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Abstract  In this paper, we compared between the maximum likelihood estimator (MLE) and Bayesian estimation for the 

shape parameters   and   of the generalized power Weibull (GPW) distribution based on complete censoring data, type-II 

censoring scheme and type-II progressive censoring scheme. The Bayesian estimates for the GPW parameters are obtained 

based on binary loss function and squared error loss function. The optimal censoring scheme has been suggested using two 

different optimality criteria (mean squared of error (MSE) and Bias). This comparison was done by using simulation study 

and application on real life of data. We discussed the method of obtaining the optimal type-II progressive censoring schemes. 
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1. Introduction 

The Weibull distribution is one of the most popular 

distributions in analyzing lifetime data. This weibull family, 

which was presented at first by Bagdonavicius and Nikulin 

(2001), contains four shapes of the hazard function and it is 

mostly used in the reliability and survival analysis domains. 

This Weibull family is often used for constructing 

accelerated failures times (AFT) models which describe 

dependence of the lifetime distribution on explanatory 

variables. Pham, and Lai, (2007) introduced, the generalized 

power Weibull (GPW) distribution as a another extension of 

the Weibull family.  

Nikulin and Haghighi (2007), introduced the cumulative 

distribution function of the generalized power Weibull 

(GPW) family is 

                                      (1) 

and its the corresponding probability density function is 

                                      (2) 

The quantile function of the generalized power Weibull 

family is 

               
 

    

 

 
            (3) 

The survival function is  

                              (4) 
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Particular cases of the generalized power Weibull 

distribution are: 

   : the family of Weibull distributions; 

    and    : the family of exponential distributions. 

A sample is said to be censored if while it is drawn from a 

complete population, the item values of some of its members 

are unknown. Such sample members are themselves called 

censored. Kundu and Pradhan (2009) discussed the two most 

common censoring schemes are termed as type-I and type-II 

censoring schemes. Briefly, they can be described as follows; 

consider n items under observation in a particular experiment. 

In the conventional type-I censoring scheme, the experiment 

continues up to a pre-specified time T. On the other hand  

the conventional type-II censoring scheme requires the 

experiment to continue until a pre-specified number of 

failures     occur. Kim and Han (2009) discussed, 

progressively type II censored sampling is an important 

method of obtaining data in lifetime studies. Live units 

removed early can be readily used in other tests, thereby 

saving costs to the experimenter, and a compromise can be 

achieved between time consumption and the observation of 

some extreme values. Balakrishnan and Chen (2004) 

introduced, a progressively type II censored sample as 

follows. Suppose that n experimental units are placed on a 

life test, and suppose that the experimenter decides to have 

only m of these n units fail. At the time of the first failure, it is 

decided that    of the       surviving units are randomly 

removed from the life testing experiment. Continuing on, at 

the time of the second failure,    of the         

surviving units are randomly removed. Finally, at the time of 

the      failure, all of the remaining          
         surviving units are withdrawn from the 

experiment. For more examples, see Dey et al (2014), Dey  



52 Ehab Mohamed Almetwaly et al.:  Estimation of the Generalized Power  

Weibull Distribution Parameters Using Progressive Censoring Schemes 

 

et al (2016), see for instance the book by Balakrishnan and 

Aggrawalla (2000), and an excellent review article by 

Balakrishnan et al (2007). 

2. Maximum Likelihood Estimation for 
the Parameter of the GPW 
Distribution  

The estimation problem of the unknown parameters of the 

GPW distribution has been discussed by many authors using 

complete samples, Type II censored sample and Progressive 

Type-II Censoring Scheme. 

2.1. Complete Sample 

Balakrishnan et al (2007), introduced the maximum 

likelihood estimators (MLE) of the parameters assuming   

a cumulative exposure model with lifetimes being 

exponentially distributed. Consider a random sample   

from the Generalized Power Weibull distribution (2). The 

likelihood function is given by 

         

        
        

      
             

     
        (5) 

The natural logarithm of the likelihood function equation 

can be obtained as follows 

                        
 
           

              
   

             
     

       (6) 

The estimates of all parameters are obtained by 

differentiating the log-likelihood function in (6) with respect 

to   and   and equating them to zero. Basing on this, 

differentiating the log-likelihood function with respect to   

is given as 

 
    

  
 

 

 
         

   
          

    
    

       
                              (7) 

Differentiating the log-likelihood function in (6) with 

respect to   is given as 

 
    

  
 

 

 
      

 
     

        
 

     
  

    
 
     

    
          

      
                 (8) 

But the three equation has to be performed numerically 

using a nonlinear optimization algorithm. 

