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Abstract Relationships between optimal design properties and changing sizes of designs, by the addition of center points,

are seen to be very strong between the Box-Benhken designs and the Box-Wilson designs defined at o = VK and o= F %
Variations seem to exist with Box-Wilson designs defined at o= 1.0. In particular, the determinant values of the information
matrices of the Box-Benhken designs generally decrease as n. increases. These are also true for all categories of the
Box-Wilson designs. However, the minimum eigenvalue of the Box-Benhken design and the Box-Wilson design defined at

1
a= VK and o= F7 is maximized when n.=5 and maximized when n.= 1 for the Box-Wilson design defined at o = 1.0. For
the Box-Benhken designs considered, the trace values of the variance-covariance matrices generally decrease as n,

increases. This is also true for the Box-Wilson designs defined at o = VK and a= F % For the Box-Wilson designs defined at
a = 1.0, the trace values of the variance-covariance matrices increase as n, increases. The maximum scaled predictive
variances associated with the Box-Benhken designs and the Box-Wilson designs generally increase as n, increases and
minimized when n,= 1 for Box-Wilson design defined at a = 1.0 and when n.= 2 for the Box-Benhken design and the

1
Box-Wilson design defined at a = VK and a = F7. The trace of information matrix associated with all considered design

types consistently decreases as n. increases.
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1. Introduction

Two popularly used Response Surface Methodology
(RSM) designs in modeling second order effects are the
Box-Benhken and Box-Wilson designs. Each of them has
less number of experimental runs when compared with the
three-level full factorial designs. The Box-Benhken design
abbreviated BBD was introduced by Box and Benhken (1960)
and constitutes an alternative to the Box-Wilson design
(otherwise called Central Composite Design (CCD))
introduced by Box and Wilson (1951). Although some
categories of the Box-Wilson designs are not rotatable,
Box-Benhken designs are a class of rotatable or
near-rotatable second-order designs based on three-level
incomplete factorial designs. They are formed by combining
two-level factorial designs with incomplete block design in a
particular fashion. They are designs introduced for
second-order models in order to limit the growing sample
size as the number of model parameters increases. When
compared with the CCDs, the BBDs have the advantage of
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reduced design points. In general, the number of design
points of the BBDs is 2k(k — 1) + n., where k is the
number of factors and n, is the number of center points. On
the other hand, the number of design points of the CCDs is
2% + 2k + n., where k remains the number of factors and
n. remains the number of center points.

The CCDs can be studied for k = 2 however, the BBDs
do not exist for k = 2 and can be studied for k > 3. In the
simplest case of k = 3, the number of design points of the
Box-Benhken design is 12 plus n,. center points and the
number of design points of the central composite design is 14
plus n,. center points. For k = 4, the number of design
points of the Box-Benhken design is 24 plus n. center
points and the number of design points of the central
composite design is 24 plus n, center points. For k = 5, the
number of design points of the Box-Benhken design is 40
plus n, center points and the number of design points of the
central composite design is 42 plus n,. center points. For
k = 6, the number of design points of the Box-Benhken
design is 60 plus n, center points and the number of design
points of the central composite design is 76 plus n. center
points. The advantage in reduced design size becomes more
pronounced as k increases beyond seven. For instance,
when k =10, the number of design points of the
Box-Benhken design is 180 plus n, center points and the
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number of design points of the central composite design is
1,044 plus n, center points.

Myres et.al (2009) observed that in many scientific studies
that require Response Surface Methodology, researchers are
inclined to require three evenly spaced factor levels of which
Box-Benhken design is an efficient option and an important
alternative to the central composite design Box-Benhken
designs like some central composite designs are spherical
and do not deviate substantially from being rotatable. Many
standard ways of comparing designs, ranging from the use of
numeric values to graphs, exist in Response Surface
Methodolgy. Lucas (1976) compared Response Surface
designs by their D- and G-efficiency values. A Box-Benhken
design has been compared with a Uniform shell design of
Doehlert (1970) in Crosier (1993). It was seen that the
Box-Benhken design exhibited a very high G-efficiency
value of 98.9% as against 59.7% of the Uniform shell design.
Also, Box-Benhken design gave a better prediction at the
perimeter of the design region while the Uniform shell
design gave a better prediction near the center of the design
region. Although the Uniform shell design generally requires
fewer runs then CCDs and BBDs, they are not widely used
in fitting second-order model. Crosier (1993) further
compared the performance of three-factor central composite
design having n, =3 center points with the three-factor
Box-Benhken design having n, =3 center points. The
Box-Benhken design performed better near the design center
while the central composite design performed better near the
perimeter.

