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Abstract  Relationships between optimal design properties and changing sizes of designs, by the addition of center points, 
are seen to be very strong between the Box-Benhken designs and the Box-Wilson designs defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4. 

Variations seem to exist with Box-Wilson designs defined at α = 1.0. In particular, the determinant values of the information 
matrices of the Box-Benhken designs generally decrease as 𝑛𝑛𝑐𝑐  increases. These are also true for all categories of the 
Box-Wilson designs. However, the minimum eigenvalue of the Box-Benhken design and the Box-Wilson design defined at  
α = √𝐾𝐾 and α = 𝐹𝐹

1
4 is maximized when 𝑛𝑛𝑐𝑐= 5 and maximized when 𝑛𝑛𝑐𝑐= 1 for the Box-Wilson design defined at α = 1.0. For 

the Box-Benhken designs considered, the trace values of the variance-covariance matrices generally decrease as 𝑛𝑛𝑐𝑐  
increases. This is also true for the Box-Wilson designs defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4. For the Box-Wilson designs defined at 

α = 1.0, the trace values of the variance-covariance matrices increase as 𝑛𝑛𝑐𝑐  increases. The maximum scaled predictive 
variances associated with the Box-Benhken designs and the Box-Wilson designs generally increase as 𝑛𝑛𝑐𝑐  increases and 
minimized when 𝑛𝑛𝑐𝑐= 1 for Box-Wilson design defined at α = 1.0 and when 𝑛𝑛𝑐𝑐= 2 for the Box-Benhken design and the 
Box-Wilson design defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4. The trace of information matrix associated with all considered design 

types consistently decreases as 𝑛𝑛𝑐𝑐  increases. 
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1. Introduction 
Two popularly used Response Surface Methodology 

(RSM) designs in modeling second order effects are the 
Box-Benhken and Box-Wilson designs. Each of them has 
less number of experimental runs when compared with the 
three-level full factorial designs. The Box-Benhken design 
abbreviated BBD was introduced by Box and Benhken (1960) 
and constitutes an alternative to the Box-Wilson design 
(otherwise called Central Composite Design (CCD)) 
introduced by Box and Wilson (1951). Although some 
categories of the Box-Wilson designs are not rotatable, 
Box-Benhken designs are a class of rotatable or 
near-rotatable second-order designs based on three-level 
incomplete factorial designs. They are formed by combining 
two-level factorial designs with incomplete block design in a 
particular fashion. They are designs introduced for 
second-order models in order to limit the growing sample 
size as the number of model parameters increases. When 
compared with the CCDs, the BBDs have  the advantage of  
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reduced design points. In general, the number of design 
points of the BBDs is 2𝑘𝑘(𝑘𝑘 − 1) + 𝑛𝑛𝑐𝑐 , where 𝑘𝑘  is the 
number of factors and 𝑛𝑛𝑐𝑐  is the number of center points. On 
the other hand, the number of design points of the CCDs is 
2𝑘𝑘 + 2𝑘𝑘 + 𝑛𝑛𝑐𝑐 , where 𝑘𝑘 remains the number of factors and 
𝑛𝑛𝑐𝑐  remains the number of center points.  

The CCDs can be studied for 𝑘𝑘 ≥ 2 however, the BBDs 
do not exist for 𝑘𝑘 = 2 and can be studied for 𝑘𝑘 ≥ 3. In the 
simplest case of 𝑘𝑘 = 3, the number of design points of the 
Box-Benhken design is 12 plus 𝑛𝑛𝑐𝑐  center points and the 
number of design points of the central composite design is 14 
plus 𝑛𝑛𝑐𝑐  center points. For 𝑘𝑘 = 4 , the number of design 
points of the Box-Benhken design is 24 plus 𝑛𝑛𝑐𝑐  center 
points and the number of design points of the central 
composite design is 24 plus 𝑛𝑛𝑐𝑐  center points. For 𝑘𝑘 = 5, the 
number of design points of the Box-Benhken design is 40 
plus 𝑛𝑛𝑐𝑐  center points and the number of design points of the 
central composite design is 42 plus 𝑛𝑛𝑐𝑐  center points. For 
𝑘𝑘 = 6, the number of design points of the Box-Benhken 
design is 60 plus 𝑛𝑛𝑐𝑐  center points and the number of design 
points of the central composite design is 76 plus 𝑛𝑛𝑐𝑐  center 
points. The advantage in reduced design size becomes more 
pronounced as 𝑘𝑘  increases beyond seven. For instance, 
when 𝑘𝑘 = 10 , the number of design points of the 
Box-Benhken design is 180 plus 𝑛𝑛𝑐𝑐  center points and the 
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number of design points of the central composite design is 
1,044 plus 𝑛𝑛𝑐𝑐  center points.  

