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Abstract  This article concerns the effect of gravitation field of the spherical electro-magnetic wave (EMW) on its 
propagation in vacuum. For this it was received a solution of the coupled Maxwell-Einstein equations. It is shown that in 
addition with traveling wave EMW at а great distance some new solution of so-called instanton type exists. It describes the 
process of quantum tunneling between degenerate states corresponding to convergent and divergent spherical waves in 
quasi-classical approximation. It is shown that these solutions for zero moment momentum describe fields of point-like 
charges – electric e and magnetic g. Symmetry of Maxwell equations with respect to group U(1) of dual transformations: 
(E+iH) → (E+iH)eiα, (E and H are electric and magnetic fields, α – is real parameter) is valid for generalized charge e + ig, 
which is transformed in the same manner. Spontaneous breaking of symmetry of this group, which is characterized tgα = - g/e, 
leads to arising mass-less particles (photons?) due to Goldstone theorem. This also leads to the fact that magnetic charges 
cannot be detected in Nature. 
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1. Introduction 
The geometry of space-time is judged on light beam be-

havior[1]. It is commonly supposed that the form of light 
waves which is corresponding to these beams does not mat-
ter. It is shown below that it is not true, i.e. geometry will be 
different for plane and spherical waves, for example. The 
reason is connected with the gravitational field of spherical 
electromagnetic wave (SEMW). Indeed, beams normal to the 
front of SEMW are not parallel one to another and so their 
contribution to gravitational field is nonzero in general case. 
An expression for corresponding metric is presented in[2] for 
the case of week field. In the present article this effect is 
treated for the gravitational field of SEMW of arbitrary value. 
At the same time, beams normal to the front of plane elec-
tromagnetic (PEMW) wave are parallel one to another and 
do not have gravitational effect[2], so the corresponding 
metric is flat. 

2. Basic Equations 
Let us choose coupled Einstein’s equation of gravity and 

Maxwell’s equations of electromagnetic field in vacuum as 
basic ones[1,2]: 
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Here R – trace of Ricci’s tensor Ri
k: R = Ri

i , gik – metric 
tensor; Tik and Fik– tensor of energy-momentum and elec-
tromagnetic one; Гi

kl – Christoffel’s symbols; с – light speed 
in vacuum, K – gravitation constant; indices i, k, l take values 
0, 1, 2, 3; repeated indices mean summation; comma means 
usual, i.e. non-covariant derivative[1]. Let us find a solution 
of (1) which corresponds to existence of spherical light wave 
at r → ∞. For this we use an expression for interval just as in 
well-known Schwarzschild problem[1]: 
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ν = ν(t, r, θ), λ = λ(t, r, θ); x0 =ct, t –time; x1= r, x2 = θ, x3 
= φ – spherical co-ordinates. SEMW is characterized by 
frequency ω and moment momentum vector М. Let us 
choose z - axis of the co-ordinate system in direction per-
pendicular to M. It simplifies a treating because the de-
pendence of azimuth angle φ in (1) may be omitted.  

Second equation in (1) may be transformed to[1]: 
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where α =1, 2 correspond for the SEMW of TM - type, 
and α=3 – for SEMW of TE-type. Below we restrict our-
selves with the case of TM - type1, for which nonzero 
components of vector-potential and electromagnetic tensor 
are only А1, А2 and: 

                                                             
1 A solution for the SEMW of TE – type does not need separate treating be-
cause Maxwell-Einstein equations are invariant with the transformation Е → -Н, 
Н → Е, (so as Maxwell ones ) due to invariance of energy-momentum tensor 
Тik 
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We use the Hamilton calibration А0 = 0. For variables’ 
separation we assume an additional condition: λ =α(r, 
t)+β(θ), ν = -α(r, t)+β(θ). Substitution of (4) into (3) gives us 
two equations for the components А1 and А2: 
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First equation in (3) follows from (5). If we take a de-
rivative of the first equation in (5) on r and second – on ct, 
then we exclude A2 from the equations. Representing F01 = 
Ψ(r,t)·Φ(θ), we receive equations for Ψ(r,t) and Φ(θ): 
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It leads from (6) that for β → 0 Φ(cosθ) = Pm(cosθ), where 
Pm (cosθ) – Legendre polinomial, and m is nonnegative 
integer[3,4].  