Zolgharnein et.al (2013) carried out a comparative study
of Box-Benhken, central composite and Doehlert matrix for
multivariate  optimization. Practical applications of
Box-Benhken and Central Composite designs are numerous
(see e.g Tekindal etal (2012), Igder etal (2012),
Zolgharnein et.al (2013) and Sabela et.al (2014)). In this
work, the effects of addition of n, center points on the
optimality of Box-Benhken and Box-Wilson second-order
designs shall be the focus. The aim is to see how increasing
the number of center runs added to Box-Benhken and
Box-Wilson designs affects A-, D-, E-, G- and T-optimality
values for the designs.

2. Methodology

For a p parameter polynomial in k factors, each k-factor,
N-point Box-Benhken and Box-Wilson second-order
response surface design, written as an Nxk matrix, shall be
studied for changes in A-, D-, E-, G- and T-optimality values
when the center points, n, , are increased. To estimate the
parameters (coefficients) of the second-order polynomial,
the matrix of the design shall be expanded into an Nxp model
matrix having one column for each parameter of the
polynomial model. The moment matrix or information
matrix of the design shall be obtained. In order to compare
designs of varying sizes, the information matrix shall be
normalized to remove the effect of the varying design sizes.

Although Myres et.al (2009) recommends the use of three to
five center runs, this study shall consider 1 < n, < 5.
Three categories of the Box-Wilson design shall be
investigated alongside the Box-Benhken design. The
categories of Box-Wilson design are the central composite

designs with respective axial distance a = 1, o = VK and

a=F %, where F = 2*. The designs shall be assessed with
respect to statistical criteria, namely, A-, D-, E-, G- and
T-optimality  criteria, which are related to the
variance-covariance matrix of the model parameter estimator.
The chosen optimality criteria are commonly encountered in
literatures on optimal design of experiment.

Rady et al. (2009) presented a survey on these optimality
criteria as well as the relationships among them. As in
literature, by A-optimality, a design in which the sum of the
variances of the model coefficients is minimized is sought. It
is defined as

Min tr (M™1)
where Min implies that minimization is over all designs and
tr represents trace.

By D-optimality, a design in which the determinant of the
moment matrix

_ xTx

TN
is maximized over all designs is sought. Where X represents
the model matrix associate with the D-optimal design and
XT represents its transpose. The criterion of D-optimality
equivalently minimizes the determinant of M~*.

By E-optimality criterion, a design which maximizes the
minimum eigen value of M or equivalently minimizes the
maximum eigen value of M™! is sought. By E-optimality, a
design which minimizes the maximum variance of all
possible normalized linear combination of parameter
estimates is sought. E-optimality criterion is defined by

Max A,,;,, (M) = Min A5, (M)
where 4,,;,, and A,,,, represent minimum eigen value and
maximum eigen value, respectively. By G-optimality, a
design which minimizes the maximum scaled prediction
variance in the region of the design is sought. It is defined by

Min{masx,eq v()}

By T-optimality, a design which maximizes the trace of
the information matrix is sought. It is defined as

Max tr (M)

where Max implies that maximization is over all designs and
tr represents trace.

The second-order model to consider is the complete model
having main effects, interaction effects and quadratic effects
and is given as

y=PBo+ Xl Bix; + XIS }}’(=i+1 Bij (xix)}
+ N Buxl te
To effectively compare the designs, the information
matrix of any given design shall be normalized. By

normalization, the effect of changing sample size shall be
removed. In studying the effects of addition of n, center
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points on the optimality of the BBDs and CCDs, we
shall consider n, = 3,4and 5, whose design sizes are
moderately small and relatively close.

