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Abstract  In this paper, a size-biased Poisson-Shanker distribution (SBPSD) has been obtained by size-biasing the 
Poisson-Shanker distribution (PSD) introduced by Shanker (2016). Its raw moments and central moments have been obtained 
and hence expressions for coefficient of variation (C.V.), skewness, kurtosis and index of dispersion have also been given. 
The method of maximum likelihood and the method of moments have been discussed for estimating its parameter. The 
goodness of fit of SBPSD has been discussed with two real data sets and the fit shows quite satisfactory fit over size-biased 
Poisson distribution (SBPD) and size-biased Poisson-Lindley distribution (SBPLD). 
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1. Introduction 
Shanker (2016) introduced Poisson-Shanker distribution 

(PSD) having probability mass function (p.m.f.) 
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for modeling count data from different fields of knowledge. 
The PSD arises from the Poisson distribution when its 
parameter λ  follows a lifetime distribution named Shanker 
distribution introduced by Shanker (2015) having probability 
density function (p.d.f.) 
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Size-biased distributions are special class of weighted 
distributions and arise in practice when observations from a 
sample are recorded with probability proportional to some 
measure of unit size. Fisher (1934) firstly introduced these 
distributions to model ascertainment biases which were later 
formalized by Rao (1965) in a unifying theory. Size-biased 
observations occur in many research areas and its fields of 
applications includes econometrics, environmental science, 
medical science, sociology, psychology, ecology, geological 
sciences etc. The applications of size-biased distribution 
theory in fitting distributions of diameter at breast height 
(DBH)  data arising from  horizontal point sampling (HPS)  
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has been discussed by Van Deusen (1986). Further, Lappi 
and Bailey (1987) have studied and applied size-biased 
distributions to analyze HPS diameter increment data. The 
detailed statistical applications of size-biased distributions to 
the analysis of data relating to human population and 
ecology can be found in Patil and Rao (1977, 1978). A 
number of research have been done relating to size-biased 
distributions and their applications in different areas of 
knowledge by many researchers including Scheaffer (1972), 
Patil and ord (1976), Singh and Maddala (1976), Patil, 
(1981), McDonald (1984), Gove (2000, 2003), Correa and 
Wolfson (2007), Drummer and McDonald (1987), Ducey 
(2009), Alavi and Chinipardaz (2009), Ducey and Gove 
(2015), are some among others.  

Let a random variable X  has original probability 
distribution ( )0 ; ; 0,1, 2,..., 0P x xθ θ= > . Suppose the 
sample units are weighted or selected with probability 

proportional to some measure xα , where α  is a positive 
integer. Then the corresponding size-biased probability 
distribution of order α  can be defined by its probability 
mass function 
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=

′ = = ∑ . If 1α = , then 

the distribution is known as simple size-biased and is 
applicable for size-biased sampling in sampling theory. If 

2α = , then the distribution is known as area-biased 
distribution and is applicable for area-biased sampling in 
forestry. 
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The p.m.f. of the size-biased Poisson-Shanker distribution (SBPSD) with parameter θ  can thus be be obtained as 
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where 
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 is the mean of the Poisson-Shanker distribution (PSD) with p.m.f. (1.1). 

Recall that the probability mass function of size-biased Poisson-Lindley distribution (SBPLD) with parameter θ , 
obtained by Ghitany and Mutairi (2008), is given by 
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The SBPLD is a size-biased version of Poisson-Lindley distribution introduced by Sankaran (1970) and the 
Poisson-Lindley distribution is a Poisson mixture of Lindley distribution, introduced by Lindley (1958). The statistical and 
mathematical properties, estimation of parameter using both maximum likelihood estimation and method of moments, and 
goodness of fit of SBPLD have been discussed by Ghitany and Mutairi (2008). Shanker et al (2015) has discussed the 
applications of SBPLD for modeling data on thunderstorms and found that SBPLD is a better model for thunderstorms than 
size-biased Poisson distribution (SBPD). 

The comparative nature and behavior of SBPSD and SBPLD are shown in the figure 1. 
 

 

 

Figure 1.  Graphs of SBPSD and SBPLD for varying values of parameter θ 
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The independent graphs of SBPSD for varying values of the parameter θ have been shown in figure 2. 

