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A Size-Biased Poisson-Shanker Distribution

and Its Applications
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Abstract In this paper, a size-biased Poisson-Shanker distribution (SBPSD) has been obtained by size-biasing the
Poisson-Shanker distribution (PSD) introduced by Shanker (2016). Its raw moments and central moments have been obtained
and hence expressions for coefficient of variation (C.V.), skewness, kurtosis and index of dispersion have also been given.
The method of maximum likelihood and the method of moments have been discussed for estimating its parameter. The
goodness of fit of SBPSD has been discussed with two real data sets and the fit shows quite satisfactory fit over size-biased
Poisson distribution (SBPD) and size-biased Poisson-Lindley distribution (SBPLD).
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1. Introduction

Shanker (2016) introduced Poisson-Shanker distribution
(PSD) having probability mass function (p.m.f.)
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for modeling count data from different fields of knowledge.
The PSD arises from the Poisson distribution when its
parameter A follows a lifetime distribution named Shanker
distribution introduced by Shanker (2015) having probability
density function (p.d.f.)
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Size-biased distributions are special class of weighted
distributions and arise in practice when observations from a
sample are recorded with probability proportional to some
measure of unit size. Fisher (1934) firstly introduced these
distributions to model ascertainment biases which were later
formalized by Rao (1965) in a unifying theory. Size-biased
observations occur in many research areas and its fields of
applications includes econometrics, environmental science,
medical science, sociology, psychology, ecology, geological
sciences etc. The applications of size-biased distribution
theory in fitting distributions of diameter at breast height
(DBH) data arising from horizontal point sampling (HPS)
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has been discussed by Van Deusen (1986). Further, Lappi
and Bailey (1987) have studied and applied size-biased
distributions to analyze HPS diameter increment data. The
detailed statistical applications of size-biased distributions to
the analysis of data relating to human population and
ecology can be found in Patil and Rao (1977, 1978). A
number of research have been done relating to size-biased
distributions and their applications in different areas of
knowledge by many researchers including Scheaffer (1972),
Patil and ord (1976), Singh and Maddala (1976), Patil,
(1981), McDonald (1984), Gove (2000, 2003), Correa and
Wolfson (2007), Drummer and McDonald (1987), Ducey
(2009), Alavi and Chinipardaz (2009), Ducey and Gove
(2015), are some among others.

Let a random variable X has original probability

distribution F, (x;&);x =0,1,2,...,6 >0 . Suppose the
sample units are weighted or selected with probability

proportional to some measure x%, where @ is a positive
integer. Then the corresponding size-biased probability
distribution of order & can be defined by its probability
mass function

X" Ry(x0)
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where L2, ZE(XQ)ZZ)CQR)(X;Q). If =1, then
x=0
the distribution is known as simple size-biased and is
applicable for size-biased sampling in sampling theory. If
o =2 , then the distribution is known as area-biased
distribution and is applicable for area-biased sampling in
forestry.
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The p.m.f. of the size-biased Poisson-Shanker distribution (SBPSD) with parameter & can thus be be obtained as

P(x;0 3 x(x+60%+0+1
P, (x:0)=" 0(,x ) g ( — );x=1,2,3,..,0>0 (13)
H 0" +2  (6+1)
. 0P+2 . . .
where [ = 5 s the mean of the Poisson-Shanker distribution (PSD) with p.m.f. (1.1).
00> +1)

Recall that the probability mass function of size-biased Poisson-Lindley distribution (SBPLD) with parameter &,
obtained by Ghitany and Mutairi (2008), is given by
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The SBPLD is a size-biased version of Poisson-Lindley distribution introduced by Sankaran (1970) and the
Poisson-Lindley distribution is a Poisson mixture of Lindley distribution, introduced by Lindley (1958). The statistical and
mathematical properties, estimation of parameter using both maximum likelihood estimation and method of moments, and
goodness of fit of SBPLD have been discussed by Ghitany and Mutairi (2008). Shanker et al (2015) has discussed the
applications of SBPLD for modeling data on thunderstorms and found that SBPLD is a better model for thunderstorms than
size-biased Poisson distribution (SBPD).

The comparative nature and behavior of SBPSD and SBPLD are shown in the figure 1.
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Figure 1. Graphs of SBPSD and SBPLD for varying values of parameter 6
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The independent graphs of SBPSD for varying values of the parameter &have been shown in figure 2.
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Figure 2. Graphs of SPBSD for varying values of parameter 6

The probability mass function of SBPSD can also be obtained from the size-biased Poisson distribution (SPBD) with p.m.f.
-4 4x-1
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when its parameter A follows size-biased Shanker distribution (SBSD) with p.d.f.
03
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h(4;0)= A(0+2)e? ;x>0,0>0 (1.6)
Thus, the pmf of SBPSD can be obtained as
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which is the p.m.f of SBPSD as given in (1.3).