Myres et.al (2009) observed that in many scientific studies 
that require Response Surface Methodology, researchers are 
inclined to require three evenly spaced factor levels of which 
Box-Benhken design is an efficient option and an important 
alternative to the central composite design Box-Benhken 
designs like some central composite designs are spherical 
and do not deviate substantially from being rotatable. Many 
standard ways of comparing designs, ranging from the use of 
numeric values to graphs, exist in Response Surface 
Methodolgy. Lucas (1976) compared Response Surface 
designs by their D- and G-efficiency values. A Box-Benhken 
design has been compared with a Uniform shell design of 
Doehlert (1970) in Crosier (1993). It was seen that the 
Box-Benhken design exhibited a very high G-efficiency 
value of 98.9% as against 59.7% of the Uniform shell design. 
Also, Box-Benhken design gave a better prediction at the 
perimeter of the design region while the Uniform shell 
design gave a better prediction near the center of the design 
region. Although the Uniform shell design generally requires 
fewer runs then CCDs and BBDs, they are not widely used  
in fitting second-order model. Crosier (1993) further 
compared the performance of three-factor central composite 
design having 𝑛𝑛𝑐𝑐  =3 center points with the three-factor 
Box-Benhken design having 𝑛𝑛𝑐𝑐  =3 center points. The 
Box-Benhken design performed better near the design center 
while the central composite design performed better near the 
perimeter.  

Zolgharnein et.al (2013) carried out a comparative study 
of Box-Benhken, central composite and Doehlert matrix for 
multivariate optimization. Practical applications of 
Box-Benhken and Central Composite designs are numerous 
(see e.g Tekindal et.al (2012), Igder et.al (2012), 
Zolgharnein et.al (2013) and Sabela et.al (2014)). In this 
work, the effects of addition of 𝑛𝑛𝑐𝑐  center points on the 
optimality of Box-Benhken and Box-Wilson second-order 
designs shall be the focus. The aim is to see how increasing 
the number of center runs added to Box-Benhken and 
Box-Wilson designs affects A-, D-, E-, G- and T-optimality 
values for the designs. 

2. Methodology 
For a p parameter polynomial in k factors, each k-factor, 

N-point Box-Benhken and Box-Wilson second-order 
response surface design, written as an Nxk matrix, shall be 
studied for changes in A-, D-, E-, G- and T-optimality values 
when the center points, 𝑛𝑛𝑐𝑐  , are increased. To estimate the 
parameters (coefficients) of the second-order polynomial, 
the matrix of the design shall be expanded into an Nxp model 
matrix having one column for each parameter of the 
polynomial model. The moment matrix or information 
matrix of the design shall be obtained. In order to compare 
designs of varying sizes, the information matrix shall be 
normalized to remove the effect of the varying design sizes. 

Although Myres et.al (2009) recommends the use of three to 
five center runs, this study shall consider 1 ≤   𝑛𝑛𝑐𝑐 ≤  5. 
Three categories of the Box-Wilson design shall be 
investigated alongside the Box-Benhken design. The 
categories of Box-Wilson design are the central composite 
designs with respective axial distance α = 1, α = √𝐾𝐾 and   
α = 𝐹𝐹

1
4, where 𝐹𝐹 = 2𝑘𝑘 . The designs shall be assessed with 

respect to statistical criteria, namely, A-, D-, E-, G- and 
T-optimality criteria, which are related to the 
variance-covariance matrix of the model parameter estimator. 
The chosen optimality criteria are commonly encountered in 
literatures on optimal design of experiment.  

