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Abstract  The normal distribution is the bedrock of many statistical procedures. Inferences and conclusions from 

parametric statistical analysis may not be valid when the normality assumption is violated. Three common procedures used 

for evaluating whether a random sample of independent observations come from a population with normal distribution are: 

graphical methods (histograms, box plots, Q-Q-plots), numerical methods (skewness and kurtosis) and formal normality 

tests. In this study, the type I error rates and power of four common formal tests of normality: Anderson-Darling (AD) test, 

Chi-square (CS) test, Kolmogorov-Smirnov (KS) test and Shapiro-Wilk (SW) test were compared. Type I error rate of the 

four tests were computed via simulation (in R) of sample data generated from the standard normal while power 

comparisons was conducted using common continuous and discrete type as well as less common mixture normal alternative 

distributions. Five thousand independent samples of various sample sizes were generated from the different distributions 

considered. Our findings reveal that Shapiro-Wilk test has the most acceptable type I error rate amongst the four tests, 

followed by Kolmogorov-Smirnov test, Anderson-Darling test and Chi-square test. The power study revealed that none of 

the four tests is uniformly most powerful for all types of alternative distributions under consideration. Shapiro-Wilk test is 

the most powerful amongst the four normality tests for continuous –type alternative distributions while Chi-square test 

outperforms the other three tests for discrete-type distributions. All four normality tests have significantly low powers 

under the mixture normal distributions with unequal means and equal variances irrespective of the mixture probabilities 

while there is an improved performance under mixture normals with unequal means and unequal variances. 
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1. Introduction 

According to Thode (2002), “normality is one of the most 

common assumptions made in the development and use of 

statistical procedures.” The dependence of most parametric 

statistical methods on the normality assumption shows    

the importance of normality tests in statistical analysis. 

Inferences from parametric statistical analysis may not be 

valid when the normality assumption is violated. Therefore, 

before embarking on any statistical analysis, it is important 

to test the normality assumption. The easiest way to assess 

normality is by using graphical methods. The normal 

quantile-quantile plot (Q-Q plot) is one of the most effective 

and commonly used diagnostic tool for checking normality 

of data. Even though the graphical methods are useful tool in 

assessing normality, they do not provide not sufficient 

conclusive evidence that the normality assumption holds. 

Therefore,  to support  the  graphical  methods,  formal  
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procedures namely numerical methods and normality tests 

should be performed before passing any judgement about the 

normality of the data. 

The numerical methods include skewness and kurtosis 

coefficients whereas normality test is a more formal 

hypothesis testing procedure to ascertain if a particular data 

follows a normal distribution or not. Significant number of 

normality tests are available in literature, however, the  

most common normality test procedures available in 

statistical software packages are the Anderson-Darling  

(AD) test, Chi-square (CS) test, Jarque-Bera (JB) test, 

Kolmogorov-Smirnov (KS) test, Lilliefors test and 

Shapiro-Wilk (SW) test. The different tests of normality 

often generate different outputs i.e. some tests reject while 

others accept the same the null hypothesis of normality for 

the same dataset. These conflicting results could be 

misleading and often confusing. Therefore, the choice of test 

of normality to be used under different circumstance should 

be given significant attention. Consequently, this study seeks 

to explain the behaviours of four normality tests under 

selected discrete and continuous distributions.  
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2. Methodology 

TYPE I ERROR RATE and POWER 

The most important property of a test is that it guarantees 

that the rate of erroneously rejecting the null hypothesis will 

not be too high. Otherwise, we would reject H0 too often 

when in fact the sample comes from a normal population. 

The test decision of rejecting the null hypothesis when it is 

actually true is called type I error. The probability of making 

a type I error is denoted α and often called the significance 

level of a test. 

We performed empirical studies based on simulations. 

The underlying principle is described as follows: 

If N is the number of randomly generated independent 

samples of size n where all N samples follow a standard 

normal distribution, the empirical type I error rate αn,N of a 

given test for a given sample size n is given by  

𝛼𝑛,𝑁 =
𝑟

𝑁
 

Where r is the number of times the null hypothesis is 

rejected in N tests. The objective is to check for a given test 

of normality if αn is higher or lower than α. 