2. Moments and Related Measures of SBPSD

Using (1.7), th rth factorial moment about origin of the SBPSD (1.3) can be obtained as
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Taking X+ 7 inplace of X, we get
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Substituting # =1,2,3 and 4 in (2.1), first four factorial moments about origin can be obtained and then using the

relationship between factorial moments about origin and moments about origin, the first four moments about origin of
SBPSD (1.3) can be obtained as
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Again using the relationship between moments about mean and the moments about origin, the moments about mean of the
SBPSD (1.3) are obtained as
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The coefficient of variation(C .V) , coefficient of Skewness (« | B, ) , coefficient of Kurtosis ( o ) and index of dispersion

( V4 ) of the SBPSD (1.3) are thus obtained as
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It can be easily verified that SBPSD is over-dispersed ( U< 0'2) , equi-dispersed( U= 0'2) and under-dispersed

( > o’ ) for 0 < (=) > 0" =1.634877 . The graphs of coefficient of variation, coefficient of skewness, coefficient of

kurtosis, and index of dispersion of SBPSD for varying values of parameter € are shown in figure 3.
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Figure 3. Graphs of C.V, 4 [ﬁ s ﬂz and ¥ of the SBPSD for varying values of parameter &
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To study the comparative nature and behavior of SBPSD and SBPLD, a table for £ ' Uy, CV, ,31 , ,32, and ¥ has

been prepared for varying values of the parameter € and presented in table 1.

Table 1. Values of yl', Hys C.V,, /ﬂ , ﬂz and ¥ of SBPSD and SBPLD for varying values of the parameter &

Values of @for SBPSD
1 2 3 4 5 6
H ! 3.666667 2.166667 1.727273 1.527778 1.414815 1.342105
H 5.555556 1.805556 0.986226 0.665895 0.500521 0.400508
cv 0.642824 0.620174 0.574946 0.534125 0.500048 0.47154
A ,181 1.318047 1.54948 1.721223 1.86595 1.997232 2.119503
,32 5.4744 6.296095 6.926298 7.467793 7.982788 8.489255
V4 1.515152 0.833333 0.570973 0.435859 0.353772 0.298418
Values of & for SBPLD
1 2 3 4 5 6
y2 ! 3.666667 2.25 1.8 1.583333 1.457143 1.375
H 5.555556 1.9375 1.093333 0.743056 0.556735 0.442708
(A% 0.642824 0.61864 0.580903 0.544425 0.512061 0.483901
A /ﬂl 1.318047 1.49478 1.649924 1.790721 1.921224 2.043701
,82 5.4744 6.057232 6.599941 7.118613 7.625214 8.125813
V4 1.515152 0.861111 0.607407 0.469298 0.382073 0.32197

The comparative graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis, and index of dispersion
of SBPSD and SBPLD are shown in figure 4.
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Figure 4. Graphs of C.V, 4/ IBI s ,32 and } of the SBPSD and SBPLD for varying values of parameter &

3. Statistical Properties of SBPSD

3.1. Reliability Properties

Since

Sttt
B(x0) \6+1 x Xx+60>+0+1

is a deceasing function of X, Pz (x; 0 ) is log-concave. Therefore, SBPSD is unimodal, has an increasing failure rate (IFR),

and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing mean
residual life (DMRL). Detailed discussion and definitions of these aging concepts can be seen in Barlow and Proschan
(1981).

3.2. Generating Function

Probability Generating Function: The probability generating function of the SBPSD (1.3) can be obtained as

PX(t):E(tX): 0’ ixz [ﬁjﬁ(e%eﬂ)i(ﬁjx

(6’2 +2)(H+1)2 o o
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0°t O+1+t  O*+0+1

(02 +2)(t9+1) (6+1-1) +(0+l—t)2
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Moment Generating Function: The moment generating function of the SBPSD (1.3) is given by
3t t 2
e O+1+e N 0°+0+1

(07 +2)(0+1) (9+1—ef)3 (9+1—e’)2

My (t)=E(e¥)=

4. Estimation of Parameter

4.1. Maximum Likelihood Estimate (MLE): Let X;,X,,...,X, be arandom sample of size n from the SBPSD (1.3)

and let f, be the observed frequency in the sample corresponding to X =x (x=1,2,3,...,k)such that Z f,=n,
x=l1

where k is the largest observed value having non-zero frequency. The likelihood function L of the SBPSD (1.3) is given

by

x:1

=(026’12T( )zf — ﬁ[x +x(0 +9+1)}f.¥

The log likelihood function is obtained as

+2 ) o

3
log L :nlog[ef J Zf (x+2)log(6+1)+ Zf log[x +x(6? +9+1)}
The first derivative of the log likelihood function is given by

dlogL_”('92+6)_n()T+2)+ Lo (20+1)x £,
do _49(6’2+2) 0+1 x:1x2+x(6’2+6'+1)

where X is the sample mean.

