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Abstract  Outliers cause problems in statistical inferences for statistical analysis as well as growth curve model (GCM)s. 
Hence, robust estimators could be used to construct more significant inferences and this would make it possible to detect 
outliers more accurately. In this study, the method of least median square (LMS) is adopted to GCM. Then LMS, M, and ML 
(maximum likelihood) estimators are applied to real data applications and the reasons for the differences in the results are 
discussed. 

Keywords  Growth curve model, Outlier, Robust 

 

1. Introduction 
Growth curve model (GCM) is a generalized multivariate 

variance model and is defined by Potthof and Roy [1] so as 
to model longidutional data. This model is studied by 
several authors in literature as well [2-4]. Applications of 
this model to especially economic, social, and medicine 
sciences would give opportunities to investigate the mean 
growth in a population over a short period of time. Hence, 
making short term predictions become feasible by 
employing this model. 

Let X and Z be the well-known design matrixes with 
ranks m<p and r<n, respectively. p is the number of time 
points observed on each of n cases. GCM is given by 

p n p m m r r n p nY X B Z ε× × × × ×= +                (1) 

where p nY ×  is the observation matrix and B is the 

parameter matrix. Moreover, p nε ×  denotes the error matrix 
where the columns are p-variate normally distributed 
independent variables with mean 0 and unknown covariance 
matrix 0Σ > , [5]. Hence, Y ~ ( ), , ,p n nN XBZ IΣ  and I is 
the identity matrix. However, existing outliers in the data 
would impact on statistical inferences as they do in statistical 
analysis. Outlier is an observation that deviates from the rest 
of the data [6]. To get rid of the negative impacts of these 
outlying points there are two commonly addressed 
approaches. First group of methods are the so-called 
statistical  diagnostics [7, 8]. The  main purpose of these  
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methods is based on observing the variation that an 
observation (or a group of observations) do have on the 
measure so as to point out as effective. However, for the 
sake of reliability of these approaches masking and 
swamping problems should not be ignored. The methods, 
through which the outliers are detected by means of robust 
estimators conduct the second group approaches [9]. In 
recent years, these are particularly preferred in statistical 
analysis. Since they are not likely to account the outliers (or 
attain minimum weights to them) in calculations of robust 
estimators, measures used for detection of outliers would 
not (or minimum) be affected. 

Even though studies on the determination of points 
outlying of the bulk began long ago, it is only after 1990 
that it has started to improve [10-14]. The purpose of this 
paper is to identify outliers in GCMs by using robust 
estimators least median squares (LMS) and M. Section 2 
emphasis on the M estimator and the adaptation of LMS to 
GCM as well. In Section 3, we explained how to determine 
outliers by means of residuals. Finally, two real-life 
applications including outliers are considered to confirm 
differences on identifying them by means of residuals based 
on robust and non-robust estimators. 

2. Parameter Estimations in Growth 
Curve Model 

The ordinary least square (OLS) estimator of parameter B 
in equation (1) is 

1 1ˆ ( ' ) ' '( ')OLSB X X X YZ ZZ− −= .          (2) 

By using ˆOLSB , the estimator of parameter Σ  which is 

denoted as ˆ OLSΣ , [5], is calculated from 
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( )( )1 ˆ ˆˆ 'nOLS Y XBZ Y XBZΣ = − − .           (3) 

Suppose the covariance matrix ∑  is of Rao’s simple 
covariance structure (SCR), i.e., X X Q Q′∑ = Γ + Θ , where 
both : m mΓ ×  and : ( ) ( )n m n mΘ − × −  are unknown 
positive definite matrices, and Q ϕ∈ . ϕ  is the orthogonal 
matrix space of X defined by 

{ : ( ) ,  rank( ) ,  0}Q Q p p m Q p m X Qϕ ′= × − = − = , (4) 

[15]. In this case maximum likelihood (ML) estimators of 
parameters ,  ,  B Γ Θ  and ∑  are  

1 1ˆ ( ) ( )MLB X X XYZ ZZ− −′ ′ ′= ,            (5) 

1 11 ( ) ( )ML n X X X SX X X− −′ ′ ′ ′Γ = ,         (6) 

1 11ˆ ( ) ( ) ,ML n Q Q QYY Q Q Q− −′ ′ ′Θ =         (7) 

ˆˆ ˆ ' ',ML X X Q QΣ = Γ + Θ                    (8) 

respectively. Here, ( )n ZS Y I P Y′ ′≡ −  and 1
' ( )ZP Z Z Z Z−′ ′= , 

[12, 16]. 
Let us now describe the weighted least square (WLS) 

estimator 
1 1 1 1ˆ ( ' ) ' '( ')WLSB X WX X WY Z Z Z− − − −= Σ Σ      (9) 

which is based on minimizing 2

1

n
i i

i
w e

=
∑ . Here, ie  denotes 

the residual of the ith observation and  

( ) ( )2 1( , ) 'i i i i ie B y XBZ y XBZ−Σ = − Σ − .  (10) 

Hence, the covariance matrix weighted estimator is 
computed from 

'ˆ
( )

WLS
Y HY
tr H

Σ =                  (11) 

where 1( ' ) 'H W WZ Z WZ Z W−= −  [17]. W is a diagonal 
matrix that consists of weights attained for each observation 
and “tr” denotes the trace of the corresponding matrix.  