2.2. Type II Censored Sample 

A life test is terminated after a specified number of failures 

have been occurred is known as ''failure censoring'' or ''type 

II censoring''. The likelihood function can be written as: 

  
  

      
                   

    
              (9) 

Considering the Equation (9), the log likelihood function 

of a generalized power Weibull distribution used type II 

censored is defined as 

         
  

      
         

        
       

       

         
    

             
    

   

     (10) 

the natural logarithm of the likelihood function is 

      
  

      
                      

 
    

             
   

             
     

                         

              
                   (11) 

to obtain the normal equations for the unknown parameters, 

we differentiate (11) partially with respect to the parameters 

  and   and equate them to zero. The estimators for   and 

  can be obtained as the solution of the following equations. 

Differentiating the log-likelihood function in (11) with 

respect to   is given as 

    

  
 

 

 
         

   
          

     
       

       
             

           
   (12) 

and  

 
    

  
 

 

 
      

 
     

        
 

     
  

    
 
    

     
          

       
       

         
          

               (13) 

But the three equation has to be performed numerically 

using a nonlinear optimization algorithm. 

Dey et al (2014) introduced among the different censoring 

schemes, Type-II are the most popular censoring schemes. 

Unfortunately, in any of these censoring schemes, it is not 

possible to withdraw live items during the experiment. In this 

paper, we consider a generalization of the classical Type-II 

censoring scheme, where it is possible to withdraw live items 

during the experiment, and it is known as progressive 

Type-II censoring scheme. 

2.3. Progressive Type-II Censoring Scheme 

Dey et al (2016) discussed Progressive Type-II censoring 

scheme can be described as follows: Suppose n units are 

placed on a life test and the experimenter decides beforehand 

the quantity m, the number of failures to be observed. Now at 

the time of the first failure,    of the remaining     

surviving units are randomly removed from the experiment. 

At the time of the second failure,    of the remaining 

       –    units are randomly removed from the 

experiment. Finally, at the time of the m-th failure, all the 

remaining surviving units                        
        are removed from the experiment.  

Therefore, a progressive Type-II censoring scheme 

consists of m, and             , such that 

                       . 

The   failure times obtained from a progressive Type-II 

censoring scheme will be denoted by             . We 

observed the data                         in a progressive 

censoring scheme. Although we have included           

as part of the data, these are known in advance.  
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Figure 1.  Plot the progressive type-II censoring scheme 

Based on the observed sample         from a 

progressive Type-II censoring scheme,          the 

likelihood function can be written as 

                                          
    (14) 

where 

                  
   
            

The likelihood function can be written as 

                   
     

   
    

 

    
        

       
                        (15) 

the natural logarithm of the likelihood function is 

                             
 
    

               
   

    

                 
     

             (16) 

To obtain the normal equations for the unknown 

parameters, we differentiate (16) partially with respect to the 

parameters   and   and equate them to zero. The 

estimators for   and   can be obtained as the solution of 

the following equations. 

    

  
 

 

 
         

   
          

     
          

       
                

           
   

    (17) 

Differentiating the log-likelihood function in (16) with 

respect to   is given as 

    

  
 

 

 
      

 
     

        
 

     
  

    
 
    

    
          

       
     

     
                 

       
            (18) 

The MLE        can be obtained by solving 

simultaneously the likelihood equations 

   

  
 
    

  ,       

   
 
      

   

But the equation (17), (18) has to be performed 

numerically using a nonlinear optimization algorithm. 

3. Bayesian Estimation of the GPW 
Distribution 

In this section we consider the Bayesian estimation for the 

parameters of the GPW distribution under the assumption 

that the random variables   and   have an independent 

gamma distribution is a conjugate prior to the GPW 

distributions. Assumed that               and 

             , then, the joint prior density of   and   

can be written as 

                                             (19) 
here all the hyper parameters             are known and 

non-negative. 

3.1. Bayesian Estimation in Complete Data  

Based on the likelihood function (5) and the joint prior 

density (19), the joint posterior of complete (c) data (GPW) 

density of   and   is 

                                        
     

    

    
   

 
     

  
   

  
                         (20) 

here the normalizing constant K is 

    
                             

     
   

    
   

 
     

  
   

  
   

     
 

 
 

  

  

(21) 

under binary loss function it should be the estimation of all 

parameters are obtained by differentiating the posterior 

function in (20) with respect to   and   and equating them 

to zero. 