3. Results

The results of the investigation regarding the effects of
center point on optimality of Box-Behnken and Box-Wilson
designs are contained in Table 1. The first column entries on
the table show the design type. The second column entries on
the table show the number of controllable factors of
experimentation. The third column entries on the table show

$16 =

O O O O O O O R

A

the number of model parameters associated with the k
variable model. The columns under Optimality Constant
represent values obtained using A-, D-, E-, G- and
T-optimality criteria. The design matrices are built from the
designs and the models. For an illustration, assuming
Box-Behnken design in k=3 wvariables, the associated
10-parameter model is

y=Po+ X1 Bixi +{Xi
+ X Buxl te
The 16-point Box-Behnken design (with n, = 4) is

]3=i+1 ﬁij (x; X; )}

-1
1 0
-1

1

0 -1

0 1

0 -1

0 1
4 -1
-1 1

1 -1

1

0

0

0 0

0 o/

With the model and the 16-point design, the associated model matrix is

X = ﬁ-l 10
1 -1 1 0
1 1 -1 0
1 1 1 0
1 -1 0 -l
1 -1 0 1
1 1 0 -1
1 1 0 1
1 0 -1 -1
1 0 -1 1
1 0 1 -l
1 0
& 0 0 0

1 0o o 1 1 N
10 0 1 1 0
10 0 1 1 0
1 0 o0 1 1 0
o 1 o0 1 0 1
0 -1 0 1 0 1
0 -1 0 1 0 1
o 1 o0 1 0 1
o o0 1 o0 1 1
o o0 -1 o0 1 1
0o 0 -1 o0 1 1
0 0 0o 1 1
0 0 0 0 0 J



International Journal of Probability and Statistics 2017, 6(2): 20-32 23

The corresponding normalized information matrix is

M = Xx _ m)oo 0 0 0 0 0 0 0.5000 0.5000 O.SOM
N 0 0.5000 0 0 0 0 0 0 0 0
0 0 0.5000 0 0 0 0 0 0 0
0 0 0 0.5000 0 0 0 0 0 0
0 0 0 0 0.2500 0 0 0 0 0
0 0 0 0 0 0.2500 0 0 0 0
0 0 0 0 0 0 0.2500 0 0 0
0.5000 0 0 0 0 0 0 0.5000 0.2500 0.2500
0.5000 0 0 0 0 0 0 0.2500 0.5000 0.2500
0.5000 0 0 0 0 0 0 0.2500 0.2500 0.5000
and its inverse matrix is
M = ﬁ o 0o o0 0 0 0 2 =2 x
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 4 0 0 0
2 0 0 0 0 0 0 4 0 0
2 0 0 0 0 0
N2 o/
The determinant value of information matrix is 2.0000
3.0518e-005. 2.0000
The determinant value of its inverse matrix is 32768. 4.0000
The trace of the information matrix is 4.7500. 4.0000
The trace of its inverse matrix is 34. 4.0000
The eigenvalues of the information matrix are 4.0000
0.1340 4.0000
0.2500 7.4641
0.2500 Each point of the design, apart from the center point, has
0.2500 variance of predicted value of 12.0. The variance of
0.2500 predicted value at the center point is 4.0. Each design follows
0.2500 these unique presentations for defined &, p and N. MATLAB
0.5000 R2007b was used in all computations and the results are as
0.5000 presented in Table 1. The MATLAB outputs for BBD, /=5,
0.5000 p=21,N=43,CCD, k=3,0=1.682,N=15and k=3,p=10,a
1.8660 = 1.7321, N = 15 have been included in the Appendix.
The eigenvalues of the inverse matrix are Presentation for only three categories is purely for space
management.

0.5359
2.0000
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4. Discussion of Results

The results on the effects of addition of n. center points
on the optimality of Box-Benhken and Box-Wilson
second-order designs show some interesting relationships.
For the Box-Benhken designs considered, the trace of the
variance-covariance matrix generally decreases as n,
increases, thus showing a negative linear relationship. This is
also true for the central composite designs defined at a = VK

anda=F % For the central composite design defined at a =
1.0, the trace of the variance-covariance matrix increases as
n, increases, thus showing a positive linear relationship.
Trace of the variance-covariance matrix for the
three-variable Box-Benhken design is minimized when n,=
4. For the four-variable Box-Benhken design, trace of the
variance-covariance matrix is minimized when n.= 5 and
for the five-variable Box-Benhken design, trace of the
variance-covariance matrix is minimized when n.= 5. For
the central composite design defined at a = 1.0, the trace of
the variance-covariance matrix is minimized when n,= 1.