Rady et al. (2009) presented a survey on these optimality 
criteria as well as the relationships among them. As in 
literature, by A-optimality, a design in which the sum of the 
variances of the model coefficients is minimized is sought. It 
is defined as  

Min tr (M−1) 
where Min implies that minimization is over all designs and 
tr represents trace.  

By D-optimality, a design in which the determinant of the 
moment matrix  

M = 𝑋𝑋
𝑇𝑇𝑋𝑋
N

 

is maximized over all designs is sought. Where 𝑋𝑋 represents 
the model matrix associate with the D-optimal design and 
𝑋𝑋𝑇𝑇  represents its transpose. The criterion of D-optimality 
equivalently minimizes the determinant of M−1.  

By E-optimality criterion, a design which maximizes the 
minimum eigen value of M or equivalently minimizes the 
maximum eigen value of M−1 is sought. By E-optimality, a 
design which minimizes the maximum variance of all 
possible normalized linear combination of parameter 
estimates is sought. E-optimality criterion is defined by 

Max 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 (M) ≡ Min 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 (M−1) 
where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  represent minimum eigen value and 
maximum eigen value, respectively. By G-optimality, a 
design which minimizes the maximum scaled prediction 
variance in the region of the design is sought. It is defined by 

Min{max𝑥𝑥∈𝑅𝑅 v(𝑥𝑥)} 

By T-optimality, a design which maximizes the trace of 
the information matrix is sought. It is defined as  

Max tr (𝑀𝑀) 
where Max implies that maximization is over all designs and 
tr represents trace.  

The second-order model to consider is the complete model 
having main effects, interaction effects and quadratic effects 
and is given as 

y = β0 + ∑ 𝛽𝛽𝑖𝑖𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖  + {∑  𝑘𝑘−1

𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=𝑖𝑖+1 (𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 )}  

+ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖2 + ε 

To effectively compare the designs, the information 
matrix of any given design shall be normalized. By 
normalization, the effect of changing sample size shall be 
removed. In studying the effects of addition of 𝑛𝑛𝑐𝑐  center 
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points on the optimality of the BBDs and CCDs, we    
shall consider 𝑛𝑛𝑐𝑐 = 3, 4 and 5 , whose design sizes are 
moderately small and relatively close.  

3. Results 
The results of the investigation regarding the effects of 

center point on optimality of Box-Behnken and Box-Wilson 
designs are contained in Table 1. The first column entries on 
the table show the design type. The second column entries on 
the table show the number of controllable factors of 
experimentation. The third column entries on the table show 

the number of model parameters associated with the k 
variable model. The columns under Optimality Constant 
represent values obtained using A-, D-, E-, G- and 
T-optimality criteria. The design matrices are built from the 
designs and the models. For an illustration, assuming 
Box-Behnken design in k=3 variables, the associated 
10-parameter model is 

y = β0 + ∑ 𝛽𝛽𝑖𝑖3
𝑖𝑖=1 𝑥𝑥𝑖𝑖  + {∑  2

𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝑖𝑖3
𝑗𝑗=𝑖𝑖+1 (𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 )}  

+ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖3
𝑖𝑖=1 𝑥𝑥𝑖𝑖2 + ε 

The 16-point Box-Behnken design (with 𝑛𝑛𝑐𝑐 = 4) is  

 

 

 
 

 
With the model and the 16-point design, the associated model matrix is 
 

  
X  =    1 -1 -1 0 1 0 0 1 1 0 

 1 -1 1 0 -1 0 0 1 1 0 
 1 1 -1 0 -1 0 0 1 1 0 
 1 1 1 0 1 0 0 1 1 0 
 1 -1 0 -1 0 1 0 1 0 1 
 1 -1 0 1 0 -1 0 1 0 1 
 1 1 0 -1 0 -1 0 1 0 1 
 1 1 0 1 0 1 0 1 0 1 
 1 0 -1 -1 0 0 1 0 1 1 
 1 0 -1 1 0 0 -1 0 1 1 
 1 0 1 -1 0 0 -1 0 1 1 
 1 0 1 1 0 0 1 0 1 1 
 1 0 0 0 0 0 0 0 0 0 