The test decision of not rejecting the null hypothesis H0 

when the alternative hypothesis H1 is true is called type II 

error and is denoted by β. The power of a statistical test (1- β) 

is the probability of making the right decision i.e. rejecting a 

null hypothesis when it is not true.  

Let N be the number of randomly generated independent 

samples of sizes n, where all N samples follow the same 

distribution that is non-normal. The empirical power 

1 − 𝛽𝑛,𝛼,𝑁  of a given test for normality for a given 

significance level α is given by 

1 − 𝛽𝑛,𝛼,𝑁 =
𝑚

𝑁
 , 

Where m ≤ N is the number of the m tests that reject the 

null hypothesis of a normally distributed sample at the 

significance level α. 

In this study, simulation procedure was used to evaluate 

the empirical power of AD, CS, KS and SW test statistics in 

testing if a random sample of n independent observations 

come from a population with normal 𝑁(µ , 𝜎2) distribution. 

The null and alternative hypotheses are: 

𝐻0: 𝑇ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 

𝐻1: 𝑇ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 

Three levels of significance α = 1%, 5% and 10% were 

considered to investigate the effect of the significance level 

on the power of the tests. In order to obtain the simulated 

power of the four of the four normality tests, the setting for 

the simulation parameters were the same as in the empirical 

type II error investigations. 

VALUES OF PARAMETERS USED IN THE STUDY 

n = 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000 

N = 5000 

α = 0.01, 0.05 and 0.10 

 

Normality Tests: Anderson-Darling (AD), Chi-square 

(CS), Kolmogorov-Smirnov (KS), and Shapiro-Wilk (SW) 

The alternative distributions were selected to cover both 

continuous and discrete probability distributions. The 

alternative distributions considered were three continuous 

distributions; U (0, 1), Beta (2, 2), Gamma (4, 5) and two 

discrete distributions; Binomial (n, 0.5) and Poisson (4). 

3. Results & Discussion 

Table 1 shows the result of the rate at which each of the 

four normality tests reject a true null hypothesis. 

3.1. Type I Error 

Table 1.  Empirical type I error rate for each test and given sample size 

 Sample size n  

Test 10 20 30 40 50 100 

AD 0.0498 0.0464 0.0502 0.0526 0.0540 0.0414 

CS 0.0648 0.0522 0.0544 0.0590 0.0526 0.0466 

KS 0.0468 0.0458 0.0532 0.0530 0.0524 0.0488 

SW 0.0504 0.0494 0.0512 0.0504 0.0576 0.0438 

Test 200 300 400 500 1000 

 

AD 0.0508 0.0474 0.0452 0.0468 0.0498 

CS 0.0536 0.0622 0.0488 0.0492 0.0498 

KS 0.0530 0.0496 0.0460 0.0492 0.0498 

SW 0.0496 0.0480 0.0456 0.0508 0.0504 

In order to compare the performance of the different 

normality tests, the ranking procedure was applied. Rank 1 

was assigned to the test whose type I error rate is closest to 

0.05 while rank 4 was given to the test that is least close to 

0.05. The ranking was done for each sample size and the sum 

of ranks for each test was obtained. The test with the lowest 

sum of rank is considered as the best test among those in our 

collection. Table 2 shows the sum of ranks across all sample 

sizes for each test. 

Table 2.  Sum of ranks based on type I error rates for each normality test 

Test Sum of ranks 

AD 29 

CS 31.5 

KS 25.5 

SW 24 

Table 2 shows that the Shapiro-Wilk test is the best among 

the four normality tests because it has the lowest sum of 

ranks. It is closely followed by the Kolmogorov-Smirnov 

test and the Anderson-Darling test. Chi-square 

goodness-of-fit test has the largest sum of ranks and hence 

the poorest. 