. - . A . . . dlogL
The maximum likelihood estimate (MLE), 6 of @ is the solution of the equation

=0 and is given by the
solution of the non-linear equation
1’1(92+6)_n(f+2)+ ko (20+1)x f,
9(02+2) 0+1 x=1x2+x(02+9+1)

=0 4.1.1)

This non-linear equation can be solved by any numerical iteration methods such as Newton- Raphson method, Bisection
method, Regula —Falsi method etc. The consistency and asymptotic normality of maximum likelihood estimator of SBPSD
has been established in the following theorem.

Theorem: The ML estimator é of @ of the SBPSD is consistent and asymptotically normal. That is,
\/Z(é—H)L)N[O, ]_I(H)J,Where
3 2
407 —26° +76° —30* +60° +160* +12 0" (20+1 ( +9+1) 001
0+1-

e (9+1)(92+2)2 - (0+1)2 (8 +2) dl is the Fisher’s

1(6)=

[ ———

information about @.

A

Proof: The SBPSD satisfies the regularity conditions under which the ML estimator & of € is consistent and
asymptotically normal [see Hogg e? a/ (2005), chapter 6]. Finally, we have
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i 0 ) 0 (0°+6+1) & 1
(6+1)2(02+2) (6+1)2(92+2)x:1{x+(92+9+1)}(¢9+1)x

+0+1

) 0 93(92+9+1) !
_(9+1)2(92+2) (6+1) (9%2)! 0+1-

(4.1.5)

Using equations (4.1.3), (4.1.4), and (4.1.5) in (4.1.2), we get

+9+1

[(9)_497—26?6+76’5—36?4+6493+1692+12_93(29+1) (92+‘9+1)i
0

6> (0+1)(6* +2) (0+1) (6> +2)

+

4.2. Method of Moment Estimate (MOME): Let X, X,,...,X, be arandom sample of size n from the SBPSD (1.3).

Equating population mean to the corresponding sample mean, the MOME 6 of O of SBPSD is the solution of the
following cubic equation in &

(x-1)0>-20° +2(¥-1)0-6=0 (4.2.1)

where X is the sample mean.

5. Goodness of Fit of SBPSD

The SBPSD has been fitted to a number of data - sets to test its goodness of fit over SBPD and SBPLD. The maximum
likelihood estimate (MLE) has been used to fit the SBPSD. Two examples of observed data-sets, for which the SBPD,
SBPLD and SBPSD has been fitted, are presented. The first data-set is immunogold assay data of Cullen ez al. (1990)
regarding the distribution of number of counts of sites with particles from immunogold assay data and the second data-set is
animal abundance data of Keith and Meslow (1968) regarding the distribution of snowshoe hares captured over 7 days.

Table 2. Distribution of number of counts of sites with particles from Immunogold data

No. of sites with Expected Frequency
] Observed Frequency
particles SBPD SBPLD SBPSD
111.3 119.0 119.3
1 122
64.1 53.8 53.4
2 50
18.0 17.9
3 18 18.5
4 4 3.5 53 53
> 4 0.6 1.9 2.1
Total 198 198.0 198.0 198.0
ML estimate 0 =0.576 0 =4.051 60 =3.696733
2
V4 4.642 0.433 0.325
d.f. 1 2 2
p-value 0.031 0.805 0.8500
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Table 3. Distribution of snowshoe hares captured over 7 days

43

Expected Frequency
No. times hares caught Observed Frequency
SBPD SBPLD SBPSD
170.6 177.3 177.5
1 184
72.5 62.5 62.3
2 55
3 " 15.4 16.4 16.4
4 4 2.2 3.8 3.8
5 4 0.3 1.0 1.0
Total 261 261.0 261.0 261.0
ML estimate 0 =0.425 0 =5351 0 = 4.886676
2
Y4 6.216 1.183 1.123
d.f. 1 1
p-value 0.013 0.277 0.2892
6 CODCllldiIlg Remarks [3] Correa, J.A. and Wolfson, D.B. (2007): Length-bias: some

In this paper, a size-biased Poisson-Shanker distribution
(SBPSD) has been proposed by size-biasing the
Poisson-Shanker distribution (PSD) introduced by Shanker
(2016). Its raw moments and central moments have been
obtained and hence expressions for coefficient of variation
(C.V.), skewness, kurtosis and index of dispersion have also
been given. Its reliability properties have been explained and
generating functions have been derived. The method of
maximum likelihood and the method of moments have been
discussed for estimating the parameter. Two real lifetime
data sets have been presented to test the goodness of fit of
SBPSD and the fit is quite satisfactory over size-biased
Poisson distribution (SBPD) and size-biased
Poisson-Lindley distribution (SBPLD).
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