   
         

  
     

         

  
           (22) 

under square error loss function it should be the estimation of 

all parameters are obtained by  

    
                            

     
   

    
   

 
     

  
   

  
   

     
 

 
 (23) 

and 

    
                            

     
   

    
   

 
     

  
   

  
   

    
 

 
 (24) 

but the equations (22, 23 and 24) has to be performed 

numerically using a nonlinear optimization algorithm. 

3.2. Bayesian Estimation in Type II Censored 

Based on the likelihood function (10) and the joint prior 

density (19), the joint posterior of Type II censored of   and 

  is 

                

                             
    

            
    

   

  

    
        

       
                          (25) 

here the normalizing constant K is 

  

  
                            

    
   

         
    

   
    

        
       

   

     
 

 
 

  

                                                  

(26) 

under binary loss function it should be the estimation of all 

parameters are obtained by differentiating the posterior 
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function in (25) with respect to   and   and equating them 

to zero. 

          
         

  
               (27) 

            
         

  
              (28) 

under square error loss function it should be the estimation of 

all parameters are obtained by  

          

 
                           

    
   

    
        

       
            

    
   

  
     

 

 
   

(29) 

and 

          

 
                           

    
   

    
        

       
            

    
          

 

 
    

(30) 

but the equation (28), (29) and (30) has to be performed 

numerically using a nonlinear optimization algorithm. 

3.3. Bayesian Estimation in Progressive Type-II 

Censoring Scheme 

Based on the likelihood function (15) and the joint prior 

density (19), the joint posterior of Progressive (P) Type-II 

censored of   and   is 

         

                                
     

   
    

 

    
        

       
                         (31) 

here the normalizing constant K is 

  

                                
     

   
    

    
        

       
   

     
 

 
 

  

     

(32) 

under binary loss function it should be the estimation of all 

parameters are obtained by differentiating the posterior 

function in (31) with respect to   and   and equating them 

to zero. 

    
         

  
      

         

  
          (33) 

under square error loss function it should be the estimation of 

all parameters are obtained by  

    

                              
     

   
    

    
        

       
   

     
 

 
   

(34) 

and 

 

    

                              
     

   
    

    
        

       
   

     
 

 
    

(35) 

and equating them to zero. But the equation (33, 34 and 35) 

has to be performed numerically using a nonlinear 

optimization algorithm. 

4. Simulation Study  

In this section; Monte Carlo simulation is done for 

comparison between estimation methods based on censoring 

in complete data, Type-II Censoring Scheme and 

Progressive Type-II Censoring Scheme. For estimating 

GPW Distribution in life time by R language. 

4.1. Simulation Algorithm Scheme 

Monte Carlo experiments were carried out based on the 

following data- generated form Generalized Power Weibull 

Distribution, where x are distributed as GPW, shape 

parameter     and shape parameter      , for 

different sample size                , different 

effective sample sizes (m), and set of different samples 

schemes. The parameters of prior distribution are       
        and                . All computations are 

obtained based on the R language. The Balakrishnan and 

Aggarwala (2000) introduced optimal censoring schemes: 

we could define the best scheme as the scheme which 

minimizes the mean squared error (MSE) of the estimator. 

That is, the objective function (to be minimized in this case) 

would be 

                          (36) 

where    is the estimated value of        . 

                         (37) 

The simulation methods are compared using MSE and 

Bias for the parameters using GPW distribution, and this 

assess their performance through a Monte Carlo simulation 

study, we restricted the number of repeated-samples to 1000. 

In table 1, (n, m)=(20,0), the scheme (0) is special case of 

progressive type II censoring (complete sample), and  (n, m) 

= (20, 5), the scheme (0*4, 15) is special case of progressive 

type II censoring (type II censoring), in other schemes they 

are could progressive type II censoring, we note that the Bias 

and the MSE in progressive type II censoring is lower than 

the type II censoring. In general the progressive type II to 

censoring scheme is more efficient than type II censoring. 

We note the best method is Bayesian estimation based on 

binary loss function, since the MSE of binary loss function is 

less than MSE of square errors. We note the estimation of the 

complete sample has the least MSE, where it consist of full 
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observation. In general the Bayesian estimation based on 

binary loss function is the best method in small sample (20, 

25, and 30), but in the large sample the Bayesian estimation 

based on square error is the best method. 