The type I error rate of each of the four tests does not show 

any consistent pattern with changes in the sample size.  
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3.2. Power of the Tests 

3.2.1. Power for Continuous Alternative non-normal 

Distributions 

The following tables show that the power of the tests 

varies with the significance levels, sample sizes and three 

different continuous alternative distributions. The tables 

show the power for selected alternative distributions for α = 

0.01, 0.05 and 0.10. 

Table 3.  Power Comparison for Different Normality Tests against U (0, 1) 
alternative distribution at α = 0.01 

 Simulated Power of test 

 α = 0.01 

n AD CS KS SW 

10 0.0134 0.0266 0.0232 0.0128 

20 0.0364 0.0254 0.0244 0.0252 

30 0.0900 0.0354 0.0334 0.0906 

40 0.1694 0.0564 0.0398 0.2054 

50 0.2666 0.0788 0.0460 0.3588 

100 0.7946 0.2760 0.0822 0.9464 

200 0.9988 0.7920 0.1938 1.0000 

300 1.0000 0.9862 0.3602 1.0000 

400 1.0000 0.9996 0.5214 1.0000 

500 1.0000 1.0000 0.6826 1.0000 

1000 1.0000 1.0000 0.9898 1.0000 

Table 4.  Power Comparison for Different Normality Tests against U (0, 1) 
alternative distribution at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0866 0.0902 0.0834 0.0858 

20 0.1634 0.0798 0.0996 0.1884 

30 0.2974 0.1058 0.1204 0.3818 

40 0.4384 0.1658 0.1384 0.5742 

50 0.5782 0.1898 0.1528 0.7476 

100 0.9530 0.4550 0.2486 0.9970 

200 1.0000 0.9000 0.4740 1.0000 

300 1.0000 0.9958 0.6854 1.0000 

400 1.0000 0.9980 0.8386 1.0000 

500 1.0000 1.0000 0.9290 1.0000 

1000 1.0000 1.0000 0.9996 1.0000 

Table 5.  Power Comparison for Different Normality Tests against U (0, 1) 
alternative distribution at α = 0.10 

 Simulated Power of test 

 α = 0.10 

n AD CS KS SW 

10 0.1620 0.1454 0.1498 0.1750 

20 0.2844 0.1828 0.1738 0.3542 

30 0.4448 0.2178 0.2094 0.5706 

40 0.5962 0.2592 0.2322 0.7522 

50 0.7232 0.2900 0.2566 0.8758 

100 0.9828 0.5770 0.3908 0.9996 

200 1.0000 0.9406 0.6462 1.0000 

300 1.0000 0.9982 0.8310 1.0000 

400 1.0000 0.9998 0.9304 1.0000 

500 1.0000 1.0000 0.9816 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 6.  Power Comparison for Different Normality Tests against Beta (2, 
2) alternative distribution at α = 0.01 

 Simulated Power of test 

 α = 0.01 

n AD CS KS SW 

10 0.0070 0.0118 0.0138 0.0060 

20 0.0098 0.0136 0.0160 0.0052 

30 0.0122 0.0144 0.0222 0.0072 

40 0.0220 0.0138 0.0222 0.0150 

50 0.0270 0.0168 0.0182 0.0202 

100 0.1086 0.0384 0.0178 0.1416 

200 0.3950 0.0942 0.0430 0.6610 

300 0.7100 0.1692 0.0630 0.9538 

400 0.8998 0.3142 0.0950 0.9978 

500 0.9736 0.4692 0.1242 1.0000 

1000 1.0000 0.9560 0.3388 1.0000 

Table 7.  Power Comparison for Different Normality Tests against Beta (2, 
2) alternative distribution at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0452 0.0606 0.0668 0.0440 

