined 
by the presence of the exchange terms. Let me call this re-
defined value again 𝑘𝑘. 

Note that the model is non-renormalizable and is normally  
defined only together with some regularization procedure, 
for instance by using a cut-off typically in the order of 1 GeV, 
the strong interaction scale. In the present consideration 
there is no need to regularize, since the results stay finite. 
The "regularization" arises naturally from the fluctuations at 
the Planck scale. 

Some comments are in order regarding the 𝛾𝛾-matrices 
appearing in this kind of quartic interaction lagrangian. The 
expression of the pseudoscalar-isovector term ( Ψ�𝛾𝛾5Ψ)2  
stands actually for (Ψ�(𝛾𝛾5)+Ψ)(Ψ�  𝛾𝛾5Ψ) . Since 𝛾𝛾5 =
i𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3, it carries the inverse fourth power of Φ: 

𝛾𝛾5 = Φ−4 𝛾̅𝛾5   .              (27) 
The adjoint is however 

(𝛾𝛾5)+ = Φ4 𝛾̅𝛾5  ,                (28) 
so the contributions of Φ cancel in the lagrangian. (The 
same holds true for terms containing 𝛾𝛾𝜇𝜇 ). It should be noted 
also that 

Ψ� = Ψ+  𝛾̅𝛾0                 (29) 
contains only the flat spacetime 𝛾̅𝛾 0, in order to be compati-
ble with current conservation 

∇𝜇𝜇  (Ψ�𝛾𝛾𝜇𝜇Ψ) = 0  ,             (30) 

∇𝜇𝜇  being again the covariant derivative. 
In principle, all the terms appearing in  the Fierz symmetric 

lagrangian have to be considered in the evaluation o f the 
constituent mass. As in the flat spacetime case, however, 
only the scalar term (Ψ�Ψ)2  contributes, essentially since p;/

 has the same 𝛾̅𝛾𝜇𝜇 -structure as p;/;
-
, which cancels the con-

tributions in the traces in the same way as in flat spacetime 
without fluctuations, with the exception of the vector term 
�Ψ� 𝛾𝛾𝜇𝜇Ψ�

2, see below. The constituent mass 𝑚𝑚 is related to  
the current mass 𝑚𝑚0  via the self-energy Σ: 

𝑚𝑚 = 𝑚𝑚0 + iΣ(𝑝𝑝) .            (31) 
The scalar contribution is 
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iΣ𝑠𝑠 = i limy→x 𝑘𝑘 Tr 𝐺𝐺𝐹𝐹(𝑦𝑦, 𝑥𝑥)  .     (32) 

This is proportional to the expression for the quark conden-
sate:  

iΣ𝑠𝑠 = −2𝑘𝑘 < 𝑞𝑞�𝑞𝑞 >  .            (33) 
The contribution which does not vanish immediately by 
tracing is the vector term 

iΣ𝑣𝑣 = i lim𝑦𝑦→𝑥𝑥 𝑘𝑘𝛾𝛾𝜇𝜇  Tr𝐺𝐺𝐹𝐹 (𝑦𝑦, 𝑥𝑥)𝛾𝛾𝜇𝜇   .        (34) 
After evaluating the trace, this is proportional to 

𝛾̅𝛾𝜇𝜇 ∫ d4 𝑝̅𝑝(𝑝̅𝑝𝜇𝜇Φ5 + 3
2

iΦ2𝜕𝜕𝜇𝜇 Φ), so the first term vanishes right 
away since it is odd in 𝑝̅𝑝𝜇𝜇  in the integral, and the second 
because it is odd in the quantum fluctuations. Therefore, 
using (25), the constituent quark mass is obtained from 

𝑚𝑚 − 𝑚𝑚0 = −2𝑘𝑘 < 𝑞𝑞�𝑞𝑞 >= 6𝑚𝑚𝑚𝑚𝜋𝜋−2𝜆𝜆−2  .    (35) 
This relation can be used to determine the value of the 

coupling, with the assumption 𝑚𝑚 ≫  𝑚𝑚0: 
𝑘𝑘 = 𝜋𝜋2𝜆𝜆2/6  .                  (36) 