3. Tensor of Energy-Momentum 
Energy-momentum tensor’s components Tk

i may be ex-
pressed by the components of metric tensor gk

i with the help 
of Einstein’s equation of gravity [1]: 
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where δk
i
 – unit 4-tensor, and R – is a trace of tensor Ri

k. 
The details of calculations one can find in[1], for example. 
Besides Christoffel’s symbols presented in[1], we need some 
additional ones; a symbol ~ means a derivative by the angle 
θ : 
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A result looks as follows: 
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Let us express components of the energy-momentum 

tensor Tk
i
 from the Maxwell equation’s solutions Ti

k = (-FilFkl 
+ δi

kFlmFlm/4)/4π[1]: 
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One must assume the right-hand sides of (8а) in a sense of 
mean-time values, but this procedure could be implemented 
in any stage of calculations.  

4. Solution of the Equations 
If one subtracts the second equation from the first, and the 

fourth from the third in (8a) and equals their results to the 
same ones in (8) he came to the following equations: 
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The constants А and В are the integrals for the equations 
(6). The equation which is led from the expressions for T0

1 in 
(8) and (8a) after time-meaning procedure looks as follows:  

0α =                     (9а) 
Average in time T0

2 gives identity. 
Note that average procedure does not change the equations 

(9). 
Second equation in (6) describes plane running wave at r 

→ ∞, what leads to the condition В = 0. If one expresses eα 
from the second equation (9) with the help of solutions of 
wave equation and substitutes it to the second equation (6), 
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then he receives an equation:  
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Prime means the derivative on x1 = r and point – on x0, 
respectively; signs “±” correspond to convergent and di-
vergent waves. A boundary condition for this equation is the 
presence of plane running wave at r → ∞.  

The solutions of (6), corresponding to the first equation in 
(9) one can treat in pseudo-Euclead space which metric 
follows from the Minkowski space’s metric with substitution 
time co-ordinate x0 to “time” co-ordinate –iy0 in 
pseudo-Euclead space. At the same time one can introduce 
pseudo-Euclead action Λ, which is connected with the action 
S in Minkowski’s space as follows Λ = iS , i = (-1)½. It is 
known [5] that localized solutions of Euclead field equations 
with finite Euclead action are instantons. An instantons of 
classical field equations in Minkowski’s space describe in 
quasi-classical limit tunneling between degenerate classical 
states, which are convergent and divergent SEMW. This 
procedure turns second hyperbolic equation in (6) to the 
elliptic one. If one suppose its finiteness at r → ∞ then he 
receives a condition А = 0 from the first equation (9). This 
provides second equation (6) looks as follows: 
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Here prime still means a derivative on x1 = r, and point – 
on y0.  

Right hand sides of the equations (9) determine functions 
β(θ). It is obvious from (9) that constant β(θ) = β0 is its so-
lution. We consider below the case β0 = 0 2. This case is 
characterized by angle dependence of the SEMW field 
closely like to one in flat Galileo space-time. 

Let us treat solutions of equations (10) and (11). A solu-
tion of (10) in complex plane z looks as follows: f(z,t) = 
F(z)e±iωt, | z | = ωr/c, ω – frequency. For the F(z) we have an 
equation: 

( )2
2

( 1) 0;m m dFFF F i FF F
z dz
+′′ ′ ′ ′− + = =    (12) 

Its solution with abovementioned boundary condition: F ~ 
eiz at z → ∞ looks as follows: 
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Ei(x) – is an integral exponent, C1 = i and C2 are constants.  
The value of eα=F'(z)/iF(z) in (10), which determines the 

                                                             
2 In case β  ≠ 0, corresponding to flat-less metric at infinity one has a condition 
for m:  m(m+1)e-β = k(k+1), where  k is nonnegative integer. A solution of this 
equation is m = k = 0 or random β. This corresponds to effective value rc = 0. 