20 0.0572 0.0512 0.0768 0.0530 

30 0.0780 0.0610 0.0742 0.0798 

40 0.1088 0.0808 0.0848 0.1150 

50 0.1352 0.0738 0.0850 0.1580 

100 0.3214 0.1112 0.1068 0.4630 

200 0.7110 0.2234 0.1564 0.9250 

300 0.9154 0.3786 0.2190 0.9978 

400 0.9862 0.5420 0.2816 0.9996 

500 0.9976 0.6978 0.3682 1.0000 

1000 1.0000 0.9890 0.7050 1.0000 

Table 8.  Power Comparison for Different Normality Tests against Beta (2, 
2) alternative distribution at α = 0.10 

 Simulated Power of test 

 α = 0.10 

n AD CS KS SW 

10 0.0934 0.1122 0.1190 0.0948 

20 0.1234 0.1330 0.1340 0.1246 

30 0.1584 0.1314 0.1408 0.1698 

40 0.1910 0.1320 0.1412 0.2260 

50 0.2348 0.1298 0.1440 0.2906 

100 0.4768 0.1944 0.1776 0.6420 

200 0.8404 0.3510 0.2740 0.9726 

300 0.9668 0.4980 0.3562 0.9998 

400 0.9946 0.6644 0.4542 1.0000 

500 1.0000 0.7988 0.5250 1.0000 

1000 1.0000 0.9970 0.8398 1.0000 
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For all significance levels considered, the four tests 

showed very low power values at samples sizes between 10 

and 50 inclusive. None of these tests produced power value 

of 40% at n = 10, 20, 30, 40 and 50. The SW test performed 

as the most powerful at these sample sizes. At α = 0.10 and a 

pre-determined power of 80%, the SW test requires n > 200  

to attain the desired power while a sample size of n > 300 is 

needed by the AD test be 80% powerful. The CS test will 

require a sample size that is significantly greater than 500 

before it can attain 80% power while a sample size of 1,000 

is not large enough for the KS test to attain 80% power. 

Tables 6, 7, and 8 above showed that the power behaviours 

of the four normality tests is different from what we observed 

under the U (0, 1) alternative distribution. For all 

significance levels considered, the four tests showed very 

low power values at samples sizes between 10 and 50 

inclusive. None of the tests produced power value of 40% at 

n = 10 to 50 and the SW test is still the most powerful at these 

sample sizes. 

At α = 0.01 and a pre-determined power of 80%, the SW 

test requires n > 200 to attain the desired power while a 

sample size of n > 300 is required by the AD test be 80% 

powerful. The CS test will require a sample size that is 

significantly greater than 500 before it can attain 80% power 

while a sample size as large as 1000 is not large enough for 

the KS test to be 80% powerful. 

For α = 0.05 and a pre-specified power of 80%, the sample 

sizes required by individual test reduced compared to α = 

0.01. The SW test will require n > 100 while a sample size 

between 200 and 300 will make the AD test 80% powerful. 

The CS test requires sample size more than 500 to attain 80% 

power while the KS could not attain this power value even at 

n= 1000. When α is increased to 0.10, the KS test attain a 

power value of 83.98% at 𝑛 = 1,000 whereas the other tests 

required lower sample sizes for the desired power. 

The four normality tests showed improved power 

behaviours under the gamma alternative distribution in tables 

6, 7 and 8 above. The least powerful KS test in our collection 

even showed acceptable power values though not 

comparable to the other three. The power of the SW test at 

sample size n = 50 for all significance levels considered is 

greater than 40%. The AD test also showed improved power 

for these small sample sizes particularly at α = 0.05 and 0.10 

respectively. 

Table 9.  Power Comparison for Different Normality Tests against Gamma 
(4, 5) alternative distribution at α = 0.01 

 Simulated Power of test 

 α = 0.01 

n AD CS KS SW 

10 0.0384 0.0258 0.0001 0.0438 

20 0.1066 0.0474 0.0001 0.1262 

30 0.1848 0.0724 0.0002 0.2358 

40 0.2720 0.0790 0.0006 0.3548 

50 0.3648 0.1114 0.0014 0.4736 

100 0.7372 0.2840 0.0054 0.8616 

200 0.9858 0.6842 0.0710 0.9984 

300 0.9976 0.9108 0.2632 1.0000 

400 1.0000 0.9832 0.4934 1.0000 

500 1.0000 0.9992 0.7318 1.0000 

1000 1.0000 1.0000 0.9990 1.0000 

Table 10.  Power Comparison for Different Normality Tests against 
Gamma (4, 5) alternative distribution at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.1254 0.1178 0.0001 0.1334 