5. Pion Mass and Weak Decay Con-
stant 

As an example for expressions containing two fermion 
propagators, consider now the pion in the Nambu--Jona- 
Lasinio model. The vertex involving the pion is written in 
terms of quarks as 

𝑔𝑔𝜋𝜋  𝑞𝑞  𝑞𝑞(𝑞𝑞2 −𝑚𝑚𝜋𝜋
2 )−1 = 𝑘𝑘 𝛾̅𝛾5 �1 − 𝑘𝑘𝑘𝑘(𝑞𝑞2)�

−1
 𝛾̅𝛾5  ,  (37) 

with the quark loop integral 
𝐽𝐽(𝑞𝑞2) = i(2𝜋𝜋)−4∫ d4 𝑝̅𝑝(−𝑔𝑔)−1/2   

× Tr [𝛾̅𝛾5 𝜏𝜏− i 𝐺𝐺𝐹𝐹(𝑝𝑝 − 𝑞𝑞/2) 𝛾̅𝛾5  𝜏𝜏+ i 𝐺𝐺𝐹𝐹(𝑝𝑝 + 𝑞𝑞/2)] .   (38) 
The integral can be rewritten, with the help of the expression 
for the constituent quark mass (35), as 

𝐽𝐽(𝑞𝑞2) = (1 − 𝑚𝑚0/𝑚𝑚 )/𝑘𝑘 − 12i 𝑞𝑞2𝐼𝐼(𝑞𝑞2)  ,   (39) 
𝐼𝐼(𝑞𝑞2) = (2𝜋𝜋)−4 ∫ d4𝑝𝑝  

× [(𝑝𝑝 + 𝑞𝑞/2)2 − 𝑚𝑚2]−1 [(𝑝𝑝 − 𝑞𝑞/2)2 − 𝑚𝑚2 ]−1 .   (40) 
Since at the pole 𝑞𝑞2 = 𝑚𝑚𝜋𝜋

2  , the quark loop integral obeys 
1 − 𝑘𝑘𝑘𝑘(𝑚𝑚𝜋𝜋

2 ) = 0, as seen in (37), and the pion mass can be 
deduced from 

𝑚𝑚𝜋𝜋
2 = −𝑚𝑚0 /[12𝑚𝑚i𝑘𝑘𝑘𝑘(𝑚𝑚𝜋𝜋

2 )]  .       (41) 
The integral 𝐼𝐼(𝑞𝑞2) can be further rewritten using the con-
volution theorem as 

𝐼𝐼(𝑞𝑞2) = (2𝜋𝜋)−4 ∫ d4𝑝𝑝  𝐺𝐺𝐵𝐵 (𝑝𝑝)𝐺𝐺𝐵𝐵 (𝑝𝑝 − 𝑞𝑞)  
= ∫ d4𝑥𝑥  𝑒𝑒i𝑞𝑞 ⋅𝑥𝑥𝑔𝑔𝐵𝐵2 (𝑥𝑥)  ,               (42) 

the functions 𝐺𝐺𝐵𝐵 (𝑝𝑝) and 𝑔𝑔𝐵𝐵 (𝑥𝑥) being of the form of boson 
propagators in momentum and coordinate space. Due to the 
vacuum expectation value of the fluctuations, 𝑔𝑔𝐵𝐵2 (𝑥𝑥) be-
comes 
𝑔𝑔𝐵𝐵2 (𝑥𝑥) = (2𝜋𝜋)−4𝑚𝑚2 (𝑥𝑥2 + 𝜆𝜆2)−1𝐾𝐾1

2 �𝑚𝑚√−𝑥𝑥2 − 𝜆𝜆2�. (43) 
Calculating the Fourier t ransform of 𝑔𝑔𝐵𝐵 (𝑥𝑥) and using 