 

  

Figure 2.  Plot of GPW distribution 

Table 1.  Estimation to Progressive Type-II Censoring Scheme when n=20 

 
MLE 

Bayesian estimation 

binary square error 

(n, m) scheme 
 

bias MSE bias MSE bias MSE 

(20, 0) complete 
   -1.2989 1.6870 -0.1004 0.0685 -0.6829 0.5273 

   -0.2921 0.1416 -0.0648 0.0629 -0.4629 0.3179 

(20, 5) 

(0*4, 15) 

type 2 

   -1.4150 2.0037 -1.1922 1.4382 -1.2874 1.6715 

   -0.5873 0.3864 -0.5519 0.3407 -0.7693 0.6247 

(15, 0*4) 
   -1.2889 1.6614 -0.4703 0.2378 -0.7905 0.6295 

   -0.6275 0.4328 -0.4933 0.2838 -0.7796 0.6434 

(3*5) 
   -1.3570 1.8418 -0.9575 0.9252 -1.1100 1.2392 

   -0.5919 0.3903 -0.5058 0.2922 -0.7585 0.6101 

(20, 10) 

(0*9, 10) 

type 2 

   -1.3578 1.8438 -0.6418 0.4604 -0.9715 0.9934 

   -0.5721 0.3614 -0.3319 0.1621 -0.6384 0.4749 

(10, 0*9) 
   -1.2921 1.6696 0.6121 0.4154 -0.1541 0.0730 

   -0.6002 0.3926 -0.2596 0.1236 -0.5927 0.4327 

(1*10) 
   -1.3258 1.7579 -0.1253 0.0623 -0.5752 0.3840 

   -0.5661 0.3543 -0.2341 0.1095 -0.5620 0.4012 

(2*5, 0*5) 
   -1.3080 1.7109 0.3432 0.1516 -0.2624 0.1180 

   -0.5704 0.3588 -0.1947 0.0944 -0.5297 0.3775 

(0*5, 2*5) 
   -1.3435 1.8051 -0.4148 0.2229 -0.7789 0.6594 

   -0.5620 0.3500 -0.2644 0.1231 -0.5801 0.4148 

(20, 15) 

(0*14, 5) 

types 2 

   -1.3233 1.7512 -0.3010 0.1560 -0.7795 0.6879 

   -0.4788 0.2675 -0.1826 0.0933 -0.5336 0.3908 

(5, 0*14) 
   -1.2937 1.6735 0.5900 0.4698 -0.1097 0.1730 

   -0.4858 0.2741 -0.0733 0.0741 -0.4134 0.3404 

(1*5, 0*10) 
   -1.2976 1.6839 0.5707 0.4412 -0.0837 0.1841 

   -0.4692 0.2593 -0.0229 0.0723 -0.3541 0.3344 

(0*10, 1*5) 
   -1.3181 1.7374 -0.1158 0.0966 -0.6024 0.4764 

   -0.4699 0.2598 -0.1121 0.0774 -0.4525 0.3468 
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Table 2.  Estimation to Progressive Type-II Censoring Scheme when n=25 

 
MLE 

Bayesian estimation 

binary square error 

(n, m) scheme 
 

Bias MSE Bias MSE Bias MSE 

(25, 0) complete 
   -1.2984 1.6859 -0.0716 0.0562 -0.6750 0.5044 

   -0.3023 0.1321 -0.0455 0.0485 -0.4686 0.2835 

(25, 5) 

(0*4, 20) 

type 2 

   -1.4442 2.0873 -1.2637 1.6112 -1.3308 1.7834 

   -0.5946 0.3865 -0.5633 0.3479 -0.7830 0.6368 

(20, 0*4) 
   -1.3002 1.6908 -0.5162 0.2884 -0.8191 0.6762 

   -0.6416 0.4432 -0.5056 0.2893 -0.7983 0.6616 

(4*5) 
   -1.3793 1.9026 -1.0301 1.0680 -1.1547 1.3391 

   -0.6009 0.3926 -0.5176 0.2981 -0.7741 0.6233 

(5*4, 0) 
   -1.3614 1.8537 -0.9369 0.8849 -1.0858 1.1834 

   -0.6032 0.3951 -0.5032 0.2833 -0.7712 0.6190 

(0, 5*4) 
   -1.3965 1.9508 -1.0995 1.2179 -1.2012 1.4500 

   -0.5911 0.3811 -0.5198 0.2998 -0.7687 0.6150 

(10*2, 0*3) 
   -1.3227 1.7497 -0.6904 0.4869 -0.9215 0.8524 

   -0.6208 0.4163 -0.4923 0.2740 -0.7802 0.6331 

(0*3, 10*2) 
   -1.4291 2.0435 -1.2165 1.4930 -1.2906 1.6766 

   -0.5907 0.3813 -0.5467 0.3289 -0.7755 0.6253 

(25, 10) 