20 0.2598 0.1330 0.0026 0.2976 

30 0.3830 0.1812 0.0060 0.4554 

40 0.4774 0.2290 0.0106 0.5780 

50 0.5830 0.2652 0.0174 0.6788 

100 0.8920 0.5160 0.0734 0.9568 

200 0.9984 0.8630 0.3398 0.9998 

300 1.0000 0.9752 0.6634 1.0000 

400 1.0000 0.9966 0.8714 1.0000 

500 1.0000 1.0000 0.9560 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 11.  Power Comparison for Different Normality Tests against 
Gamma (4, 5) alternative distribution at α = 0.10 

 Simulated Power of test 

 α = 0.10 

n AD CS KS SW 

10 0.2058 0.1698 0.0016 0.2118 

20 0.3452 0.2474 0.0110 0.3996 

30 0.4826 0.2968 0.0236 0.5598 

40 0.6048 0.3450 0.0372 0.6936 

50 0.7062 0.3956 0.0666 0.8040 

100 0.9370 0.6466 0.1790 0.9800 

200 0.9996 0.9228 0.5594 1.0000 

300 1.0000 0.9904 0.8536 1.0000 

400 1.0000 0.9986 0.9558 1.0000 

500 1.0000 1.0000 0.9924 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

At α = 0.05 level of significance, the SW test requires a 

sample size slightly higher than 50 to yield 80% power value. 

The sample size requirement of the AD test is similar to that 

of the SW test. The CS test will require sample size n > 100 

to be 80% powerful. The KS test still requires the highest 

sample size to attain a comparable pre-specified power. 

3.2.2. Power for Discrete Alternative Non-normal 

Distributions 

The following tables show that the power of the tests varies 

with the significance levels, sample sizes and three different 

discrete alternative distributions. The tables show the power 

for selected alternative distributions for α = 0.01, 0.05 and 

0.10. 

Tables 12, 13, and 14 below show that the CS test is the 

most powerful of the four test for all significance levels 

considered. At α = 0.01 and n = 30, the power of the CS test 
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is even more than our desired 80%. To obtain a pre-specified 

80% power, the AD test will require a sample size lower than 

what will be required by the SW test in the range of n > 60. 

The KS test still require the highest sample size of n > 100 to 

be 80% powerful. As α increases, the sample size 

requirements for a desired power value of each test 

decreases. 

Table 12.  Power Comparison for Different Normality Tests against 
Binomial (n, 0.5) alternative distribution at α = 0.01 

 Simulated Power of test 

 α = 0.01 

n AD CS KS SW 

10 0.0636 0.0976 0.0000 0.0494 

20 0.1132 0.3738 0.0012 0.0616 

30 0.2200 0.8356 0.0016 0.1032 

40 0.4328 0.9904 0.0030 0.1654 

50 0.6760 1.0000 0.0100 0.2490 

100 1.0000 1.0000 0.2166 0.9496 

200 1.0000 1.0000 0.9960 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 13.  Power Comparison for Different Normality Tests against 
Binomial (n, 0.5) alternative distribution at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.1952 0.3276 0.0014 0.1640 

20 0.3698 0.6896 0.0104 0.2624 

30 0.6342 0.9646 0.0270 0.3840 

40 0.8712 0.9998 0.0636 0.5542 

50 0.9828 1.0000 0.1298 0.7596 

100 1.0000 1.0000 0.7768 1.0000 

200 1.0000 1.0000 1.0000 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 14.  Power Comparison for Different Normality Tests against 
Binomial (n, 0.5) alternative distribution at α = 0.10 