 

Figure 2.  Graphs of SPBSD for varying values of parameter θ 

The probability mass function of SBPSD can also be obtained from the size-biased Poisson distribution (SPBD) with p.m.f. 
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when its parameter λ  follows size-biased Shanker distribution (SBSD) with p.d.f. 
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Thus, the pmf of SBPSD can be obtained as 
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which is the p.m.f of SBPSD as given in (1.3). 

2. Moments and Related Measures of SBPSD 
Using (1.7), th rth factorial moment about origin of the SBPSD (1.3) can be obtained as 
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Taking x r+  in place of x , we get 
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Substituting 1, 2,3r =  and 4 in (2.1), first four factorial moments about origin can be obtained and then using the 
relationship between factorial moments about origin and moments about origin, the first four moments about origin of 
SBPSD (1.3) can be obtained as 
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Again using the relationship between moments about mean and the moments about origin, the moments about mean of the 
SBPSD (1.3) are obtained as 
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The coefficient of variation ( ).C V , coefficient of Skewness ( )1β , coefficient of Kurtosis ( )2β and index of dispersion 

( )γ  
of the SBPSD (1.3) are thus obtained as 
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It can be easily verified that SBPSD is over-dispersed ( )2µ σ< , equi-dispersed ( )2µ σ=  and under-dispersed 

( )2µ σ> for ( ) 1.634877θ θ∗< = > = . The graphs of coefficient of variation, coefficient of skewness, coefficient of 

kurtosis, and index of dispersion of SBPSD for varying values of parameter θ  are shown in figure 3. 

  

Figure 3.  Graphs of C.V, 1β , 2β  
and γ of the SBPSD for varying values of parameter θ 
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To study the comparative nature and behavior of SBPSD and SBPLD, a table for 1 'µ , 2µ , C.V, 1β , 2β , and γ  has 

been prepared for varying values of the parameter θ  and presented in table 1. 

Table 1.  Values of 1 2 1 2, ,C.V, , andµ µ β β γ′ of SBPSD and SBPLD for varying values of the parameter θ  

 Values of θ for SBPSD 

 1 2 3 4 5 6 

1 'µ  3.666667 2.166667 1.727273 1.527778 1.414815 1.342105 

2µ  5.555556 1.805556 0.986226 0.665895 0.500521 0.400508 

CV 0.642824 0.620174 0.574946 0.534125 0.500048 0.47154 

1β  1.318047 1.54948 1.721223 1.86595 1.997232 2.119503 

2β  5.4744 6.296095 6.926298 7.467793 7.982788 8.489255 

γ  1.515152 0.833333 0.570973 0.435859 0.353772 0.298418 

 
 Values of θ for SBPLD 

 1 2 3 4 5 6 

1 'µ  3.666667 2.25 1.8 1.583333 1.457143 1.375 

2µ  5.555556 1.9375 1.093333 0.743056 0.556735 0.442708 

CV 0.642824 0.61864 0.580903 0.544425 0.512061 0.483901 

1β  1.318047 1.49478 1.649924 1.790721 1.921224 2.043701 

2β  5.4744 6.057232 6.599941 7.118613 7.625214 8.125813 

γ  1.515152 0.861111 0.607407 0.469298 0.382073 0.32197 

 

The comparative graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis, and index of dispersion 
of SBPSD and SBPLD are shown in figure 4. 
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Figure 4.  Graphs of C.V, 1β , 2β and γ of the SBPSD and SBPLD for varying values of parameter θ  

3. Statistical Properties of SBPSD 
3.1. Reliability Properties 

Since 
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is a deceasing function of x , ( )2 ;P x θ
 

is log-concave. Therefore, SBPSD is unimodal, has an increasing failure rate (IFR), 
and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing mean 
residual life (DMRL). Detailed discussion and definitions of these aging concepts can be seen in Barlow and Proschan 
(1981). 

3.2. Generating Function 

Probability Generating Function: The probability generating function of the SBPSD (1.3) can be obtained as 
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Moment Generating Function: The moment generating function of the SBPSD (1.3) is given by  
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4. Estimation of Parameter 
4.1. Maximum Likelihood Estimate (MLE):  Let 1 2, ,..., nx x x  be a random sample of size n from the SBPSD (1.3) 

and let xf  be the observed frequency in the sample corresponding to ( 1, 2,3,..., )X x x k= = such that 
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where k  is the largest observed value having non-zero frequency. The likelihood function L of the SBPSD (1.3) is given 
by 
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The log likelihood function is obtained as 
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The first derivative of the log likelihood function is given by  
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where x  is the sample mean. 