𝜉𝜉16  =      -1 -1 0 

 -1 1 0 

 1 -1 0 

 1 1 0 

 -1 0 -1 

 -1 0 1 

 1 0 -1 

 1 0 1 

 0 -1 -1 

 0 -1 1 

 0 1 -1 

 0 1 1 

 0 0 0 

 0 0 0 

 0 0 0 

 0 0 0 
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The corresponding normalized information matrix is 
 
 

M = 𝑋𝑋
′ 𝑋𝑋
𝑁𝑁

 = 1.0000 0 0 0 0 0 0 0.5000 0.5000 0.5000 
0 0.5000 0 0 0 0 0 0 0 0 
0 0 0.5000 0 0 0 0 0 0 0 
0 0 0 0.5000 0 0 0 0 0 0 
0 0 0 0 0.2500 0 0 0 0 0 
0 0 0 0 0 0.2500 0 0 0 0 
0 0 0 0 0 0 0.2500 0 0 0 

0.5000 0 0 0 0 0 0 0.5000 0.2500 0.2500 
0.5000 0 0 0 0 0 0 0.2500 0.5000 0.2500 
0.5000 0 0 0 0 0 0 0.2500 0.2500 0.5000 

 
 

and its inverse matrix is 
 
 

𝑀𝑀−1  =       4     0     0     0     0     0     0    -2    -2 
0     2     0     0     0     0     0     0     0 
0     0     2     0     0     0     0     0     0 
0     0     0     2     0     0     0     0     0 
0     0     0     0     4     0     0     0     0 
0     0     0     0     0     4     0     0     0 
0     0     0     0     0     0     4     0     0 
-2     0     0     0     0     0     0     4     0 
-2     0     0     0     0     0     0     0     4 
-2     0     0     0     0     0     0     0     0 

 -2 
  0 
  0 
  0 
  0 
  0 
  0 
  0 
  0 
  4 

 
 
The determinant value of information matrix is 

3.0518e-005. 
The determinant value of its inverse matrix is 32768. 
The trace of the information matrix is 4.7500. 
The trace of its inverse matrix is 34. 
The eigenvalues of the information matrix are  
    0.1340 
    0.2500 
    0.2500 
    0.2500 
    0.2500 
    0.2500 
    0.5000 
    0.5000 
    0.5000 
    1.8660 
The eigenvalues of the inverse matrix are 
    0.5359 
    2.0000 

    2.0000 
    2.0000 
    4.0000 
    4.0000 
    4.0000 
    4.0000 
    4.0000 
    7.4641 
Each point of the design, apart from the center point, has 

variance of predicted value of 12.0. The variance of 
predicted value at the center point is 4.0. Each design follows 
these unique presentations for defined k, p and N. MATLAB 
R2007b was used in all computations and the results are as 
presented in Table 1. The MATLAB outputs for BBD, k= 5, 
p=21, N=43, CCD, k = 3, α =1.682, N=15 and k = 3, p = 10, α 
= 1.7321, N = 15 have been included in the Appendix. 
Presentation for only three categories is purely for space 
management. 
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4. Discussion of Results 
The results on the effects of addition of 𝑛𝑛𝑐𝑐  center points 

on the optimality of Box-Benhken and Box-Wilson 
second-order designs show some interesting relationships. 
For the Box-Benhken designs considered, the trace of the 
variance-covariance matrix generally decreases as 𝑛𝑛𝑐𝑐  
increases, thus showing a negative linear relationship. This is 
also true for the central composite designs defined at α = √𝐾𝐾 
and α = 𝐹𝐹