Define [ ] ( )2 1 2h n p= +  +    and t as a value that 

ranges from 1 to ( ),C n h . ( ),C n h  denotes the number of 
h-combinations from a given set of n elements. The LMS 
estimators ˆLMSB  and ˆ LMSΣ  are obtained from equations 
(9) and (11), respectively, by minimizing the objective 
function 

( )2
ˆ

ˆ ˆmin median( ( , ))
t

j jie B
β

Σ ,            (12) 

where 1,...,i n=  and ( )1,..., ,j C n h= , [9]. Moreover, the 

weight matrix tW , which will be used for the underlined 
equations, is determined so that its ith diagonal element 

2( )i iw e  is  

2 1,     if th observation exists in the th combination
( )

0,    otherwise
i i

i t
w e 

= 


. 

When ˆLMSB . is used as the initial point and the value 

ˆkB  is obtained from the kth iteration of 2

ˆ 1
( )

k

n

i
i

emin
β

ρ
=
∑ , ˆkB  

will be the M estimator, ˆMB . ρ  function has a minimum 

at “0” for all values of 2
ie . Here, Tukey’s ρ  function 

(bi-square), [18, 19], is used to compute the M estimator. 

Hence, the ith diagonal element ( )2
i iw e  of the weight 

function kW  that should be used both in equation (9) and 
(11) would be  

( ) ( )
222 2

2

2

1 / ,     0

        0          ,           >  

i i
i i

i

e c e c
w e

e c

 − ≤ ≤ =  



.     (13) 

The constant c in equation (13) is assumed that it will hold 
2
( )

2( ) ( )
p iE e c h nχ ρ ρ  =  , where [ ]2

( )
.

p
Eχ  is the expected 

value obtained from chi-squared distribution with p degrees 
of freedom. Here, h n  value is preferred so as to have the 
same breakdown point as the LMS estimator. 

3. Detecting Outliers in Growth Curve 
Model 

It is known that the sum of squared residuals fit to 
chi-square with p degrees of freedom when the data does not 
contain outliers [20]. Hence, 

( ) ( )2 1( , ) 'i i i iie B y XBZ y XBZ−Σ = − Σ −  ~ 2
( )pχ  (14) 

and if  

( ) ( )2 1ˆ ˆ ˆˆ ˆˆ ( , ) 'i i i iie B y XBZ y XBZ−Σ = − Σ −       (15) 

is greater than the critical value 2
( ),1p αχ −  the ith 

observation would be identified as an outlier. α  denotes the 
significance level. B̂  and Σ̂  are the estimators of 
parameters B  and Σ , respectively, and are calculated from 
an any estimation method. However, if estimators are 
affected by outliers they would cause for determining wrong 
observations as outliers. Therefore, robust estimators that are 
less likely to be affected by outlying points should be 
preferred and this would assure more reliable results. 

4. Example Applications 
Understanding the importance of selection of estimators in 

parameter estimates and detection of outliers in GCMs, two 
real data sets are examined. 
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4.1. Dental Data 

This data set, was first considered by Potthoff and Roy, [1], 
and later analyzed by several authors (see [21-24]). Dental 
measurements were made on 11 girls and 16 boys at ages 8, 
10, 12, and 14 years. Each measurement is the distance in 
millimetres from the centre of the pituitary to the 
pterygomaxillary fissure. Sequence number to each 
measurement is assigned. Then, the ML, LMS, and M 
estimators of this data set are computed for boys and girls 
separately, and are given in Table 1 and Table 2. The 
sequence numbers of detected outliers are summarized in the 
last column of these tables as well. As it shown in Table 1 by 
means of ML estimator, observation numbered 21 is an 
outlier. On the other hand, outliers based on LMS and M 
estimators are observations numbered as 12, 15, 20, and 24. 
ML estimators are non-robust, so they are greatly affected by 
outliers in data. Furthermore, by examining the girl’s data 
there are no outliers (see Table 2). 

4.2. Mouse Data 

This data set is reported by Izenman and Williams, [25], 
and is analyzed by Roo and Lee as well [22-24]. It consists of 
weights of 13 male mice measured at intervals of 3 days over 
the 21 days from birth to weaning. As done to the dental data, 
sequence number to each measurement is assigned. The ML, 
LMS, and M estimators of parameters B and  for this data 
set are given in Table 3. The sequence numbers of the 
detected outliers obtained by using these estimators are also 
determined. From the table, it is noticeable that robust 
estimators’ performance on detecting outliers differs from 
ML estimators. ML estimators have detected only the second 
observation as an outlier while robust estimators have 
detected 4th, 11th, and 12th observations as outliers. 