However, for the central composite design defined at o = VK

and o = F %, the trace of the variance-covariance matrix is
minimized when n.= 5.

On D-optimality criterion, the determinant of the
information matrix of the Box-Benhken design generally
decreases as n. increases. Equivalently, the determinant of
the variance-covariance matrix of the Box-Benhken design
generally increases as n, increases. These are also true for
all categories of the central composite design. For all cases
considered, the determinant of information matrix is
maximized at n, = 2 except for the three-variable
Box-Benhken design where the determinant of information
matrix is maximized at n,= 1. The minimum eigenvalue of
the Box-Benhken design and the central composite design

defined at a = VK and a = F 1 is maximized when n,= 5
and maximized when n.= 1 for the central composite design
defined at o = 1.0. The maximum scaled predictive variance
associated with the Box-Benhken designs and the
Box-Wilson designs generally increases as n, increases and
minimized when n,= 1 for CCD defined at o = 1.0, when

n.= 2 for CCD defined at & = VK and o = F% and the
Box-Benhken design. For the three-variable 10-parameter
Box-Benhken design, the minimum variance equals 10.5
which is approximately close to the number of model
parameters. For the  four-variable  15-parameter
Box-Benhken design, the minimum variance equals 15.1667
which is approximately close to the number of model
parameters.  For  the  five-variable  21-parameter
Box-Benhken design, the minimum variance equals 21.0
which is exactly the number of model parameters.

The closeness of the minimum variance of prediction to
the number of model parameter associated with the CCDs
defined at a = 1.0 was not obvious, however for CCDs

defined at « = VK and o = F T and for k=3 and k=4, near
approximations exist. As in the literature, maximum value of
the predictive variance equal tp or approximately equal to the
number of model parameters show that the corresponding

design is rotatable or near-rotatable. The trace of information
matrix associated with all considered design types
consistently decreases as n, increases. Generally, the
relationships between addition of center points and the
optimality properties are very strong between the
Box-Benhken designs and the central composite design

defined at o = VK anda= F % This is most likely due to the
sphericity and rotatabilty properties of the three design types.

5. Conclusions

The effects of addition of n. center points on the
optimality of Box-Benhken and Box-Wilson second-order
designs have been investigated. Relationships are seen to
exist between optimal design properties and changing size of
the designs by the addition of center points. The relationships
are very strong between the Box-Benhken designs and the

1
central composite design defined at o = VK and o = F7.
Variations seem to exist with central composite designs
defined at o= 1.0.

Appendix

MATLAB COMPUTATIONS FOR BBD
>> k=5, p=21, N43.

>> det((A'™*A)/43) = 1.0898e-016

>> (43*inv(A'"*A))=

Columns 1 through 5

14.3333 0 0 0 0
0 2.6875 0 0 0
0 0 2.6875 0 0
0 0 0 2.6875 0
0 0 0 0 2.6875
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
-7.1667 0 0 0 0
-7.1667 0 0 0 0
-7.1667 0 0 0 0
-7.1667 0 0 0 0
-7.1667 0 0 0 0
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Columns 6 through 10 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2.6875 0 0 0 0 0 0 0 0 0
0 10.7500 0 0 0 0 0 0 0 0
0 0 10.7500 0 0 0 0 0 0 0
0 0 0 10.7500 0 0 0 0 0 0
0 0 0 0 10.7500 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 10.7500 0 0 0 0
0 0 0 0 0 0 6.7187 3.1354 3.1354 3.1354
0 0 0 0 0 0 3.1354 6.7188 3.1354 3.1354
0 0 0 0 0 0 3.1354 3.1354 6.7188 3.1354
0 0 0 0 0 0 3.1354 3.1354 3.1354 6.7188
0 0 0 0 0 0 3.1354 3.1354 3.1354 3.1354
0 0 0 0 0
0 0 0 0 0 Column 21
0 0 0 0 0 -7.1667
0
Columns 11 through 15 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
10.7500 0 0 0 0 0
0 10.7500 0 0 0 0
0 0 10.7500 0 0 0
0 0 0 10.7500 0 3.1354
0 0 0 0 10.7500 3.1354
0 0 0 0 0 3.1354
0 0 0 0 0 3.1354
0 0 0 0 0 6.7188
0 0 0 0 0
0 0 0 0 0 >> det(43*inv(A'*A)) = 9.1757e+015
0 0 0 0 0 >> ((A™A)/43) =
Columns 16 through 20 Columns 1 through 5
0 -7.1667  -7.1667  -7.1667  -7.1667 1.0000 0 0 0 0