 Simulated Power of test 

 α = 0.10 

n AD CS KS SW 

10 0.3186 0.4176 0.0056 0.2682 

20 0.5806 0.8318 0.0290 0.4322 

30 0.8356 0.9842 0.0920 0.5938 

40 0.9756 1.0000 0.1918 0.8056 

50 0.9994 1.0000 0.3442 0.9224 

100 1.0000 1.0000 0.9684 1.0000 

200 1.0000 1.0000 1.0000 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 15.  Power Comparison for Different Normality Tests against 
Poisson (4) alternative distribution at α = 0.01 

 Simulated Power of test 

 α = 0.01 

n AD CS KS SW 

10 0.0428 0.0492 0.0084 0.0382 

20 0.0882 0.1554 0.0242 0.0706 

30 0.1566 0.4056 0.0610 0.1186 

40 0.2702 0.8046 0.0922 0.1930 

50 0.4150 0.9804 0.1382 0.2816 

100 0.9966 1.0000 0.2014 0.8688 

200 1.0000 1.0000 0.9312 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 16.  Power Comparison for Different Normality Tests against 
Poisson (4) alternative distribution at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.1522 0.2064 0.0004 0.1438 

20 0.2880 0.3728 0.0054 0.2378 

30 0.4506 0.6874 0.0184 0.3518 

40 0.6704 0.9630 0.0510 0.5186 

50 0.8528 0.9996 0.0994 0.6706 

100 1.0000 1.0000 0.6274 0.9990 

200 1.0000 1.0000 0.9998 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Table 17.  Power Comparison for Different Normality Tests against 
Poisson (4) alternative distribution at α = 0.10 

 Simulated Power of test 

 α = 0.10 

n AD CS KS SW 

10 0.2610 0.2792 0.0038 0.2350 

20 0.4446 0.5338 0.0208 0.3870 

30 0.6740 0.8250 0.0558 0.5498 

40 0.8618 0.9798 0.1386 0.7100 

50 0.9666 0.9998 0.2410 0.8354 

100 1.0000 1.0000 0.8516 1.0000 

200 1.0000 1.0000 1.0000 1.0000 

300 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 

Tables 15, 16 and 17 show a fall in the power value of the 

four tests when compared with the binomial alternative 
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distribution. We also observed that the CS test is still the 

most powerful across all sample sizes and significance levels 

considered amongst the four tests. The AD test has a 

comparable power with the CS test while the KS is the least 

powerful in this collection. The sample size required by the 

CS to attain a desired power under the discrete distributions 

considered is lower than what was required for the three 

continuous alternative distributions earlier simulated. 

3.2.3. Power of Tests for Mixture Distributions 

Here, we considered the following mixture of two normal 

distributions: 

i.  Unequal means and equal variance with equal 

probabilities of mixture denoted Mixture Normal 1 as 

{N1 (-1, 4) + N2 (1, 4), p1 = p2 = 0.5} 

ii.  Unequal means and equal variance with unequal 

probabilities of mixture denoted Mixture Normal 2 as 

{N1 (-1, 4) + N2 (1, 4), p1 = 0.3 & p2 = 0.7} 

iii.  Unequal mean and unequal variance with equal 

probabilities of mixture denoted Mixture Normal 3 as 

{N1 (-1, 2) + N2 (1, 4), p1 = p2 = 0.5}  

iv.  Unequal mean and unequal variance with unequal 

probabilities of mixture denoted Mixture Normal 4 as 

{N1 (-1, 2) + N2 (1, 4), p1 = 0.3 & p2 = 0.7} 

Where p1 & p2 are the mixture probabilities for the two 

normal distributions respectively. 

The ranking procedure was adopted to obtain a clearer 

picture of the performance of the different normality tests. 

The rank 1 was given to the test with the highest power while 

rank 4 was assigned to the test which has the lowest power. 

