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Abstract  A Poisson-Akash distribution has been obtained by compounding Poisson distribution with Akash distribution 
introduced by Shanker (2015). A general expression for the r th factorial moment has been derived and hence the first four 
moments about origin and the moments about mean has been obtained. The expressions for its coefficient of variation, 
skewness and kurtosis have been obtained. Its statistical properties including generating function, increasing hazard rate and 
unimodality and over-dispersion have been discussed. The maximum likelihood estimation and the method of moments for 
estimating its parameter have been discussed. The goodness of fit of the proposed distribution using maximum likelihood 
estimation has been given for some count data-sets and the fit is compared with that obtained by other distributions.  
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1. Introduction 
A lifetime distribution named, “Akash distribution” 

having probability density function  
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has been proposed by Shanker (2015) for modeling 
lifetime data from biomedical science and engineering and 
shown that the proposed distribution is a two-component 
mixture of exponential distribution having scale parameter 
θ  and a gamma distribution having shape parameter 3 and 

scale parameter θ  with their mixing proportions 
2
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θ

θ +
 

and 2
2

2θ +
 respectively. Various mathematical and 

statistical properties of Akash distribution including its 
shape, moments, skewness, kurtosis, hazard rate function, 
mean residual life function, stochastic ordering, mean 
deviations, distribution of order statistics, Bonferroni and 
Lorenz curves, Renyi entropy measure and stress-strength 
reliability have been discussed by Shanker (2015). It has 
been shown by Shanker (2015) that Akash distribution 
provides much closer fit than Lindley and exponential 
distributions for modeling lifetime data from medical science 
and engineering. Further, Shanker et al (2016) have done a 
detailed comparative study on Akash, Lindley and 
exponential  distributions for modeling  different types of  
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lifetime data from engineering and medical science and 
concluded that Akash distribution has some advantage over 
Lindley and exponential distributions, Lindley distribution 
has some advantage over Akash and exponential 
distributions and exponential distribution has some 
advantage over Akash and Lindley distributions due to their 
over-dispersion, equi-dispersion, and under-dispersion for 
various values of their parameters. Recently, Shanker and 
Shukla (2016) has introduced a two-parameter weighted 
Akash distribution (WAD) andstudied its various 
mathematical and statistical properties, estimation of 
parameter and application for modeling lifetime data. 
Shanker (2016) has also proposed a two-parameter quasi 
Akash distribution and studied its statistical and 
mathematical properties, estimation of parameters using 
maximum likelihood estimation and method of moments 
along with its application for modeling lifetime data from 
engineering and biomedical sciences. 

In the present paper, a Poisson mixture of Akash 
distribution introduced by Shanker (2015) named, 
“Poisson-Akash distribution (PAD) has been proposed. Its 
various mathematical and statistical properties including its 
shape, moments, coefficient of variation, skewness, and 
kurtosis have been discussed. The estimation of its parameter 
has been discussed using maximum likelihood estimation 
and method of moments. The goodness of fit of PAD along 
with Poisson distribution and Poisson-Lindley distribution 
(PLD), a Poisson mixture of Lindley (1958) distribution and 
introduced by Sankaran (1970), has been given with some 
count data-sets. 

2. Poisson-Akash Distribution 
Suppose the parameter λ  of Poisson distribution follows 

Akash distribution (1.1). Then the Poisson mixture of Akash 
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distribution (1.1) can be obtained as  
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We name this distribution “Poisson-Akash distribution 
(PAD)”. Shanker et al (2016) have detailed study on 
applications of PAD to model count data from different 
fields of knowledge. 

It would be recalled that Sankaran (1970) obtained 
Poisson-Lindley distribution (PLD) having probability mass 
function (p.m.f) 
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by compounding Poisson distribution with Lindley 
distribution, introduced by Lindley (1958) having 
probability density function (p.d.f) 
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Ghitany et al (2008) have discussed various interesting 
properties of Lindley distribution, estimation of parameter 
and application for modeling waiting time data from a bank. 
Shanker et al (2015) have detailed study on modeling of 
lifetime data using exponential and Lindley distributions. 
Further, Shanker et al (2016) have discussed the comparative 
applications of Akash, Lindley and exponential distributions 
for modeling lifetime data from biomedical sciences and 
engineering. Shanker and Hagos (2015) have detailed and 
critical study on applications of PLD to model count data 
from biological sciences. 