(0*9, 15) 

type 2 

   -1.3808 1.9070 -0.7381 0.5882 -1.0290 1.0969 

   -0.6029 0.3886 -0.3568 0.1687 -0.6687 0.4865 

(15, 0*9) 
   -1.2970 1.6823 0.7281 0.5581 -0.1133 0.0337 

   -0.6451 0.4399 -0.2953 0.1311 -0.6364 0.4500 

(3*5, 0*5) 
   -1.3188 1.7393 0.3383 0.1383 -0.2826 0.1033 

   -0.6086 0.3946 -0.2281 0.0955 -0.5780 0.3840 

(0*5, 3*5) 
   -1.3639 1.8604 -0.5170 0.3094 -0.8460 0.7522 

   -0.5942 0.3780 -0.2940 0.1281 -0.6198 0.4283 

(25, 15) 

(0*14, 10) 

type 2 

   -1.3431 1.8040 -0.4038 0.2295 -0.8375 0.7697 

   -0.5536 0.3316 -0.2221 0.0999 -0.5759 0.3915 

(10, 0*14) 
   -1.2949 1.6767 0.9873 1.0905 0.0944 0.1023 

   -0.5774 0.3575 -0.1255 0.0697 -0.4662 0.3046 

(0*10, 2*5) 
   -1.3359 1.7848 -0.1991 0.1172 -0.6529 0.5092 

   -0.5452 0.3226 -0.1531 0.0756 -0.5050 0.3276 

(2*5, 0*10) 
   -1.3025 1.6966 0.9319 0.9630 0.1210 0.1130 

   -0.5519 0.3295 -0.0478 0.0585 -0.3833 0.2515 

(1*10, 0*5) 
   -1.3108 1.7181 0.6810 0.5542 0.0028 0.1009 

   -0.5431 0.3202 -0.0279 0.0569 -0.3675 0.2405 

(0*5, 1*10) 
   -1.3275 1.7622 0.0649 0.0873 -0.4344 0.2822 

   -0.5396 0.3166 -0.0918 0.0622 -0.4434 0.2822 

(25, 20) 

(0*19, 5) 

type 2 

   -1.3181 1.7373 -0.1960 0.1040 -0.7262 0.6001 

   -0.4621 0.2425 -0.1232 0.0678 -0.5082 0.3317 

(5, 0*19) 
   -1.2950 1.6771 0.6352 0.5361 -0.0688 0.1649 

   -0.4671 0.2472 0.0011 0.0604 -0.3645 0.2485 

(1*5, 0*15) 
   -1.2973 1.6830 0.6423 0.5468 -0.0173 0.1988 

   -0.4537 0.2355 0.0411 0.0647 -0.3233 0.2343 

(0*15, 1*5) 
   -1.3148 1.7288 -0.0421 0.0838 -0.5731 0.4309 

   -0.4551 0.2366 -0.0585 0.0604 -0.4324 0.2807 
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Table 3.  Estimation to Progressive Type-II Censoring Scheme when      

 
MLE 

Bayesian estimation 

binary square error 

(n, m) scheme 
 

bias MSE bias MSE bias MSE 

(30, 0) complete 
   -1.2977 1.6841 -0.0514 0.0624 -0.6665 0.4897 

   -0.3063 0.1230 -0.0266 0.0341 -0.4661 0.2612 

(30, 5) 

(0*4, 25) 

type 2 

   -1.4666 2.1528 -1.3104 1.7323 -1.3591 1.8589 

   -0.5963 0.3851 -0.5681 0.3508 -0.7901 0.6447 

(25, 0*4) 
   -1.3107 1.7183 -0.5608 0.3398 -0.8454 0.7212 

   -0.6470 0.4467 -0.5094 0.2903 -0.8079 0.6733 

(5*5) 
   -1.3970 1.9520 -1.0822 1.1774 -1.1862 1.4122 

   -0.6036 0.3923 -0.5234 0.3013 -0.7829 0.6334 

(30, 10) 