0 0 0 0 0 0 0.3721 0 0 0
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0.0930
0.0930
0.0930
0.0930
0.3721

>> trace((A'*A)/43) = 5.6512

>> trace(43*inv(A*A))=  168.8646
>> eig((A'*A)/43)

ans =

0.0303
0.0930
0.0930
0.0930
0.0930
0.0930
0.0930
0.0930
0.0930
0.0930
0.0930
0.2791
0.2791
0.2791
0.2791
0.3721
0.3721
0.3721
0.3721
0.3721
1.7139

>> eig(43*inv(A"*A))
ans =

0.5835
33.0103
3.5833
3.5833
3.5833

3.5833
2.6875
2.6875
2.6875
2.6875
2.6875
10.7500
10.7500
10.7500
10.7500
10.7500
10.7500
10.7500
10.7500
10.7500
10.7500

>> B*(43*inv(A"*A))*B'= 21.5000
>> C*(43*inv(A'*A))*C'= 21.5000
D*(43*inv(A"*A))*D'= 21.5000
E*(43*inv(A"*A))*E'= 21.5000
F*(43*inv(A"*A))*F'= 21.5000
G*(43*inv(A"™*A))*G'= 21.5000
H*(43*inv(A"™*A))*H'= 21.5000
[*(43*inv(A"*A))*I'= 21.5000
J#(43*inv(A"™*A))*J'= 21.5000
K*(43*inv(A"™*A))*K'= 21.5000
L*(43*inv(A"™*A))*L'= 21.5000
M*(43*inv(A"*A))*M'= 21.5000
N*(43*inv(A"*A))*N'= 21.5000
O*(43*inv(A"*A))*0O'= 21.5000
P*(43*inv(A'*A))*P'= 21.5000
Q*(43*inv(A"*A))*Q'= 21.5000
R*(43*inv(A"*A))*R'= 21.5000
S*(43*inv(A"™*A))*S'= 21.5000
T*(43*inv(A"™*A))*T'= 21.5000
U*(43*inv(A"*A))*U'= 21.5000
V*(43*inv(A"™*A))*V'= 21.5000
W*(43*inv(A"™*A))*W'= 21.5000
X*(43*inv(A"™*A))*X'= 21.5000
Y*(43*inv(A"™*A))*Y'= 21.5000
Z*(43*inv(A"™*A))*Z'= 21.5000
(ZA)*(43*inv(A'*A))*(ZA)'= 21.5000
(ZB)*(43*inv(A'*A))*(ZB)'= 21.5000
ZC)*(43*inv(A'*A))*(ZC)'= 21.5000
(ZD)*(43*inv(A'*A))*(ZD)'= 21.5000
(ZE)*(43*inv(A'*A))*(ZE)'= 21.5000
(ZF)*(43*inv(A'*A))*(ZF)'= 21.5000
(ZG)*(43*inv(A"*A))*(ZG)'= 21.5000
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(ZH)*(43*inv(A'*A))*(ZH)'= 21.5000
(ZI)*(43*inv(A"*A))*(ZI)'= 21.5000
(Z))*(43*inv(A"™*A))*(ZJ)'= 21.5000
(ZK)*(43*inv(A"*A))*(ZK)'= 21.5000
(ZL)*(43*inv(A"™*A))*(ZL)'= 21.5000
(ZM)*(43*inv(A"*A))*(ZM)'= 21.5000
(ZN)*(43*inv(A"*A))*(ZN)'= 21.5000
(ZO)*(43*inv(A'*A))*(Z0)'= 21.5000
(ZP)*(43*inv(A'*A))*(ZP)'= 14.3333