 
 
 

 

Table 1.  Parameter Estimations and Detected Outliers from Boys in Dental Data 

Estimator B̂  Σ̂  
Outlier’s sequence 

number 

 
ML 

 
15.8283 
0.8340 

4.7396 3.0635 3.2343 1.5583 

 
21 

3.0635 4.9615 1.3188 3.2167 

3.2343 1.3188 4.9439 3.0284 

1.5583 3.2167 3.0284 4.6869 

 
LMS 

 
14.8412 
0.8961 

7.4472 2.5500 4.9500 1.7472  
15 
20 
24 

2.5500 5.0111 2.1278 3.4778 

4.9500 2.1278 9.4000 3.2167 

1.7472 3.4778 3.2167 4.0028 

 
M 

 4.2235 2.6450 4.8529 3.3202  

18.3821 2.6450 3.7069 4.0749 3.1501 12 

0.6590 4.8529 4.0749 6.4112 4.7842 20 

 3.3202 3.1501 4.7842 4.8970 24 

Table 2.  Parameter Estimations and Detected Outliers from Girls in Dental Data 

Estimator B̂  Σ̂  
Outlier’s sequence 

number 

 
ML 

 
17.4220 
0.4823 

3.4771 3.4477 3.6405 3.6111  

3.4477 3.9492 3.7841 4.2855 - 

3.6405 3.7841 4.5942 4.7378  

3.6111 4.2855 4.7378 5.4123  

 
LMS 

 
17.6716 
0.4921 

5.0111 3.6778 4.7778 4.8167 

 
- 

3.6778 3.4139 4.0417 4.2333 

4.7778 4.0417 5.9028 5.8611 

4.8167 4.2333 5.8611 6.4556 

 
M 

 
17.5299 
0.4708 

4.0428 3.0500 3.8061 3.8727 

 
- 

3.0500 3.3058 3.5543 3.6296 

3.8061 3.5543 4.8836 4.8152 

3.8727 3.6296 4.8152 5.3432 

Σ
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Table 3.  Parameter Estimations and Detected Outliers from Mouse Data 

Estimator B̂  Σ̂  
Outlier’s sequence 

number 

 
 
 

ML 

 
 

0.0222 
0.2084 
-0.0108 

0.0009 0.0001 -0.0003 -0.0006 -0.0008 -0.0008 -0.0007 

 
 
 

2 

0.0001 0.0017 0.0026 0.0035 0.0040 0.0042 0.0041 

-0.0003 0.0026 0.0051 0.0067 0.0078 0.0083 0.0081 

-0.0006 0.0035 0.0067 0.0092 0.0108 0.0115 0.0114 

-0.0008 0.0040 0.0078 0.0108 0.0128 0.0139 0.0140 

-0.0008 0.0042 0.0083 0.0115 0.0139 0.0153 0.0159 

-0.0007 0.0041 0.0081 0.0114 0.0140 0.0159 0.0171 

 
 
 

LMS 

 
 

0.0196 
0.2115 
-0.0110 

0.0007 0.0010 0.0008 0.0013 0.0009 0.0015 0.0013 

 
 

2 
11 
12 

0.0010 0.0015 0.0017 0.0028 0.0027 0.0035 0.0031 

0.0008 0.0017 0.0030 0.0048 0.0059 0.0066 0.0058 

0.0013 0.0028 0.0048 0.0105 0.0131 0.0144 0.0119 

0.0009 0.0027 0.0059 0.0131 0.0198 0.0204 0.0166 

0.0015 0.0035 0.0066 0.0144 0.0204 0.0226 0.0190 

0.0013 0.0031 0.0058 0.0119 0.0166 0.0190 0.0179 

 
 
 

M 

 
 

0.0190 
0.2102 
-0.0109 

0.0007 0.0010 0.0007 0.0012 0.0007 0.0012 0.0013 

 
 

2 
4 
11 

0.0010 0.0015 0.0016 0.0026 0.0024 0.0030 0.0028 

0.0007 0.0016 0.0028 0.0047 0.0053 0.0058 0.0053 

0.0012 0.0026 0.0047 0.0100 0.0120 0.0125 0.0104 

0.0007 0.0024 0.0053 0.0120 0.0177 0.0174 0.0142 

0.0012 0.0030 0.0058 0.0125 0.0174 0.0185 0.0159 

0.0013 0.0028 0.0053 0.0104 0.0142 0.0159 0.0154 

 

5. Conclusions 
ML estimators in GCMs both using for comparison of 

groups and making short term predictions could be badly 
affected by outliers in data. This affection can lead to bad 
estimates of parameters for the assumed distribution of the 
data. Moreover, utilizing non-robust ML in hypothesis tests 
to determination of outliers will give misleading results as 
well. When the investigation of outliers is based on robust 
test statistics, it is well-known that the obtained results could 
reflect the reality much better. In Section 4, two data sets that 
are used in literature for different purposes are analyzed. 
Accordingly, the results differ to a great extend when using 
robust or non-robust estimators. Moreover, the variance of 
robust M estimator is smaller than LMS’s. Hence, obtaining 
results with robust M estimator will be more convenient. 
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