metric one can receive with the help of the Dalembert-Euler 
formulas [6]: 
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Analogously, solutions of (11) looks as follows: f(z, y0) = 
F(z)e±ωτ, z = ωr/c, y0 = cτ. Substituting this in (11) one can 
receive an equation for F(z): 

2
2

( 1)( ) 0m mFF F FF
z
+′′ ′ ′+ − =

        
 (15) 

Prime means derivative on z. Its solution finite at z → ∞ 
looks as follows: 
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С1,2 are constants. A corresponding metric coefficient in 
(10) looks as follows (С2 = 0): 
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Action for (16) in distorted space-time looks as fol-
lows[1]: 
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Corresponding action in pseudo-Euclead space is Λ = iSf , 
dx0 = -idy0. Taking into account norm integral for Φ(θ)[3], 
one can receive (for β = 0): 
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Constant С1 > 0, because Λ > 0. Figure. 1 shows the de-
pendence Λ(r0) versus instanton’s size r0 : 

 
Figure 1.  Pseudo-Euclead action Λ versus instanton’s size r0. D(x) = Λ(x) 
/(С1/4с) -dimensionless action; x = r0 /rc – -dimensionless distance; m = 1. 

Let us treat geodesic’s behavior. An interval (2) for 
spherically symmetry of SEMW looks as follows ( dθ = dφ = 
0): 

2 2 2 2 0ds e c dt e drα α−= − =        (20) 
Taking into account value eα = exp(rc/r), one can receive 

an equation for geodesic lines:  
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Figure. 2 shows its solutions.  
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Figure 2.  Geodesic lines (light beams trajectories). Ti = ωt, x = r /rc; i = 
1(solid curves) corresponds to sign “+”, i = 2 (dashed curves) corresponds 
to sign ““ in (21); m = 1. An ordinate axis has an abscissa х = - 0.1. 

Assuming that function under integral has a singularity at 
r = 0 low limit 0 of this integral is replaced by some little 
value b ≠ 0, which is going to 0 after evaluation. In case 
shown on Figure. 2 b = 0.15. This determines behavior of the 
curves on figure. Derivatives dr/dt on both branches of “light 
cone” become zero at r = 0, what is result of space-time 
distortion due to self-gravitational field of SEMW. From the 
point of view of distant observer light beam needs infinite 
time in order to achieve point r = 0 if value of m ≠ 0. It is so 
because integral (21) diverges and two branches (21) go to 
infinity for b→ 0. The geodesic lines in case m = 0 looks as 
follows: t = ± r / c.  

As it follows from above space-time geometry corre-
sponding to SEMW differs from the one of flat space-time 
corresponding to PEMW. Besides that, instanton solutions of 
(1) brings new sight on the process of transformation of 
convergent SEMW to divergent one. Indeed, convergent 
SEMW with m ≠ 0 becomes divergent one during finite time 
only if it transfers to instanton state3 at some r0 with finite 
probability ~ exp(-2Λ0 / ћ) (ћ is a Planck constant, Λ0 = Λ(r0)) 
and vice versa. It means in turn that no information from 
sphere of radius r0 can be transferred from the past to future. 
Value of r0 is not determined by theory. 

5. Solutions with m = 0 
Let us treat solutions of Maxwell-Einstein equations, or 

more precisely of Maxwell ones, which is corresponding to 
value m = 0. As it may be shown they have a form (in 
TM-case): 
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q is a constant, signs ± in the exponent correspond to 
convergent and divergent waves. In TE-case corresponding 
solutions have similar form with the substitution E → -H, H 
→ E[7].  

                                                             
3 Instantons reconstruct the symmetry of time inversion, i.e. t → -t, of the equa-
tions (6), what is violated for its solution (13).  