1
4. For the central composite design defined at α = 

1.0, the trace of the variance-covariance matrix increases as 
𝑛𝑛𝑐𝑐  increases, thus showing a positive linear relationship. 
Trace of the variance-covariance matrix for the 
three-variable Box-Benhken design is minimized when 𝑛𝑛𝑐𝑐= 
4. For the four-variable Box-Benhken design, trace of the 
variance-covariance matrix is minimized when 𝑛𝑛𝑐𝑐= 5 and 
for the five-variable Box-Benhken design, trace of the 
variance-covariance matrix is minimized when 𝑛𝑛𝑐𝑐= 5. For 
the central composite design defined at α = 1.0, the trace of 
the variance-covariance matrix is minimized when 𝑛𝑛𝑐𝑐= 1. 
However, for the central composite design defined at α = √𝐾𝐾 
and α = 𝐹𝐹

1
4, the trace of the variance-covariance matrix is 

minimized when 𝑛𝑛𝑐𝑐= 5. 
On D-optimality criterion, the determinant of the 

information matrix of the Box-Benhken design generally 
decreases as 𝑛𝑛𝑐𝑐  increases. Equivalently, the determinant of 
the variance-covariance matrix of the Box-Benhken design 
generally increases as 𝑛𝑛𝑐𝑐  increases. These are also true for 
all categories of the central composite design. For all cases 
considered, the determinant of information matrix is 
maximized at 𝑛𝑛𝑐𝑐 = 2 except for the three-variable 
Box-Benhken design where the determinant of information 
matrix is maximized at 𝑛𝑛𝑐𝑐= 1. The minimum eigenvalue of 
the Box-Benhken design and the central composite design 
defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4 is maximized when 𝑛𝑛𝑐𝑐= 5 

and maximized when 𝑛𝑛𝑐𝑐= 1 for the central composite design 
defined at α = 1.0. The maximum scaled predictive variance 
associated with the Box-Benhken designs and the 
Box-Wilson designs generally increases as 𝑛𝑛𝑐𝑐  increases and 
minimized when 𝑛𝑛𝑐𝑐= 1 for CCD defined at α = 1.0, when 
𝑛𝑛𝑐𝑐= 2 for CCD defined at α = √𝐾𝐾  and α = 𝐹𝐹

1
4  and the 

Box-Benhken design. For the three-variable 10-parameter 
Box-Benhken design, the minimum variance equals 10.5 
which is approximately close to the number of model 
parameters. For the four-variable 15-parameter 
Box-Benhken design, the minimum variance equals 15.1667 
which is approximately close to the number of model 
parameters. For the five-variable 21-parameter 
Box-Benhken design, the minimum variance equals 21.0 
which is exactly the number of model parameters.  

The closeness of the minimum variance of prediction to 
the number of model parameter associated with the CCDs 
defined at α = 1.0 was not obvious, however for CCDs 
defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4 and for k=3 and k=4, near 

approximations exist. As in the literature, maximum value of 
the predictive variance equal tp or approximately equal to the 
number of model parameters show that the corresponding 

design is rotatable or near-rotatable. The trace of information 
matrix associated with all considered design types 
consistently decreases as 𝑛𝑛𝑐𝑐  increases. Generally, the 
relationships between addition of center points and the 
optimality properties are very strong between the 
Box-Benhken designs and the central composite design 
defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4. This is most likely due to the 

sphericity and rotatabilty properties of the three design types. 

5. Conclusions 
The effects of addition of 𝑛𝑛𝑐𝑐  center points on the 

optimality of Box-Benhken and Box-Wilson second-order 
designs have been investigated. Relationships are seen to 
exist between optimal design properties and changing size of 
the designs by the addition of center points. The relationships 
are very strong between the Box-Benhken designs and the 
central composite design defined at α = √𝐾𝐾 and α = 𝐹𝐹

1
4 . 

Variations seem to exist with central composite designs 
defined at α = 1.0. 