(0*9, 20) 

type 2 

   -1.4011 1.9633 -0.8181 0.7092 -1.0767 1.1925 

   -0.6167 0.4021 -0.3740 0.1769 -0.6867 0.5037 

(20, 0*9) 
   -1.3021 1.6954 0.7781 0.6368 -0.0961 0.0221 

   -0.6688 0.4678 -0.3099 0.1338 -0.6582 0.4691 

(2*10) 
   -1.3555 1.8376 -0.2797 0.1102 -0.6807 0.4898 

   -0.6182 0.4035 -0.2861 0.1191 -0.6330 0.4373 

(5*4, 0*6) 
   -1.3225 1.7490 0.4309 0.2020 -0.2462 0.0748 

   -0.6336 0.4221 -0.2537 0.1018 -0.6104 0.4113 

(0*6, 5*4) 
   -1.3868 1.9235 -0.6625 0.4789 -0.9478 0.9304 

   -0.6101 0.3940 -0.3280 0.1444 -0.6527 0.4606 

(10*2, 0*8) 
   -1.3095 1.7148 0.6795 0.4796 -0.1352 0.0306 

   -0.6523 0.4459 -0.2830 0.1172 -0.6333 0.4380 

(0*8, 10*2) 
   -1.3965 1.9505 -0.7710 0.6346 -1.0366 1.1076 

   -0.6142 0.3990 -0.3585 0.1656 -0.6749 0.4885 

(30, 15) 

(0*14, 15) 

type 2 

   -1.3603 1.8504 -0.4846 0.2982 -0.8830 0.8414 

   -0.5905 0.3694 -0.2470 0.1066 -0.6009 0.4110 

(15, 0*14) 
   -1.2972 1.6827 1.2408 1.6628 0.1931 0.0983 

   -0.6273 0.4130 -0.1609 0.0701 -0.4842 0.3086 

(5*3, 0*12) 
   -1.3029 1.6976 1.2239 1.5868 0.2155 0.1082 

   -0.6072 0.3885 -0.1087 0.0584 -0.4268 0.2640 

(0*12, 5*3) 
   -1.3560 1.8387 -0.3850 0.2172 -0.7950 0.6995 

   -0.5864 0.3645 -0.2137 0.0914 -0.5692 0.3773 

(3*5, 0*10) 
   -1.3080 1.7108 1.1366 1.3666 0.1991 0.1025 

   -0.5964 0.3757 -0.0753 0.0529 -0.3985 0.2432 

(0*10,3*5) 
   -1.3516 1.8268 -0.2749 0.1482 -0.6966 0.5594 

   -0.5828 0.3604 -0.1814 0.0788 -0.5396 0.3477 

(30, 20) 

(0*19, 10) 

type 2 

   -1.3332 1.7776 -0.2660 0.1424 -0.7594 0.6564 

   -0.5349 0.3079 -0.1551 0.0729 -0.5365 0.3505 

(10, 0*19) 
   -1.2952 1.6775 1.1047 1.3882 0.2801 0.2879 

   -0.5546 0.3287 -0.0303 0.0539 -0.4181 0.2602 

(1*10, 

0*10) 

   -1.3044 1.7016 1.0344 1.2159 0.3420 0.3521 

   -0.5242 0.2969 0.0748 0.0632 -0.2892 0.2068 

(0*10, 

1*10) 

   -1.3236 1.7521 0.1456 0.1268 -0.3738 0.2785 

   -0.5222 0.2950 -0.0223 0.0546 -0.3893 0.2462 

(5*2, 0*18) 
   -1.2964 1.6806 1.1198 1.4219 0.3089 0.3160 

   -0.5469 0.3204 -0.0095 0.0540 -0.3951 0.2482 

(0*18, 5*2) 
   -1.3321 1.7745 -0.2219 0.1255 -0.7175 0.6013 

   -0.5331 0.3060 -0.1378 0.0685 -0.5178 0.3342 
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(30, 25) 