(42), one gets 
𝐼𝐼(𝑚𝑚𝜋𝜋

2 ) = i𝜆𝜆2(4𝜋𝜋3)−1 ∫ d𝑘𝑘0
∞
−∞ ∫ d𝑘𝑘𝑟𝑟

∞
0  𝑘𝑘𝑟𝑟2   

× 𝐾𝐾1�𝜆𝜆�(𝑘𝑘0 − 𝑚𝑚𝜋𝜋/2)2 + 𝑘𝑘𝑟𝑟2 + 𝑚𝑚2 �  

× 𝐾𝐾1�𝜆𝜆�(𝑘𝑘0 + 𝑚𝑚𝜋𝜋/2)2 + 𝑘𝑘𝑟𝑟2 + 𝑚𝑚2 �  

/�(𝑘𝑘0
2 + 𝑘𝑘𝑟𝑟2 + 𝑚𝑚𝜋𝜋

2/4)2 + 𝑚𝑚4 + 2𝑚𝑚2(𝑘𝑘0
2 + 𝑘𝑘𝑟𝑟2 − 𝑚𝑚𝜋𝜋

2 /4)  , (44) 
having passed to the coordinate system in which 𝑞𝑞 =
(𝑚𝑚𝜋𝜋 , 0,0,0). 

It is worthwhile noting that, since integrals are finite in the 
present scheme, it is allowed to shift variables without in-
troducing ambigu ities, contrary to the usual case of the infi-
nite integrals appearing in  normalizat ion or regularization 
procedures. 

The pion weak decay constant 𝑓𝑓𝜋𝜋  in  the chiral limit is 
written as 

𝑞𝑞𝜇𝜇  𝑓𝑓𝜋𝜋2 = −i𝑚𝑚(2𝜋𝜋)−4∫ d4𝑝̅𝑝(−𝑔𝑔)−1/2   

× Tr[𝛾̅𝛾5 𝜏𝜏− i 𝐺𝐺𝐹𝐹(𝑝𝑝 + 𝑞𝑞
2

) 1
2
𝛾𝛾𝜇𝜇 𝛾̅𝛾5𝜏𝜏+  i 𝐺𝐺𝐹𝐹(𝑝𝑝 − 𝑞𝑞

2
)]  .  (45) 

This leads to 
𝑓𝑓𝜋𝜋2 = −12i𝑚𝑚2𝐼𝐼(0) .              (46) 

Due to 𝑞𝑞2 = 0 , the integral 𝐼𝐼(0)  has spherical 
4-symmetry and reduces to 

𝐼𝐼(0) = i𝜆𝜆2(4𝜋𝜋)−2 ∫ 𝑑𝑑𝑑𝑑
∞

0 𝐾𝐾1
2  �𝜆𝜆√𝑧𝑧 + 𝑚𝑚2� � 𝑧𝑧

𝑧𝑧+𝑚𝑚2� .  (47) 

6. The Cosmological Constant 
The Casimir effect  is usually considered to be a proof for 

the existence of the quantum fluctuations of the vacuum 
required by QFT. Considering them as "real" in the sense of 
contributing to the energy density of the universe leads to the 
well-known problem of a cos mological constant 120 orders 
of magnitude bigger [15] than the one indeed observed [21]. 
What could be the impact of the metric fluctuations? The 
procedure to obtain the cosmological constant from the total 
action 𝑆𝑆 = 𝑆𝑆𝐺𝐺 + 𝑆𝑆𝑀𝑀  is described in [13], where the gravita-
tional action 𝑆𝑆𝐺𝐺  did not contain a cosmological constant 
from the outset, and 𝑆𝑆𝑀𝑀 is the matter part in dust approxi-
mat ion. Here, the same procedure is followed, but starting 
instead from the action 𝑆𝑆 = 𝑆𝑆𝐺𝐺Λ� + 𝑆𝑆𝑀𝑀 , where 

𝑆𝑆𝐺𝐺Λ� = 1
16𝜋𝜋𝜋𝜋

∫ d4𝑥𝑥�−𝑔𝑔(𝑅𝑅 + 2Λ�)        (48) 
now does contain a prior cosmological constant contribution 
Λ�, for instance created by quantum fluctuations of the va-
cuum. 