The ranks were then summed to obtain the grand total of the 

ranks. Since the lowest rank was given to the test with the 

highest power, therefore the test which has the lowest sum of 

rank will be chosen as the most powerful test in our 

collection in detecting departure from normality. The 

following tables show the rank of power based on the type of 

alternative distribution and sample sizes, respectively. 

Table 18.  Power Comparison against Mixture Normal 1 at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0448 0.0666 0.0484 0.0416 

20 0.0476 0.0450 0.0478 0.0448 

30 0.0502 0.0492 0.0536 0.0518 

40 0.0478 0.0636 0.0492 0.0452 

50 0.0450 0.0498 0.0528 0.0438 

100 0.0502 0.0504 0.0482 0.0460 

200 0.0464 0.0508 0.0458 0.0454 

300 0.0514 0.0522 0.0466 0.0480 

400 0.0552 0.0524 0.0500 0.0470 

500 0.0488 0.0458 0.0446 0.0476 

1000 0.0564 0.0568 0.0590 0.0514 

Table 19.  Power Comparison against Mixture Normal 2 at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0488 0.0656 0.0552 0.0474 

20 0.0452 0.0504 0.0524 0.0534 

30 0.0512 0.0486 0.0490 0.0520 

40 0.0490 0.0556 0.0508 0.0494 

50 0.0518 0.0538 0.0530 0.0500 

100 0.0520 0.0536 0.0442 0.0532 

200 0.0584 0.0602 0.0492 0.0534 

300 0.0590 0.0546 0.0550 0.0626 

400 0.0682 0.0524 0.0556 0.0686 

500 0.0768 0.0566 0.0532 0.0726 

1000 0.1030 0.0642 0.0588 0.1112 

Table 20.  Power Comparison against Mixture Normal 3 at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0694 0.0748 0.0520 0.0626 

20 0.0920 0.0672 0.0586 0.0882 

30 0.1104 0.0774 0.0672 0.1140 

40 0.1330 0.0876 0.0732 0.1302 

50 0.1572 0.0824 0.0816 0.1542 

100 0.2812 0.1192 0.0894 0.2920 

200 0.5246 0.2092 0.1446 0.5396 

300 0.7204 0.2886 0.1900 0.7264 

400 0.8296 0.3676 0.2400 0.8546 

500 0.9116 0.4510 0.2994 0.9094 

1000 0.9974 0.8030 0.5488 0.9986 

Table 21.  Power Comparison against Mixture Normal 4 at α = 0.05 

 Simulated Power of test 

 α = 0.05 

n AD CS KS SW 

10 0.0538 0.0684 0.0500 0.0516 

20 0.0596 0.0528 0.0498 0.0604 

30 0.0652 0.0612 0.0554 0.0624 

40 0.0642 0.0664 0.0538 0.0678 

50 0.0850 0.0584 0.0606 0.0822 

100 0.1180 0.0718 0.0586 0.1220 

200 0.2030 0.0984 0.0730 0.2176 

300 0.3014 0.1134 0.0954 0.3160 

400 0.4112 0.1514 0.1048 0.4158 

500 0.4830 0.1704 0.1246 0.5062 

1000 0.8118 0.3002 0.2136 0.8238 
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Table 22.  Rank of Power of tests under all three continuous alternative 
distributions at α = 0.01 

 α = 0.01 

n AD CS KS SW 

10 8 5 8 9 

20 6 7 9 8 

30 7 8 9 6 

40 6 10 9 5 

50 5 10 11 4 

100 6 9 12 3 

200 6 9 12 3 

300 5.5 9 12 3.5 

400 5 9 12 4 

500 5.5 8 12 4.5 

1000 5.5 7 12 5.5 

Sum of ranks 65.5 91.0 118.0 55.5 

Table 23.  Rank of Power of tests under all three continuous alternative 
distributions at α = 0.05 