(0*24, 5) 

type 2 

   -1.3138 1.7262 -0.1342 0.0798 -0.6955 0.5517 

   -0.4492 0.2272 -0.0868 0.0561 -0.4923 0.3088 

(5, 0*24) 
   -1.2950 1.6770 0.6167 0.5052 -0.0619 0.1828 

   -0.4526 0.2303 0.0409 0.0566 -0.3389 0.2245 

(0*20, 1*5) 
   -1.3116 1.7203 -0.0052 0.0755 -0.5654 0.4141 

   -0.4436 0.2225 -0.0288 0.0534 -0.4232 0.2644 

(1*5, 0*20) 
   -1.2965 1.6808 0.6282 0.5225 -0.0287 0.1964 

   -0.4418 0.2211 0.0714 0.0620 -0.3016 0.2140 

Table 4.  Estimation to Progressive Type-II Censoring Scheme when      

 
MLE 

Bayesian estimation 

binary square error 

(n, m) bias MSE bias MSE bias MSE bias MSE 

(50,0) complete 
   -1.2931 1.6721 -0.0272 0.0324 -0.0231 0.0337 

   -0.3234 0.1239 -0.0119 0.0259 0.0080 0.0268 

(50, 5) 

(0*4, 45) 

type 2 

   -1.5272 2.3347 -1.4312 2.0597 -1.0986 1.2298 

   -0.5993 0.3807 -0.5864 0.3654 -0.4114 0.1959 

(45, 0*4) 
   -1.3408 1.7985 -0.6865 0.5015 -0.2669 0.0988 

   -0.6579 0.4543 -0.5331 0.3071 -0.4394 0.2223 

(50, 10) 

(0*9, 40) 

type 2 

   -1.4619 2.1379 -1.0257 1.0867 -1.2033 1.4745 

   -0.6318 0.4141 -0.4183 0.2024 -0.7300 0.5519 

(40, 0*9) 
   -1.3193 1.7407 0.7769 0.6709 -0.1062 0.0163 

   -0.7087 0.5166 -0.3389 0.1435 -0.7712 0.6119 

(50, 15) 

(0*14, 35) 

type 2 

   -1.4135 1.9983 -0.7069 0.5531 -0.4813 0.3108 

   -0.6412 0.4239 -0.3098 0.1271 -0.2128 0.0802 

(35, 0*14) 
   -1.3076 1.7098 1.7146 3.0981 1.6550 2.7537 

   -0.7128 0.5203 -0.2672 0.1008 -0.2622 0.0993 

(50, 20) 

(0*19, 30) 

type 2 

   -1.3807 1.9065 -0.4743 0.2938 -0.8812 0.8359 

   -0.6298 0.4082 -0.2251 0.0837 -0.6078 0.4011 

(30, 0*19) 
   -1.3012 1.6931 1.6262 3.5168 0.4849 0.2685 

   -0.6902 0.4872 -0.0880 0.0281 -0.6395 0.4316 

(50, 25) 

(0*24, 25) 

type 2 

   -1.3575 1.8428 -0.3262 0.1814 -0.1935 0.1377 

   -0.6121 0.3865 -0.1719 0.0667 -0.1038 0.0520 

(25, 0*24) 
   -1.2970 1.6823 -0.9995 0.9991 1.8761 3.5915 

   -0.6595 0.4460 -0.5001 0.2501 -0.0692 0.0370 

50, 30) 

(0*29, 20) 

type 2 

   -1.3392 1.7936 -0.2144 0.1142 -0.7426 0.6185 

   -0.5800 0.3470 -0.1228 0.0493 -0.5385 0.3286 

(20, 0*29) 
   -1.2946 1.6761 -1.0000 0.9999 0.5750 0.4359 

   -0.6136 0.3865 -0.5000 0.2500 -0.4389 0.2318 

(50, 35) 

(0*34, 15) 

Type 2 

   -1.3251 1.7559 -0.1864 0.0998 -0.0856 0.0826 

   -0.5420 0.3065 -0.1140 0.0480 -0.0477 0.0412 

(15, 0*34) 
   -1.2929 1.6716 -0.9999 0.9999 1.4443 2.2510 

   -0.5636 0.3301 -0.5000 0.2500 0.1112 0.0533 

(50, 40) 

(0*39, 10) 

Type 2 

   -1.3131 1.7242 -0.3371 0.2378 -0.6827 0.5111 

   -0.4898 0.2521 -0.1862 0.0763 -0.5003 0.2853 

(10, 0*39) 
   -1.2920 1.6693 -1.0000 0.9999 0.1903 0.1965 

   -0.4993 0.2613 -0.5000 0.2500 -0.3009 0.1562 

(50, 45) 