The graphs of the pmf of Poisson-Akash distribution 
(PAD) and Poisson-Lindley distribution (PLD) for different 
values of their parameter are shown in the figure 1. 

 

 

 

Figure 1.  Graphs of probability mass function of PAD and PLD for different values of the parameter θ  
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3. Moments and Associated Measures 
The r th factorial moment about origin of Poisson-Akash 

distribution (PAD) (2.2) can be obtained as  
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Using (2.1), the r th factorial moment about origin of 
PAD (2.2) can be obtained as 
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Taking x r+  in place of x  within the bracket, we get  
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The expression within the bracket is clearly unity and 
hence we have  
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Using gamma integral and a little algebraic simplification, 
we get finally, a general expression for the r th factorial 
moment of PAD (2.2) as 
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Substituting 1,2,3,and 4r =  in (3.1), the first four 
factorial moments about origin can be obtained and using the 
relationship between factorial moments about origin and 
moments about origin, the first four moment about origin of 
the PAD (2.2) are obtained as  
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Using the relationship between moments about mean and 
the moments about origin, the moments about mean of the 
PAD (2.2) are obtained as 
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The coefficient of variation ( ).C V , coefficient of skewness ( )1β , coefficient of kurtosis ( )2β , and index of dispersion 

( )γ  of the PAD (2.2) are thus given by  
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The expressions for 1 2 1 2, , C.V, , andµ µ β β γ′  of PLD (2.3) obtained by Sankaran (1970) and Ghitany and 
Al-Mutairi (2009) are given by 
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Table 1.  Values of 1 2 1 2, , C.V, , andµ µ β β γ′  of PAD and PLD for different values of θ  

 Values of θ  for Poisson-Akash Distribution 

 1 2 3 4 5 6 

1 'µ  2.333333 0.833333 0.454545 0.305555 0.229629 0.184210 

2µ  5.555556 1.472222 0.672176 0.406636 0.286529 0.220452 

CV 1.010152 1.456022 1.803699 2.086953 2.331078 2.548843 

1β  1.431184 2.000799 2.363690 2.603557 2.797221 2.971690 

2β  5.7336 8.367746 10.503158 11.911543 13.005753 14.002950 

γ  2.380952 1.766667 1.478788 1.330808 1.247789 1.196742 

 Values of θ  for Poisson-Lindley Distribution 

 1 2 3 4 5 6 

1 'µ  1.5 0.666667 0.416667 0.3 0.233333 0.190476 

2µ  3.25 1.055556 0.576389 0.385 0.285556 0.225624 

CV 1.20185 1.541104 1.822087 2.068279 2.290174 2.493742 

1β  1.792108 2.083265 2.314307 2.517935 2.704839 2.87957 

2β  7.532544 8.941828 10.10611 11.17187 12.19654 13.203 

γ  2.166667 1.583333 1.383333 1.283333 1.22381 1.184524 
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To study the behavior of 1 2 1 2, , C.V, , andµ µ β β γ′  of PAD and PLD, values of these characteristics for different 
values of parameter θ  have been computed and presented in table 1. 

The graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion of PAD and 
PLD for different values of the parameter θ  have been shown in the figure 2. 