MATLAB COMPUTATIONS FOR CCD
>>k =3, 0=1.682, N=15

>> det((A™*A)/15)= 0.0235
>> (15*inv(A'*A))

ans =

Columns 1 through 5

14.8269 -0.0000 0 0 0
-0.0000 1.0982 0 0 0
0 0 1.0982 0 0
0 0 0 1.0982 0
0 0 0 0 1.8750
0 0 0 0 0
0 0 0 0 0
-5.0617 0.0000 0 0 0
-5.0617 0.0000 0 0 0
-5.0617 0.0000 0 0 0
Columns 6 through 10
0 0 -5.0617 -5.0617 -5.0617
0 0 0.0000 0.0000 0.0000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1.8750 0 0 0 0
0 1.8750 0 0 0
0 0 24777 1.5406 1.5406
0 0 1.5406 2.4777 1.5406
0 0 1.5406 1.5406 24777

>> det(15*inv(A™*A)) = 42.6189

>> trace((A'*A)/15) = 10.1332

>> trace(15*inv(A™*A)) = 31.1796
>> eig((A"*A)/15)

ans =

0.0497
0.5333

0.5333
0.5333
0.9105
0.9105
0.9105
1.0672
1.0672
3.6175

>> eig(15*inv(A*A))

ans =

20.1094
0.2764
0.9370
1.0982
0.9370
1.0982
1.0982
1.8750
1.8750
1.8750

>> B*(15*inv(A"*A))*B'=10.0532
>> C*(15%inv(A"*A))*C'=10.0532
>> D*(15*inv(A"*A))*D'= 10.0532
>> E*(15*inv(A"*A))*E'=10.0532
>> F*(15%inv(A™*A))*F'=10.0532
>> G*(15*inv(A"*A))*G'=10.0532
>> H*(15*inv(A*A))*H'=10.0532
>> [*(15%inv(A"*A))*I'=10.0532
>> J*(15%inv(A*A))*J'= 9.1247
>> M*(15%inv(A™*A))*M'= 9.1247
>> K*(15*inv(A*A))*K'= 9.1247
>> L*(15*inv(A*A))*L'= 9.1247
>> M*(15%inv(A™*A))*M'= 9.1247
>> N*(15*inv(A*A))*N'= 9.1247
>> 0*(15*inv(A*A))*O'= 9.1247
>> P*(15%inv(A™*A))*P'= 14.8269

MATLAB COMPUTATIONS FOR CCD
k=3,p=10,a=1.7321,N=15

>> det((A*A)/15)
ans =

0.0332
>> (15*inv(A'*A))
ans =



Columns 1 through 5

15.0000 0

0 1.0714

0 0

0 0

0 0

0 0

0 0
-4.9999 0
-4.9999 0
-4.9999 0

Columns 6 through 10

0 0
0 0
0 0
0 0
0 0
1.8750 0
0 1.8750
0 0
0 0
0 0
>> det(15*inv(A'*A))
ans =
30.1518
>> trace((A'*A)/15)
ans =
10.6005
>> trace(15*inv(A'*A))
ans =
30.8626
>> eig((A'*A)/15)
ans =
0.0498
0.5333
0.5333
0.5333
0.9334
0.9334
0.9334
1.2001
1.2001
3.7504
>> eig(15*inv(A'*A))
ans =
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0
0
1.0714
0

SO O o O o O

-4.9999
0

o © O O

0
2.3411
1.5079
1.5079

o o o <

-4.9999
0

o © O O

0
1.5079
2.3411
1.5079

-4.9999

o © O O

1.5079
1.5079
2.3411
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20.0902
0.2666
0.8332
0.8332
1.0714
1.0714
1.0714
1.8750
1.8750
1.8750

>> B*(15*inv(A"*A))*B' = 9.9106

>> C*(15%inv(A™*A))*C'= 9.9106
>> D*(15*inv(A"*A))*D'= 9.9106
>> E*(15*inv(A*A))*E'= 9.9106
>> F*(15*inv(A™*A))*F'= 9.9106
>> G*(15*inv(A*A))*G'= 9.9106
>> H*(15*inv(A*A))*H'= 9.9106
>> [*(15*inv(A™*A))*I'= 9.9106
>> J*(15%inv(A™A))*J'=9.2859
>> K*(15%inv(A"*A))*K'=9.2859
>> L*(15*inv(A"*A))*L'=9.2859
>> M*(15%inv(A™*A))*M'=9.2859
>> N*(15*inv(A"*A))*N'=9.2859
>> 0*(15*inv(A'*A))*0'=9.2859
>> P*(15*inv(A™*A))*P'= 15.0000
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