These solutions usually are out of consideration in tradi-
tional electrodynamics due to their singularity at the polar 
axis. More over, there exists a rigorous theorem[4] which 
declares that Maxwell equations in vacuum have only trivial, 
i.e. zero solutions with irradiative boundary conditions, so 
constant q must has zero value in (22). But if we consider 
static case ω = 0, we find immediately that last equation in 
(22) describes an electrical field of point-like charge q = e in 
vacuum 4. This feature of Maxwell equations is seeming 
strange but it is in correspondence with the Einstein’s point 
of view: ”I feel that it is a delusion to think of the electrons 
and the fields as two physically different, independent enti-
ties. Since neither can exist without the other, there is only 
one reality to be described, which happens to have two dif-
ferent aspects; and the theory ought to recognize this from 
the start instead of doing things twice” (cited in [8, p.32]). It 
does not contradict the essence of problem, because charge 
and fluid densities (but not charge) stay zero. Problems 
which are generated by the solutions (22) are connecting 
with their interpretation. In the case of TE-waves that solu-
tions describe a well-known P.A.M. Dirac’s monopole. It is 
interesting, that in this case problems are overwhelmed, or 
bypassed, with the assumption that these hypothetical ob-
jects exist in the outer regions of the Universe and are still 
unavailable for detecting[9]. 

Let us prove that within Einstein’s conception absence of 
monopoles in Nature is principal and is connected with zero 
photon mass. Transformation concerned earlier E → -H, H 
→ E is a special case of Maxwell vacuum equations’ in-
variance with respect of continuous group of “dual symmetry” 
U(1): (E+iH) → (E+iH)eiα, where α – is a real parameter 
(dual phase)[9]. In the case of traditional electrodynamics 
zero photon mass is leading from calibration invariance of 
the Lagrangian of interaction[10]. In our case “charges” q are 
intrinsic characteristics of electromagnetic field and calibra-
tion group does not matter for description of their interaction, 
because the interaction is absent. Dual group plays its role in 
proof of zero value of photon mass. Symmetry of dual group 
is valid for “charges” q in (22) too. They transform as fol-
lows: (e + ig) → (e + ig)eiα where e denotes value of elec-
trical “charge” and g does the same for magnetic one. Zero 
value of magnetic “charge” is connected with spontaneous 
breaking of dual group’s symmetry, what is characterizing 
with tg α = -g/e. According to Goldstone’s theorem this leads 
to arising of particles, which mass is equal zero – photons. It 
is shown in quantum theory that tg α ≈ -137n/2, n- is integer, 
and α ≈ -π/25. 

                                                             
4 Or magnetic field of point-like magnetic charge q = g for dual-transformed 
analog of (22) 
5 As is shown in author’s article[11], there was another mass-less “particle”, 
corresponding to this violation of symmetry. Equation of motion for this “particle” 
looks as follows: αt + v·grad α = 0, v is  a speed of energy propagation of 
electro-magnetic wave, α is so-called “dual phase”, mentioned above. More over, 
field E + iH ((22) and its dual transformed analog) corresponds to radiation of 
dion, hypothetical particle which has both electric and magnetic charge, placed in 
the point r = 0. 
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6. Conclusions 
The conclusion that gravity of SEMW is connected with 

only its anisotropic, i.e. non-spherical part was known ear-
lier[2]. In[2] a case of week gravitation fields of finite light 
beams is treated. One can receive a distribution of beams 
velocities near the basic beam which speed is taking as 1. 
First of all, one needs an expression for the interval ds near 
basic beam, passing along x axis[2]: 

2 2 2 2 2
11 11 11(1 ) (1 ) 2ds h dx dy dz h dt h dxdt

g hµν µν µνδ
= − − − − + + −
= +

  (23) 

Here hμν is additions to the Galileo metric tensor δμν of flat 
space-time. For light beams ds2 = 0. Dividing ds2 in (23) on 
dt2 one can receive an equation for speeds of probe beams 
near basic one: 

2 2 2
11 11 11(1 ) 2 1

, , 0

x y z x

x y z

h v v v h v h
dx dy dzv v v
dt dt dt

− + + + = +

= = = =
  (24) 

This in turn can be presented as follows: 
2 22

11

11

11,
1

yx z
vv h a v a

a ha a
 +    + + = =     −    

   (25) 

One can see from (25) that spherical symmetry in probe 
beams’ speed distribution takes place only if h11 = 0, what 
corresponds to the absence of gravity. 

The main result of present article is that Universe looks 
like as real channels of information, i.e. channels with noises, 
which need infinite time in order to transfer information 
completely.  
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