 

 

 

Coefficient of Skewness

0
0.5

1
1.5

2
2.5
3

3.5

1 2 3 4 5 6
θ

Poisson-Lindley Poisson-Akash

Coefficient of Kurtosis

0
2
4

6
8

10
12

14
16

1 2 3 4 5 6
θ

Poisson-Lindley Poisson-Akash

Coefficient of Variation 

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 2 3 4 5 6 
θ 

CV 

Poisson-Lindley Poisson-Akash 



6 Rama Shanker:  The Discrete Poisson-Akash Distribution  
 

 

 

Figure 2.  Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and  Index dispersion of PAD and PLD for different values of 
the parameter θ 

4. Mathematical and Statistical Properties 
4.1. Increasing Hazard Rate and Unimodality 

The PAD (2.2) has an increasing hazard rate (IHR) and unimodal. Since  
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is decreasing function in x , ( );P x θ  is log-concave. Therefore, the PAD has an increasing hazard rate and unimodal. A 
detailed discussion about interrelationship between log-concavity, unimodality and increasing hazard rate (IHR) of discrete 
distributions can be seen in Grandell (1997). 

4.2. Generating Functions 

The probability generating function of PAD (2.2) can be obtained as 
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The moment generating function of the PAD (2.2) can thus be obtained as 
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4.3. Over-dispersion 

The PAD (2.2) is always over-dispersed ( )2σ µ> . We have 
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This shows that PAD (2.2) is always over dispersed. 

5. Estimation of the Parameter  
5.1. Maximum Likelihood Estimate (MLE) 

Let ( )1 2, ,..., nx x x  be a random sample of size n  from the PAD (2.2) and let xf  be the observed frequency in the 

sample corresponding to ( 1,2,3,..., )X x x k= =  such that 
1

k

x
x

f n
=

=∑ , where k is the largest observed value having 

non-zero frequency. The likelihood function L of the PAD (2.2) is given by 
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The log likelihood function is thus obtained as 
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The first derivative of the log likelihood function is given by  
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where x  is the sample mean. 

The maximum likelihood estimate (MLE), θ̂  of θ  of 
PAD (2.2) is the solution of the equation log 0d L

dθ
=  and is 

given by the solution of the following non-linear equation 
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This non-linear equation can be solved by any numerical 
iteration methods such as Newton- Raphson, Bisection 
method, Regula –Falsi method etc 

5.2. Method of Moment Estimate (MOME) 

Let ( )1 2, ,..., nx x x  be a random sample of size n  from 

the PAD (2.2). Equating the population mean to the 
corresponding sample mean, the MOME θ of θ  of PAD 
(2.2) is the solution of the following cubic equation 

3 2 2 6 0x xθ θ θ− + − =  

where x  is the sample mean. 

6. Goodness of Fit 
The PAD has been fitted to a number of data - sets to test 

its goodness of fit with Poisson distribution (PD) and 
Poisson-Lindley distribution (PLD. The maximum 
likelihood estimate (MLE) has been used to fit the PAD. Five 
examples of observed count data-sets, for which the PAD, 
PD, and PLD has been fitted, are presented. The first data-set 
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is due to Kemp and kemp (1965) regarding the distribution of 
mistakes in copying groups of random digits, the second 
data-set is due to Beall (1940) regarding the distribution of 
Pyrausta nublilalis, the third data-set is the number of 
accidents to 647 women working on high explosive shells in 
5 weeks, available in Sankaran (1970), the fourth data-set is 

the distribution of red mites per leaf on apple leaves, 
available in Fisher et al (1943), and the fifth data-set is 
distribution of number of Chromatid aberrations, available in 
Loeschke and Kohler (1976) and Janardan and Schaeffer 
(1977).  

 

Table 6.1.  Distribution of mistakes in copying groups of random digits 

No. of errors 
per group 

Observed 
Frequency 

Expected Frequency 
PD PLD PAD 

0 
1 
2 
3 
4 

35 
11 
8 
4 
2 

27.4 
21.5 
8.4
2.2
0.5







 

33.0 
15.3 
6.8
2.9
2.0







 

33.5 
14.7 
6.6 

2.9
2.3





 

Total 60 60.0 60.0 60.0 

ML estimate  ˆ 0.7833θ =  ˆ 1.7434θ =  ˆ 2.077978θ =  

2χ   7.98 2.20 1.40 

d.f.  1 1 2 
p-value  0.0047 0.1380 0.4966 

Table 6.2.  Distribution of Pyrausta nublilalis 

No. of insects Observed 
Frequency 

Expected Frequency 
PD PLD PAD 

0 
1 
2 
3 
4 
5 

33 
12 
6 
3 
1 
1 

26.4 
19.8 
7.4
1.8
0.3
0.3








 