The variation of the action leading to Einstein's equation 
includes two parts, the variation of the background metric 
and the variation of the field describing the fluctuations: 

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝑔𝑔𝑖𝑖𝑖𝑖

 𝛿𝛿𝑔𝑔𝑖𝑖𝑖𝑖 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝑔𝑔�𝑖𝑖𝑖𝑖

𝛿𝛿𝑔𝑔̅𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 .  (49) 

The variations are independent and lead to two equations, 
one proportional to 𝛿𝛿𝑔𝑔̅𝑖𝑖𝑖𝑖 , 

𝑅𝑅�𝑖𝑖𝑖𝑖 −
1
2 𝑔̅𝑔𝑖𝑖𝑖𝑖𝑅𝑅�− 𝑔̅𝑔𝑖𝑖𝑖𝑖Λ�(1 +𝜑𝜑)2 + 3

2 𝑔̅𝑔𝑖𝑖𝑖𝑖
𝜑𝜑   ;𝑚𝑚

;𝑚𝑚

1+𝜑𝜑 −8𝜋𝜋𝜋𝜋𝑇𝑇𝑖𝑖𝑖𝑖 = 0 (50) 

and the other proportional to 𝛿𝛿𝛿𝛿, 
𝑅𝑅� − 6

𝜑𝜑   ;𝑚𝑚
;𝑚𝑚

1 +𝜑𝜑
+ 4Λ�(1 + 𝜑𝜑)2 + 8𝜋𝜋𝜋𝜋𝑔𝑔̅𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 = 0 .   (51) 

Compared to [13], the two equations contain now new terms 
proportional to Λ�, but when the second equation is used to 
eliminate the 𝜑𝜑-dependence from the first, the new terms  
cancel exactly. The resulting Einstein equation is identical to 
the one previously obtained without the prior Λ�-term. It can 
again be cast in the form of an Einstein equation 
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𝑅𝑅𝑚𝑚𝑚𝑚 −
1
2
𝑔𝑔𝑚𝑚𝑚𝑚 𝑅𝑅 − Λ 𝑔𝑔𝑚𝑚𝑚𝑚 = 8𝜋𝜋𝜋𝜋

𝑐𝑐4 𝑇𝑇𝑚𝑚𝑚𝑚     (52) 
with the extra term 𝑔𝑔𝑖̅𝑖𝑖𝑖 Λ  in which 

Λ = − 1
4

(8𝜋𝜋𝜋𝜋𝑔𝑔̅𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚 +𝑅𝑅�) ,       (53) 
of the same form as in [13], is a consequence of the inclusion 
of 𝜑𝜑 in the generalized metric and not of the prior Λ�. The 
contributions of the QFT vacuum fluctuations (if that was the 
assumed origin of the term Λ�) cancel in the present approach. 
The situation is remin iscent of the exp lanation of the Casimir 
effect put forward  in  [22], which does not prove nor require 
the existence of QFT vacuum fluctuations. 

7. Numerical Results and Discussion 
Neither the pion weak decay constant nor the quark con-

densate contain the effective coupling constant 𝑘𝑘 explicit ly. 
In this way, these quantities are model independent, as long 
as one regards the quarks as the only degrees of freedom. 
Both quantities are dependent indirectly on 𝑘𝑘 via the con-
stituent quark mass. In order to be able to reproduce the 
experimental value of the pion weak decay constant 𝑓𝑓𝜋𝜋 = 93 
MeV, it is necessary to assume a rather small constituent 
mass 𝑚𝑚 = 34.6  MeV. With the more acceptable value 
𝑚𝑚 = 386  MeV, the decay constant becomes 𝑓𝑓𝜋𝜋 = 1011  
MeV. The discrepancy may be due to the fact that expression 
(45) is an approximat ion in the chiral limit. It is interesting to 
realize that 𝑓𝑓𝜋𝜋  is only logarithmically dependent on the 
regularizat ion point. Using the Planck length 𝜆𝜆 as the cova-
riant cutoff in [8] yields very similar results. 