Appendix  
MATLAB COMPUTATIONS FOR BBD 
 
>> k= 5, p=21, N43. 
>> det((A'*A)/43) = 1.0898e-016 
>> (43*inv(A'*A))= 

 
  Columns 1 through 5 
   14.3333     0         0         0         0 
     0       2.6875      0         0         0 
     0         0       2.6875      0         0 
     0         0         0       2.6875      0 
     0         0         0         0      2.6875 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
   -7.1667      0         0         0         0 
   -7.1667      0         0         0         0 
   -7.1667      0         0         0         0 
   -7.1667      0         0         0         0 
   -7.1667      0         0         0         0 



 International Journal of Probability and Statistics 2017, 6(2): 20-32 27 
 

 

  Columns 6 through 10 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    2.6875     0         0         0         0 
     0       10.7500     0         0         0 
     0         0      10.7500      0         0 
     0         0         0      10.7500      0 
     0         0         0         0     10.7500 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 

 
  Columns 11 through 15 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
   10.7500     0         0         0         0 
     0       10.7500     0         0         0 
     0         0     10.7500       0         0 
     0         0         0     10.7500       0 
     0         0         0         0     10.7500 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 

 
  Columns 16 through 20 
     0      -7.1667    -7.1667    -7.1667   -7.1667 
     0         0         0         0         0 

     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
   10.7500      0         0         0         0 
     0       6.7187     3.1354    3.1354    3.1354 
     0       3.1354     6.7188    3.1354    3.1354 
     0       3.1354     3.1354    6.7188    3.1354 
     0       3.1354     3.1354    3.1354    6.7188 
     0       3.1354     3.1354    3.1354    3.1354 

 
  Column 21 
   -7.1667 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    3.1354 
    3.1354 
    3.1354 
    3.1354 
    6.7188 

 
>> det(43*inv(A'*A)) = 9.1757e+015 
>> ((A'*A)/43) = 

 
  Columns 1 through 5 
    1.0000      0         0        0         0 
     0       0.3721       0        0         0 
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     0         0       0.3721      0         0 
     0         0         0       0.3721      0 
     0         0         0         0     0.3721 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    0.3721      0         0         0         0 
    0.3721      0         0         0         0 
    0.3721      0         0         0         0 
    0.3721      0         0         0         0 
    0.3721      0         0         0         0 

 
  Columns 6 through 10 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    0.3721      0         0         0         0 
     0       0.0930      0         0         0 
     0         0       0.0930      0         0 
     0         0         0       0.0930      0 
     0         0         0         0     0.0930 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 

 
  Columns 11 through 15 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 

     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    0.0930      0         0         0         0 
     0       0.0930       0         0         0 
     0         0        0.0930      0         0 
     0         0         0        0.0930      0 
     0         0         0         0      0.0930 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 

 
  Columns 16 through 20 
     0       0.3721     0.3721    0.3721    0.3721 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    0.0930     0         0         0         0 
     0       0.3721     0.0930    0.0930    0.0930 
     0       0.0930     0.3721    0.0930    0.0930 
     0       0.0930     0.0930    0.3721    0.0930 
     0       0.0930     0.0930    0.0930    0.3721 
     0       0.0930     0.0930    0.0930    0.0930 

 
  Column 21 
    0.3721 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
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         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.3721 

 
>> trace((A'*A)/43) = 5.6512 
>> trace(43*inv(A'*A))=  168.8646 
>> eig((A'*A)/43) 
ans = 

 
    0.0303 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.0930 
    0.2791 
    0.2791 
    0.2791 
    0.2791 
    0.3721 
    0.3721 
    0.3721 
    0.3721 
    0.3721 
    1.7139 

 
>> eig(43*inv(A'*A)) 
ans = 

 
    0.5835 
   33.0103 
   3.5833 
   3.5833 
   3.5833 

   3.5833 
   2.6875 
   2.6875 
   2.6875 
   2.6875 
   2.6875 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 
   10.7500 