The maximum likelihood estimate (MLE), θ̂  of θ  is the solution of the equation 
log 0d L
dθ

=  and is given by the 

solution of the non-linear equation 
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This non-linear equation can be solved by any numerical iteration methods such as Newton- Raphson method, Bisection 
method, Regula –Falsi method etc. The consistency and asymptotic normality of maximum likelihood estimator of SBPSD 
has been established in the following theorem. 

Theorem: The ML estimator θ̂  of θ  of the SBPSD is consistent and asymptotically normal. That is, 
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information about θ . 

Proof: The SBPSD satisfies the regularity conditions under which the ML estimator θ̂  of θ  is consistent and 
asymptotically normal [see Hogg et al (2005), chapter 6]. Finally, we have 
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Using equations (4.1.3), (4.1.4), and (4.1.5) in (4.1.2), we get 
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4.2. Method of Moment Estimate (MOME): Let 1 2, ,..., nx x x  be a random sample of size n from the SBPSD (1.3). 

Equating population mean to the corresponding sample mean, the MOME θ of θ  of SBPSD is the solution of the 
following cubic equation in θ  

( ) ( )3 21 2 2 1 6 0x xθ θ θ− − + − − =                                (4.2.1) 

where x is the sample mean. 

5. Goodness of Fit of SBPSD 
The SBPSD has been fitted to a number of data - sets to test its goodness of fit over SBPD and SBPLD. The maximum 

likelihood estimate (MLE) has been used to fit the SBPSD. Two examples of observed data-sets, for which the SBPD, 
SBPLD and SBPSD has been fitted, are presented. The first data-set is immunogold assay data of Cullen et al. (1990) 
regarding the distribution of number of counts of sites with particles from immunogold assay data and the second data-set is 
animal abundance data of Keith and Meslow (1968) regarding the distribution of snowshoe hares captured over 7 days. 

 

Table 2.  Distribution of number of counts of sites with particles from Immunogold data 

No. of sites with 

particles 
Observed Frequency 

Expected Frequency 

SBPD SBPLD SBPSD 

1 

2 

3 

4 

5 

122 

50 

18 

4 

4 

111.3 

64.1 

18.5

3.5

0.6






 

119.0 

53.8 

18.0 

5.3

1.9




 

119.3 

53.4 

17.9 

5.3

2.1




 

Total 198 198.0 198.0 198.0 

ML estimate  ˆ 0.576θ =  ˆ 4.051θ =  ˆ 3.696733θ =  

2χ   4.642 0.433 0.325 

d.f.  1 2 2 

p-value  0.031 0.805 0.8500 
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Table 3.  Distribution of snowshoe hares captured over 7 days  

No. times hares caught Observed Frequency 
Expected Frequency 

SBPD SBPLD SBPSD 

1 

2 

3 

4 

5 

184 

55 

14 

4 

4 

170.6 

72.5 

15.4

2.2

0.3






 

177.3 

62.5 

16.4

3.8

1.0






 

177.5 

62.3 

16.4

3.8

1.0






 

Total 261 261.0 261.0 261.0 

ML estimate  ˆ 0.425θ =  ˆ 5.351θ =  ˆ 4.886676θ =  

2χ   6.216 1.183 1.123 

d.f.  1 1 1 

p-value  0.013 0.277 0.2892 

 
 

6. Concluding Remarks 
In this paper, a size-biased Poisson-Shanker distribution 

(SBPSD) has been proposed by size-biasing the 
Poisson-Shanker distribution (PSD) introduced by Shanker 
(2016). Its raw moments and central moments have been 
obtained and hence expressions for coefficient of variation 
(C.V.), skewness, kurtosis and index of dispersion have also 
been given. Its reliability properties have been explained and 
generating functions have been derived. The method of 
maximum likelihood and the method of moments have been 
discussed for estimating the parameter. Two real lifetime 
data sets have been presented to test the goodness of fit of 
SBPSD and the fit is quite satisfactory over size-biased 
Poisson distribution (SBPD) and size-biased 
Poisson-Lindley distribution (SBPLD). 
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