The quark condensate, although finite, evaluates to the 
unusually large value < 𝑞𝑞�𝑞𝑞 >= (5.5 × 1015  MeV)3, for the 
choice 𝑚𝑚 = 386 MeV. As discussed for instance in [8], the 
quark condensate is not renormalization invariant, but 
𝑚𝑚0 < 𝑞𝑞�𝑞𝑞 > is. In fact, the Gell-Mann--Oakes--Renner rela-
tion –𝑚𝑚0 < 𝑞𝑞�𝑞𝑞 >= 𝑓𝑓𝜋𝜋2𝑚𝑚𝜋𝜋

2  indicates that the current quark 
mass must be very small in the present situation, of the order 
of 𝑚𝑚0 = 10−39 MeV, instead of the usual few MeV. We can 
imagine that the "bare" current quark mass, appearing in the 
lagrangian, is successively dressed by the fluctuations of the 
metric to the few MeV current quark mass usually encoun-
tered in hadron physics, and then by the strong interaction, to 
finally  yield the constituent quark mass 𝑚𝑚. Th is is seen in  
(35), where both the Planck length 𝜆𝜆  and the effective 
coupling 𝑘𝑘 enter. To be compatible with (35), the coupling 
must be very small, 𝑘𝑘 = 10−45 MeV−2  from (36). This can 
also be imagined as the bare value which is then dressed by 
the fluctuations to give the more usual order of magnitude in 
the combinations 𝑘𝑘(Ψ�Ψ)2  etc. appearing in the lagrangian. 

Turning next to the pion mass 𝑚𝑚𝜋𝜋 = 140 MeV, one finds 
that (41) is satisfied with  the choices 𝑚𝑚0 = 6.1 × 10−38  
MeV for 𝑚𝑚 = 386  MeV, and 𝑚𝑚0 = 5.7 × 10−39  MeV for 
𝑚𝑚 = 34.6 MeV, respectively. Again, the smaller constituent 
mass seems to be preferred, as it compares well with the 
Gell-Mann--Oakes--Renner result. One should, however, not 
attribute too much value to this statement, since the model 
lagrangian used has to be taken with caution when ap-
proaching the Planck scale. As mentioned earlier, g luonic 

degrees of freedom may become increasingly important at 
very high energies again, since it is not clear if asymptotic 
freedom holds up to the Planck energy. It may not be allowed 
to simply use an effective coupling constant to represent 
strong interactions close to the Planck energy.  

The next step along this line of investigation will be to 
consider a model lagrangian  with gluonic degrees of freedom 
to assess their importance close to the Planck scale and to see 
whether the results presented here suffer significant changes. 

No numerical results are d iscussed with regard to the 
cosmological constant, as this is done in[13] and the inten-
tion here is to show what the effect of the fluctuations of the 
metric is on a prior presence of a cosmological constant in 
the action. The contribution of the prior term vanishes, but 
the metric fluctuations generate a cosmological constant 
themselves. This is a  new and unexpected result. Work is in 
progress to evaluate whether the prior term cancels only in 
the dust approximation used here or also under more general 
conditions. 

To summarize the results, no essential contradictions have 
been found in the present scheme, in  which conformal 
quantum fluctuations of the metric tensor introduce a fuz-
ziness of point-like part icles at the scale of the Planck length. 
This fact avoids infinities without the need for renormaliza-
tion or regularization. The physical values of quantities like 
the pion mass, pion weak decay constant and constituent 
quark mass attain reasonable values, if one assumes non-
standard (very small) values of the "bare" current quark mass 
and effective strong coupling constant. The standard values 
of the current quark mass and of the coupling constant can be 
interpreted as resulting from dressing of the bare quantities 
with the fluctuations of the metric, in a similar way as the 
constituent mass is obtained by dressing of the usual current 
quark mass with strong interactions. 

In the context of the Einstein equation, the fluctuations 
mask any prior cosmological constant present in the gravi-
tational action. This is an interesting and novel result worth 
being pursued further. 
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