 
>> B*(43*inv(A'*A))*B'= 21.5000 
>> C*(43*inv(A'*A))*C'= 21.5000 
D*(43*inv(A'*A))*D'= 21.5000 
E*(43*inv(A'*A))*E'= 21.5000 
F*(43*inv(A'*A))*F'= 21.5000 
G*(43*inv(A'*A))*G'= 21.5000 
H*(43*inv(A'*A))*H'= 21.5000 
I*(43*inv(A'*A))*I'= 21.5000 
J*(43*inv(A'*A))*J'= 21.5000 
K*(43*inv(A'*A))*K'= 21.5000 
L*(43*inv(A'*A))*L'= 21.5000 
M*(43*inv(A'*A))*M'= 21.5000 
N*(43*inv(A'*A))*N'= 21.5000 
O*(43*inv(A'*A))*O'= 21.5000 
P*(43*inv(A'*A))*P'= 21.5000 
Q*(43*inv(A'*A))*Q'= 21.5000 
R*(43*inv(A'*A))*R'= 21.5000 
S*(43*inv(A'*A))*S'= 21.5000 
T*(43*inv(A'*A))*T'= 21.5000 
U*(43*inv(A'*A))*U'= 21.5000 
V*(43*inv(A'*A))*V'= 21.5000 
W*(43*inv(A'*A))*W'= 21.5000 
X*(43*inv(A'*A))*X'= 21.5000 
Y*(43*inv(A'*A))*Y'= 21.5000 
Z*(43*inv(A'*A))*Z'= 21.5000 
(ZA)*(43*inv(A'*A))*(ZA)'= 21.5000 
(ZB)*(43*inv(A'*A))*(ZB)'= 21.5000 
ZC)*(43*inv(A'*A))*(ZC)'= 21.5000 
(ZD)*(43*inv(A'*A))*(ZD)'= 21.5000 
(ZE)*(43*inv(A'*A))*(ZE)'= 21.5000 
(ZF)*(43*inv(A'*A))*(ZF)'= 21.5000 
(ZG)*(43*inv(A'*A))*(ZG)'= 21.5000 
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(ZH)*(43*inv(A'*A))*(ZH)'= 21.5000 
(ZI)*(43*inv(A'*A))*(ZI)'= 21.5000 
(ZJ)*(43*inv(A'*A))*(ZJ)'= 21.5000 
(ZK)*(43*inv(A'*A))*(ZK)'= 21.5000 
(ZL)*(43*inv(A'*A))*(ZL)'= 21.5000 
(ZM)*(43*inv(A'*A))*(ZM)'= 21.5000 
(ZN)*(43*inv(A'*A))*(ZN)'= 21.5000 
(ZO)*(43*inv(A'*A))*(ZO)'= 21.5000 
(ZP)*(43*inv(A'*A))*(ZP)'= 14.3333 

 
MATLAB COMPUTATIONS FOR CCD 
>> k = 3, α=1.682, N=15 

 
>> det((A'*A)/15)= 0.0235 
>> (15*inv(A'*A)) 
ans = 

 
  Columns 1 through 5 
   14.8269    -0.0000        0         0        0 
   -0.0000    1.0982         0         0        0 
     0         0         1.0982       0        0 
     0         0           0       1.0982      0 
     0         0           0         0    1.8750 
     0         0           0         0         0 
     0         0           0         0         0 
   -5.0617    0.0000        0         0         0 
   -5.0617    0.0000        0         0         0 
   -5.0617    0.0000        0         0         0 
 
  Columns 6 through 10 
     0         0     -5.0617   -5.0617   -5.0617 
     0         0     0.0000    0.0000    0.0000 
     0         0       0         0         0 
     0         0        0        0         0 
     0         0        0        0         0 
    1.8750     0        0        0         0 
     0      1.8750      0         0        0 
     0         0     2.4777    1.5406    1.5406 
     0         0     1.5406    2.4777    1.5406 
     0         0     1.5406    1.5406    2.4777 

 
>> det(15*inv(A'*A)) = 42.6189 
>> trace((A'*A)/15) = 10.1332 
>> trace(15*inv(A'*A)) =  31.1796 
>> eig((A'*A)/15) 
ans = 

 
    0.0497 
    0.5333 

    0.5333 
    0.5333 
    0.9105 
    0.9105 
    0.9105 
    1.0672 
    1.0672 
    3.6175 