 α = 0.05 

n AD CS KS SW 

10 7 6 9 8 

20 6 11 8 5 

30 6 11 10 3 

40 6 10 11 3 

50 6 10 11 3 

100 6 9 12 3 

200 5.5 9 12 3.5 

300 5 9 12 4 

400 5 9 12 4 

500 6 7 12 5 

1000 6 7.5 10.5 6 

Sum of ranks 64.5 98.5 119.5 47.5 

Table 24.  Rank of Power of tests under all three continuous alternative 
distributions at α = 0.10 

 α = 0.10 

n AD CS KS SW 

10 8 9 8 5 

20 8 8 9 5 

30 6 10 11 3 

40 6 10 11 3 

50 6 10 11 3 

100 6 9 12 3 

200 5.5 9 12 3.5 

300 5 9 12 4 

400 5 9 12 4 

500 5.5 7 12 5.5 

1000 6.5 8 9 6.5 

Sum of ranks 67.5 98 119 45.5 

 

In summary, the sums ranks of power of the four tests 

under the continuous, discrete distributions and mixture 

normals are presented. 

Table 25.  Total Rank of Power based on the type of Alternative 
distribution 

 α = 0.01 

Alternative 

Distributions 
AD CS KS SW 

Continuous 65.5 91.0 118.0 55.5 

Discrete 47.5 36.5 76.0 60.0 

 α = 0.05 

Continuous 64.5 98.5 119.5 47.5 

Discrete 48.0 38.0 74.5 59.5 

Mixture 1 25.0 21.0 25.0 39.0 

Mixture 2 28.0 26.0 33.0 23.0 

Mixture 3 18.0 31.0 41.0 17.0 

Mixture 4 21.0 31.0 43.0 15.0 

 α = 0.10 

Continuous 67.5 98.0 119.0 45.5 

Discrete 47.0 39.0 73.0 59.0 

Power analysis show that the choice of a normality test 

should be made with special consideration for the type of 

measurement in which the observed data are collected.  

Under the three continuous alternative distribution 

considered in this study, Shapiro-Wilk test is the most 

powerful test amongst the four tests for all significance 

levels considered. The Anderson-Darling test may also be 

adopted in place of the Shapiro-Wilk test due to its 

reasonable power comparison against the Shapiro-Wilk test. 

Chi-square test and Kolmogorov-Smirnov test have low 

power for the continuous alternative distributions 

considered. 

Chi-square test is the most powerful of the four tests under 

the two discrete alternative distributions considered. It 

consistently demonstrated the highest power for all 

significance levels considered. The Anderson-Darling test 

again is next to the Chi-square test, followed by 

Shapiro-Wilk test. The Kolmogorov-Smirnov test is the least 

powerful among the four normality tests considered in this 

work. 

The power of all four tests, regardless of the two mixture 

probabilities considered, were very low under the mixture of 

two normal distributions with unequal means and equal 

variance. However, with a mixture probability of 0.5 each, 

Shapiro-Wilk test out-performed the other three tests under 

mixture of two normals with unequal means and unequal 

variances. This is closely followed by the Anderson-Darling 

test, then the Chi-Square and Kolmogorov Smirnov tests 

respectively. 

We also found that the power of the four tests generally 

increase as the sample size and significance level increase as 

expected theoretically. 
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4. Conclusions 

None of the four tests considered in this study is uniformly 

most powerful for all types of distributions, sample sizes and 

significance levels considered. 

For continuous alternative distributions, Shapiro-Wilk test 

is the most powerful test for all sample sizes whereas 

Kolmogorov-Smirnov test is the least powerful test in our 

collection. However, the power of Shapiro-Wilk test is   

still low for small sample size. The performance of 

Anderson-Darling test is quite comparable with 

Shapiro-Wilk test. 

For discrete alternative distributions, Chi-square test 

outperforms the other three tests at all sample sizes. 

Anderson-Darling test is next to it while Shapiro-Wilk test 

performs better than Kolmogorov-Smirnov test. 

Given the inconsistencies in power performance of all four 

tests under mixture of two normal distributions, we 

recommend that more work should be carried out on the 

search for normality tests which will perform better under 

these special conditions and the effect of mixture 

probabilities on the performance of normality tests. 
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