(0*44, 5) 

type 2 

   -1.3028 1.6974 -0.7269 0.6611 -0.6712 0.4848 

   -0.4250 0.1946 -0.3815 0.1752 -0.4894 0.2740 

(5, 0*44) 
   -1.2918 1.6687 -0.9999 0.9998 -0.1957 0.1253 

   -0.4246 0.1943 -0.5000 0.2500 -0.3340 0.1685 
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5. Application of Real Data 

The data set from Chhikara, and Folks, (1989). This data 

represents the repair-times correspond to maintenance data 

on active repair times in hours for an airborne 

communications transceiver. A vector containing 46 

observations and also several data sets related to life test are 

available in the “reliaR” package, which have been taken 

from the literature. 

Table 5.  Estimation for Complete data 

 
MLE 

Bayesian estimation 

binary square error 

   0.3553 0.3722 0.5458 

   1.5661 1.4802 0.9368 

Table 6.  Goodness of Fit data 

One-sample Kolmogorov-Smirnov test (D) 

 MLE 
Bayesian estimation 

binary square error 

D 0.1328 0.1241 0.1838 

p-value 0.3912 0.4777 0.0893 

The empirical distribution function is defined as 

        
         

 
   

   
                (38) 

 

 

 

 

 

Table 7.  Estimation for Progressive Type-II Censoring Scheme of real data  

(n, m) scheme 
 

MLE 
Bayesian estimation 

binary square error 

(46, 5) 

(0*4,41) 

type 2 

   1.3855 0.3637 0.5680 

   3.6167 1.7240 2.1647 

(41, 0*4) 
   29.8982 1.3911 1.7961 

   4.9477 2.0984 2.2984 

(1, 10*4) 
   2.1127 0.4392 0.6755 

   3.8932 1.8190 2.2280 

(10*4, 1) 
   3.1563 0.5475 0.8131 

   4.0692 1.8930 2.2579 

(46, 10) 

(0*9, 36) 

type 2 

   0.7163 0.5151 0.5984 

   2.8840 2.0651 2.3175 

(36, 0*9) 
   5.8395 2.4282 2.6525 

   3.8658 2.5491 2.7058 

(46, 15) 

(0*14, 31) 

type 2 

   0.4814 0.4602 0.4764 

   2.2443 1.9144 2.0149 

(31, 0*14) 
   2.1117 0.5092 1.8308 

   3.0028 1.5019 2.7054 

(46, 20) 

(0*19, 26) 

type 2 

   0.4024 0.4082 0.4136 

   1.8522 1.6792 1.7269 

(26, 0*19) 
   1.2418 0.5201 1.1944 

   2.5852 1.5051 2.4499 

(46, 30) 

(0*29, 16) 

type 2 

   0.3722 0.3860 0.3889 

   1.6555 1.5484 1.5789 

(16, 0*29) 
   0.6361 0.6496 0.6471 

   2.0376 1.9332 1.9653 
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MLE 
Bayesian estimation 

binary square error 

 
  

Figure 3.  Plot the maximum distance between the empirical and theoretical CDF 

 

6. Conclusions 

In this paper, we discussed the estimation problem of the 

unknown parameters of the GPW distribution based on 

progressive type-II censoring scheme, type-II censoring data 

and complete censoring data. We used MLE and Bayesian 

estimation methods to estimate the unknown parameters.  

The performances of the maximum likelihood estimators are 

also quite satisfactory. We obtained the Bayes estimates 

based on binary loss function and square error loss function 

under the assumption of independent gamma priors. A real 

data set is used to show how the scheme works in practice. 

The performance of the different estimator’s optimal 

censoring schemes is compared based on simulation study to 

determine the optimal censoring schemes by using MSE and 

Bias. It is observed that Bayesian estimates with respect to 

the gamma priors behave quite similarly with the 

corresponding MLE in terms of mean squared errors. We 

note that the complete censoring is a special case of the 

progressive type II censoring scheme that can be obtained 

simply by taking                   , and note that the 

usual type II censoring scheme is a special case of the 

progressive type II censoring scheme that can be obtained 

simply by taking                     . We note that, the 

Bayesian estimation is better method, where Bias and MSE 

decreases in Bayesian estimation than the maximum 

likelihood estimation method. In small sample, we note that 

the binary loss function is the best method, but in large 

sample the square error loss function is the best method 

under the assumption of independent gamma priors. 
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