 
>> eig(15*inv(A'*A)) 
ans = 

 
   20.1094 
   0.2764 
   0.9370 
   1.0982 
   0.9370 
   1.0982 
   1.0982 
   1.8750 
   1.8750 
   1.8750 

 
>> B*(15*inv(A'*A))*B'=10.0532 
>> C*(15*inv(A'*A))*C'=10.0532 
>> D*(15*inv(A'*A))*D'= 10.0532 
>> E*(15*inv(A'*A))*E'=10.0532 
>> F*(15*inv(A'*A))*F'=10.0532 
>> G*(15*inv(A'*A))*G'=10.0532 
>> H*(15*inv(A'*A))*H'=10.0532 
>> I*(15*inv(A'*A))*I'=10.0532 
>> J*(15*inv(A'*A))*J'= 9.1247 
>> M*(15*inv(A'*A))*M'= 9.1247 
>> K*(15*inv(A'*A))*K'= 9.1247 
>> L*(15*inv(A'*A))*L'= 9.1247 
>> M*(15*inv(A'*A))*M'= 9.1247 
>> N*(15*inv(A'*A))*N'= 9.1247 
>> O*(15*inv(A'*A))*O'= 9.1247 
>> P*(15*inv(A'*A))*P'= 14.8269 

 
MATLAB COMPUTATIONS FOR CCD 
 k = 3, p = 10, α = 1.7321, N = 15 

 
>> det((A'*A)/15) 
ans = 
    0.0332 
>> (15*inv(A'*A)) 
ans = 
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  Columns 1 through 5 
   15.0000     0         0         0         0 
     0      1.0714       0         0         0 
     0         0       1.0714      0         0 
     0         0         0       1.0714      0 
     0         0         0         0    1.8750 
     0         0         0         0         0 
     0         0         0         0         0 
   -4.9999      0         0         0         0 
   -4.9999      0         0         0         0 
   -4.9999      0         0         0         0 

 
  Columns 6 through 10 
     0         0      -4.9999    -4.9999   -4.9999 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
     0         0         0         0         0 
    1.8750      0         0         0         0 
     0       1.8750       0         0         0 
     0         0       2.3411    1.5079    1.5079 
     0         0       1.5079    2.3411    1.5079 
     0         0       1.5079    1.5079    2.3411 

 
>> det(15*inv(A'*A)) 
ans = 
   30.1518 
>> trace((A'*A)/15) 
ans = 
   10.6005 
>> trace(15*inv(A'*A)) 
ans = 
   30.8626 
>> eig((A'*A)/15) 
ans = 

 
   0.0498 
   0.5333 
   0.5333 
   0.5333 
   0.9334 
   0.9334 
   0.9334 
   1.2001 
   1.2001 
   3.7504 

 
>> eig(15*inv(A'*A)) 
ans = 

 
   20.0902 
   0.2666 
   0.8332 
   0.8332 
   1.0714 
   1.0714 
   1.0714 
   1.8750 
   1.8750 
   1.8750 

 
>> B*(15*inv(A'*A))*B' = 9.9106 
>> C*(15*inv(A'*A))*C'= 9.9106 
>> D*(15*inv(A'*A))*D'= 9.9106 
>> E*(15*inv(A'*A))*E'= 9.9106 
>> F*(15*inv(A'*A))*F'= 9.9106 
>> G*(15*inv(A'*A))*G'= 9.9106 
>> H*(15*inv(A'*A))*H'= 9.9106 
>> I*(15*inv(A'*A))*I'= 9.9106 
>> J*(15*inv(A'*A))*J'=9.2859 
>> K*(15*inv(A'*A))*K'=9.2859 
>> L*(15*inv(A'*A))*L'=9.2859 
>> M*(15*inv(A'*A))*M'=9.2859 
>> N*(15*inv(A'*A))*N'=9.2859 
>> O*(15*inv(A'*A))*O'=9.2859 
>> P*(15*inv(A'*A))*P'= 15.0000 
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