31.5 
14.2 
6.1
2.5
1.0
0.7








 

32.0 
13.6 
5.9
2.6
1.1
0.8








 

Total 56 56.0 56.0 56.0 

ML estimate  ˆ 0.7500θ =  ˆ 1.8081θ =  ˆ 2.144578θ =  

2χ   4.87 0.53 0.24 

d.f.  1 1 1 
p-value  0.0273 0.4666 0.6242 

Table 6.3.  Accidents to 647 women working on high explosive shells 

No. of 
accidents 

Observed 
Frequency 

Expected Frequency 
PD PLD PAD 

0 
1 
2 
3 
4 
5≥  

447 
132 
42 
21 
3 
2 

406 
189 
45 
7 
1 

0.1 

439.5 
142.8 
45.0 
13.9 
4.2
1.3





 

443.3 
137.7 
44.5 
14.5 

4.7
2.3





 

Total 647 647.0 647.0 647.0 

ML estimate  ˆ 0.465θ =  ˆ 2.729θ =  ˆ 2.951190θ =  

2χ   61.08 4.82 3.88 

d.f.  1 3 3 
p-value  0.0273 0.1855 0.2747 
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Table 6.4.  Distribution of number of red mites on Apple leaves, Fisher et al (1943) 

Number of red 
mites per leaf 

Observed 
Frequency 

Expected Frequency 

PD PLD PAD 

0 
1 
2 
3 
4 
5 
6 

7+ 

38 
17 
10 
9 
3 
2 
1 
0 

25.3 
29.1 
16.7 
6.4
1.8
0.4
0.2
0.1









 

35.8 
20.7 
11.4 
6.0 

3.1
1.6
0.8
0.6








 

36.3 
20.1 
11.2 
6.1 

3.2
1.6
0.8
0.7








 

Total 80 80.0 80.0 80.0 

ML estimate  ˆ 1.15θ =  ˆ 1.255891θ =  ˆ 1.620588θ =  

2χ   18.27 2.47 2.07 

d.f.  2 3 3 

p-value  0.0001 0.4807 0.5580 

Table 6.5.  Distribution of number of Chromatid aberrations (0.2 g chinon 1, 24 hours) 

No. of Chromatid 
aberrations 

Observed 
Frequency 

Expected Frequency 

PD PLD PAD 

0 
1 
2 
3 
4 
5 
6 

7+ 

268 
87 
26 
9 
4 
2 
1 
3 

231.3 
126.7 
34.7 
6.3
0.8
0.1
0.1
0.1









 

257.0 
93.4 
32.8 
11.2 

3.8
1.2
0.4
0.2








 

260.4 
89.7 
32.1 
11.5 

4.1
1.4
0.5
0.3








 

Total 400 400.0 400.0 400.0 

ML estimate  ˆ 0.5475θ =  ˆ 2.380442θ =  ˆ 2.659408θ =  

2χ   38.21 6.21 4.17 

d.f.  2 3 3 

p-value  0.0000 0.1018 0.2437 

 
 
7. Concluding Remarks 

In this paper Poisson-Akash distribution (PAD) has been 
obtained by compounding Poisson distribution with Akash 
distribution introduced by Shanker (2015). The expression 
for the r th factorial moment has been derived and hence the 
first four moments about origin and the moments about mean 
has been given. The expression for coefficient of variation, 
skewness and kurtosis has been obtained. The maximum 
likelihood estimation and the method of moments for 
estimating its parameter have been discussed. The 
distribution has been fitted using maximum likelihood 
estimate to some data - sets to test its goodness of fit over 
Poisson distribution (PD) and Poisson-Lindley distribution 
(PLD) and it is clear from the fit of PAD  that PAD gives 
much closer fit than PD and PLD in almost all data-sets. 
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